Week 4: Elementary Number Theory and
Methods of Proof

Agenda:

e Direct Proof and Counterexample
— Direct proof and counter-example

— indirect arguments: contradiction and contraposi-
tion

Reading:

e [extbook pages 125—-178.



Firt we will see one more example about the relational database system
of a library we were discussing last week. Let's consider the following
query:

“Find the names of all subscribers who have borrowed all books written
by “Williams” from the library".

e A little bit of thinking convinces one that this is ambigious. It can
be interpreted as either of the following two:

— Find the names of all subscribers who have borrowed every
single copy of every book written by “Williams”, or

— Find the names of all subscribers who have borrowed at least
one copy of every book written by Williams that the library has

e The predicate formula corresponding to the first interpretation is
the following:

dsJa(Subscriber(s, n, a)AVb(ItBook(b, t,’ Williams') — IdBorrowed(s, b,d))))

This can be rephrased as follows:

Find all names n’ that can be substituted for n s.t. there is a
subscriber named n’ who has some SIN s and lives at some addresss
a, and for every book id b, if b is written by “Williams" and has
some title t, then subscriber s has borrowed b for some return date.

e For the second interpretation we have the following:

dsda(Subscriber(s,n,a) A Vt(IbBook(b, t,” Williams")
— 3b' (Book(V', t,” Williams") N 3dBorrowed(s,b’,d)))))

Rephrase: find all names »n/ that can be substitued for the variable
n S.t. there is a subscriber called n’ who has some SIN s and lives
at some address a and, for very title ¢, if there is a book (with
some id b) with title ¢t written by Williams, then there is a book
also with title ¢t and written by Williams with possibly a different id
b’ which subscriber s has borrowed (and must be returned by some
due date d).



In mathematics:

e Definitions are often biconditional, e.g.,

An even integer is one that equals twice some integer.

n IS even < 4 an integer k such than n = 2k
n is odd < 3 an integer k such than n =2k +1

n > 1 is prime < V positive integers r and s, if n = r-s then
r=1lors=1

n > 1 is composite < 1 positive integers » and s such that
n=r-sandr*1and s# 1

e Theorems are (mathematical) statements that are known/proved
to be true.

e Proof methods:

Direct proof
Proof by contraposition

Proof by contradiction

Proving Existential Statements:

e General form of dx € D, P(x), find a value for z from the domain
D that makes P(x) true.

e You can find that value in any way you want (guess, try different
values, etc), or (better) you can give directions as to find one
(constructive proof).

e Example:
Prove that: 4 an even integer n that can be written in two ways
as a sum of two prime numbers.



Proof: Let n = 10. Then 10 =545 = 3+ 7. (constructive
proofs of existence)

e Example:
Prove that there is an integer x > 5 such that z2 — 4x — 12 = 0.

Proof: We know that z? — 4z — 12 = (z + 2)(z — 6); this implies
that for x = 6: x2 — 4x — 12 will be zero.

Disproving Universal statements:

e To disprove a statement of the form Vz € D, P(x) it is enough to
find one value for z from D which makes P(x) false. That is called
a counter-example.

e Example:
Disprove that: V real numbers a and b, if a2 = b2 then a = b.

Proof: Let a =2 and b= —2. Then 22 = (—2)?, but 2 # —2.
Proving Universal Statements:

e More important and less trivial proofs involve these type of state-
ments.

e Method of exhaustion: try all possible values from the domain.
Example:

Prove that: Vvn € Z, if n is even and 4 < n < 10, then n can be
written as a sum of two prime numbers.

Proof. (Exhaustion)

Not common/effection. Cannot be used if the domain is very large
or infinite.



e Direct proof: Show that the statement is true for any arbitrary
value of x chosen from the domain

e Definiton: A number r is rational < 3 integers a and b such that

b7#0and r=y

e Theore: The sum of any two rational numbers is rational.
Proof:

— Suppose r and s are two rational numbers (they are arbitrarily
chosen).

— Then, by definition, da,b,c,d integers such that b # 0, d # O,

—a — C
andr—band s= 3.

— Therefore,

ad + be

C
Tt =TT T

a
b
— Let p=ad+ bc and q = bd.

— Then, p,q are integers and ¢ # 0.

— It follows that » + s is rational.

e General steps in such a proof:
— Make sure the statement to be proved is written down clearly.
— Mark clearly the beginning of the proof (using word “Proof").
— Make the proof self-contained.
— explain non-trivial steps: “note that ...”, “This is because....”,
“Follows from .... and ...."”

Disproving Existential Statements

e To disprove a statement of the form 3z € D, P(x) we have to prove
that Vz,~ P(x).



e Example:

Prove or disprove that there is an integer > 1 s.t. 2243z + 2 is
prime.

We will disprove this. We show that for all integers = > 1, x°+3z+2
is composite. Note that z° +3z+2 = (¢ + 1)(z + 2). For every
integer t > 1 we have: z+1>2andx+2>2. Thus z2+3z+2
can be written as product of two numbers each of which is at least
2, so it is not prime.

Divisibility:
e n and d # 0 are integers:

n is divisible by d if and only if n = dk for some integer k.

e Equivalently,
— n is a multiple of d
— d is a factor of n
— d is a divisor of n
— d divides n

—d|n

e Some trivial properties:
— d|o
— d|d
— 1|n

Properties of divisibility:

e An integer n > 1 is prime if and only if its only positive integer
divisors are 1 and itself.



Transitivity: for all integers a, b, and ¢, if a|band b | ¢, then a | c.

Proof: Suppose that a,b, c are arbitrary integers such that a | b and
b | c. So there exists integers r,s s.t. b = ar and ¢ = bs. This
implies that ¢ = (ar)s = a(rs). Since r and s are integers, so is
k = rs. Thus ¢ = ak for some integer k and thus a | c.

Divisibility by a Prime: any integer n > 1 is divisible by a prime
number.

Proof. (as in the textbook).

Fundamental Theorem of Arithmetic:. given any integer n > 1,
there exist a positive integer k, distinct prime numbers p;1 < p2 <
... < pr, and positive integers e, eo,...,er, such that

n=pi'py ... Py
and this expression of n as a product of prime numbers (standard
factored form) is unique.

Quotient-Remainder Theorem: given any integer n and positive
integer d, there exist unique integers g and r such that

n=dg+r and 0<r <d.

e.g. any integer n can be expressed asn =2¢q+0orn =29+ 1
(but not both).

This means any integer n is either even or odd (but not both)

Prove that, the square of any odd integer has the form 8m + 1 for
some integer m

Proof.: Let n be an odd number. Then, n =49+ 1 or n = 4q + 3,
for some q.
— Case 1l (n=4q+1):
n?2=(4q+1)2=16¢°+8¢+1=8(2¢°+¢q) +1
Let m = 2¢% + ¢q; SO m is an integer since ¢ is an integer.



Then, n?2 = 8m + 1, as wanted.

— Case 2 (n=4q+ 3):
n? = (4q+3)2=16¢>+249+9=8(2¢>+3¢+1)+1
Let m = 2¢° + 3¢ + 1; again m is an integer since q is.
Then, n? = 8m + 1, as wanted.

so in both cases, n? has the form 8m 4+ 1 for some integer m.
Floor and Ceiling:
e Given any real number z, the floor of z, |z|, is defined as
|z] =n, suchthatn<zx<n-+4 1.
e The ceiling of z, [z], is defined as
[x] =n, suchthatn—-1<z<n.
e Example |4.3] =4, |0.82]| =0, |[-2.2] = -3, [-0.92] =0, [3] = 3.

e Theorem: Vz c R and Vm € Z, |z +m]| = |z| +m.

Proof:
Let z € R be an arbitrary real and m € Z be an arbitrary integer.
By definition, there is an integer n, s.t. n<z<n+4+1ie. [z]=n.

Add m to all sides, we get: n+ m < z+m < n+m-+1, ie.
le4+m=n+m=|z] +m.

e True or False?

— Vz,y € RR: |z +y] = [=] + [y]
Flase, e.g. let x = 1.5 and y = 1.5.

— [2z] = 2|z
False, e.g. let x = 1.1.



Proof by contradiction:

e General steps:

1. Suppose the statement to be proved is false.
That is, suppose that the negation of the statement is true.

2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.

e Example:

Theorem: Sum of any rational and any irrational number is irra-
tional.

Proof: By way of contradiction, suppose there is a rational number
r and irrational number s s.t. r + s is rational.

By definition, there are integers a,b,c,ds.t. b#0,d# 0, and r = ¢
and r + s = g.

a —cC ; ; ; — ¢ __a _ cb—ad
Sog-l—s_dwh|ch|mpl|e53_d F = S

Since b,d are non-zero, so is bd. Also, both ¢b — ad and bd are
integers, so s is rational, which contradicts the assumption.

Proof by contraposition:

e General steps:
1. Rewrite the statement in the contrapositive form.
2. Prove the contraposition by a direct proof.

3. Conclude from the equivalence that the statement to be proved
is true.

e Example:
Theorem For all integers n, if n? is even then n is even.

Proof: We prove that for all integers n if n is odd then n? is odd.
This is the contrapositive of the original statement and therefore
iS equivalent to it.



Let n be any odd integer. So it has the form n = 2qg 4+ 1 for some
integer q.

Therefore, n? = (2¢+1)2 =4¢° + 49+ 1 =2(2¢°+2¢) +1. Let
k = 2¢° + 2q; so k is an integer and thus n? = 2k + 1 for some
integer; so it is odd.



