
Week 4: Elementary Number Theory and

Methods of Proof

Agenda:

• Direct Proof and Counterexample

– Direct proof and counter-example

– indirect arguments: contradiction and contraposi-
tion

Reading:

• Textbook pages 125–178.
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Firt we will see one more example about the relational database system
of a library we were discussing last week. Let’s consider the following
query:

“Find the names of all subscribers who have borrowed all books written
by “Williams” from the library”.

• A little bit of thinking convinces one that this is ambigious. It can
be interpreted as either of the following two:

– Find the names of all subscribers who have borrowed every
single copy of every book written by “Williams”, or

– Find the names of all subscribers who have borrowed at least
one copy of every book written by Williams that the library has

• The predicate formula corresponding to the first interpretation is
the following:

∃s∃a(Subscriber(s, n, a)∧∀b(∃tBook(b, t,′ Williams′) → ∃dBorrowed(s, b, d))))

This can be rephrased as follows:
Find all names n′ that can be substituted for n s.t. there is a
subscriber named n′ who has some SIN s and lives at some addresss
a, and for every book id b, if b is written by “Williams” and has
some title t, then subscriber s has borrowed b for some return date.

• For the second interpretation we have the following:

∃s∃a(Subscriber(s, n, a) ∧ ∀t(∃bBook(b, t,′′ Williams′′)
→ ∃b′(Book(b′, t,′′ Williams′′) ∧ ∃dBorrowed(s, b′, d)))))

Rephrase: find all names n′ that can be substitued for the variable
n s.t. there is a subscriber called n′ who has some SIN s and lives
at some address a and, for very title t, if there is a book (with
some id b) with title t written by Williams, then there is a book
also with title t and written by Williams with possibly a different id
b′ which subscriber s has borrowed (and must be returned by some
due date d).



In mathematics:

• Definitions are often biconditional, e.g.,

– An even integer is one that equals twice some integer.

n is even ⇔ ∃ an integer k such than n = 2k

– n is odd ⇔ ∃ an integer k such than n = 2k + 1

– n > 1 is prime ⇔ ∀ positive integers r and s, if n = r · s then
r = 1 or s = 1

– n > 1 is composite ⇔ ∃ positive integers r and s such that
n = r · s and r 6= 1 and s 6= 1

• Theorems are (mathematical) statements that are known/proved
to be true.

• Proof methods:

– Direct proof

– Proof by contraposition

– Proof by contradiction

Proving Existential Statements:

• General form of ∃x ∈ D, P (x), find a value for x from the domain
D that makes P (x) true.

• You can find that value in any way you want (guess, try different
values, etc), or (better) you can give directions as to find one
(constructive proof).

• Example:
Prove that: ∃ an even integer n that can be written in two ways
as a sum of two prime numbers.



Proof: Let n = 10. Then 10 = 5 + 5 = 3 + 7. (constructive

proofs of existence)

• Example:
Prove that there is an integer x > 5 such that x2 − 4x − 12 = 0.

Proof: We know that x2 − 4x − 12 = (x + 2)(x − 6); this implies
that for x = 6: x2 − 4x − 12 will be zero.

Disproving Universal statements:

• To disprove a statement of the form ∀x ∈ D, P (x) it is enough to
find one value for x from D which makes P (x) false. That is called
a counter-example.

• Example:
Disprove that: ∀ real numbers a and b, if a2 = b2 then a = b.

Proof: Let a = 2 and b = −2. Then 22 = (−2)2, but 2 6= −2.

Proving Universal Statements:

• More important and less trivial proofs involve these type of state-
ments.

• Method of exhaustion: try all possible values from the domain.

Example:

Prove that: ∀n ∈ Z, if n is even and 4 ≤ n ≤ 10, then n can be
written as a sum of two prime numbers.

Proof. (Exhaustion)

Not common/effection. Cannot be used if the domain is very large
or infinite.



• Direct proof: Show that the statement is true for any arbitrary
value of x chosen from the domain

• Definiton: A number r is rational ⇔ ∃ integers a and b such that
b 6= 0 and r = a

b

• Theore: The sum of any two rational numbers is rational.

Proof:

– Suppose r and s are two rational numbers (they are arbitrarily
chosen).

– Then, by definition, ∃a, b, c, d integers such that b 6= 0, d 6= 0,
and r = a

b
and s = c

d
.

– Therefore,

r + s =
a

b
+

c

d
=

ad + bc

bd
.

– Let p = ad + bc and q = bd.

– Then, p, q are integers and q 6= 0.

– It follows that r + s is rational.

• General steps in such a proof:

– Make sure the statement to be proved is written down clearly.

– Mark clearly the beginning of the proof (using word “Proof”).

– Make the proof self-contained.

– explain non-trivial steps: “note that ...”, “This is because....”,
“Follows from .... and ....”

Disproving Existential Statements

• To disprove a statement of the form ∃x ∈ D, P (x) we have to prove
that ∀x,∼ P (x).



• Example:

Prove or disprove that there is an integer x ≥ 1 s.t. x2 + 3x + 2 is
prime.

We will disprove this. We show that for all integers x ≥ 1, x2+3x+2
is composite. Note that x2 + 3x + 2 = (x + 1)(x + 2). For every
integer x ≥ 1 we have: x + 1 ≥ 2 and x + 2 ≥ 2. Thus x2 + 3x + 2
can be written as product of two numbers each of which is at least
2, so it is not prime.

Divisibility:

• n and d 6= 0 are integers:

n is divisible by d if and only if n = dk for some integer k.

• Equivalently,

– n is a multiple of d

– d is a factor of n

– d is a divisor of n

– d divides n

– d | n

• Some trivial properties:

– d | 0

– d | d

– 1 | n

Properties of divisibility:

• An integer n > 1 is prime if and only if its only positive integer
divisors are 1 and itself.



• Transitivity: for all integers a, b, and c, if a | b and b | c, then a | c.

Proof: Suppose that a, b, c are arbitrary integers such that a | b and
b | c. So there exists integers r, s s.t. b = ar and c = bs. This
implies that c = (ar)s = a(rs). Since r and s are integers, so is
k = rs. Thus c = ak for some integer k and thus a | c.

• Divisibility by a Prime: any integer n > 1 is divisible by a prime
number.

Proof. (as in the textbook).

• Fundamental Theorem of Arithmetic: given any integer n > 1,
there exist a positive integer k, distinct prime numbers p1 < p2 <

. . . < pk, and positive integers e1, e2, . . . , ek, such that

n = pe1

1 pe2

2 . . . pek

k
,

and this expression of n as a product of prime numbers (standard
factored form) is unique.

• Quotient-Remainder Theorem: given any integer n and positive
integer d, there exist unique integers q and r such that

n = dq + r and 0 ≤ r < d.

• e.g. any integer n can be expressed as n = 2q + 0 or n = 2q + 1
(but not both).

• This means any integer n is either even or odd (but not both)

• Prove that, the square of any odd integer has the form 8m +1 for
some integer m

Proof: Let n be an odd number. Then, n = 4q + 1 or n = 4q + 3,
for some q.

– Case 1 (n = 4q + 1):

n2 = (4q + 1)2 = 16q2 + 8q + 1 = 8(2q2 + q) + 1

Let m = 2q2 + q; so m is an integer since q is an integer.



Then, n2 = 8m + 1, as wanted.

– Case 2 (n = 4q + 3):

n2 = (4q + 3)2 = 16q2 + 24q + 9 = 8(2q2 + 3q + 1) + 1

Let m = 2q2 + 3q + 1; again m is an integer since q is.

Then, n2 = 8m + 1, as wanted.

so in both cases, n2 has the form 8m + 1 for some integer m.

Floor and Ceiling:

• Given any real number x, the floor of x, bxc, is defined as

bxc = n, such that n ≤ x < n + 1.

• The ceiling of x, dxe, is defined as

dxe = n, such that n − 1 < x ≤ n.

• Example b4.3c = 4, b0.82c = 0, b−2.2c = −3, d−0.92e = 0, d3e = 3.

• Theorem: ∀x ∈ R and ∀m ∈ Z, bx + mc = bxc + m.

Proof:
Let x ∈ R be an arbitrary real and m ∈ Z be an arbitrary integer.
By definition, there is an integer n, s.t. n ≤ x < n + 1 i.e. bxc = n.

Add m to all sides, we get: n + m ≤ x + m < n + m + 1, i.e.
bx + m = n + m = bxc + m.

• True or False?

– ∀x, y ∈ RR: bx + yc = bxc + byc
Flase, e.g. let x = 1.5 and y = 1.5.

– b2xc = 2bxc
False, e.g. let x = 1.1.



Proof by contradiction:

• General steps:

1. Suppose the statement to be proved is false.

That is, suppose that the negation of the statement is true.

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.

• Example:

Theorem: Sum of any rational and any irrational number is irra-
tional.

Proof: By way of contradiction, suppose there is a rational number
r and irrational number s s.t. r + s is rational.

By definition, there are integers a, b, c, d s.t. b 6= 0, d 6= 0, and r = a
b

and r + s = c
d
.

So a
b
+ s = c

d
which implies s = c

d
− a

b
= cb−ad

bd
.

Since b, d are non-zero, so is bd. Also, both cb − ad and bd are
integers, so s is rational, which contradicts the assumption.

Proof by contraposition:

• General steps:

1. Rewrite the statement in the contrapositive form.

2. Prove the contraposition by a direct proof.

3. Conclude from the equivalence that the statement to be proved
is true.

• Example:
Theorem For all integers n, if n2 is even then n is even.

Proof: We prove that for all integers n if n is odd then n2 is odd.
This is the contrapositive of the original statement and therefore
is equivalent to it.



Let n be any odd integer. So it has the form n = 2q + 1 for some
integer q.

Therefore, n2 = (2q + 1)2 = 4q2 + 4q + 1 = 2(2q2 + 2q) + 1. Let
k = 2q2 + 2q; so k is an integer and thus n2 = 2k + 1 for some
integer; so it is odd.


