
Week 3: Logic

Agenda:

• 2.2-2.3 Quantified Statements

• 2.4 Arguments with Quantified Statements

• Scope of quantifiers and free variables

• Applications: relational database

Reading:

• Textbook pages 88–124.

1



More examples of logical equivalences:

• Example 1: It is easy to see that:

∃x(P (x) ∧ q(x)) ⇒ ∃x P (x) ∧ ∃x Q(x)

but these are not equivalent; for example let P (x) be 2x + 1 = 5
and Q(x) be x2 = 9.

Example 2:

∃x(P (x) ∨ q(x)) ≡ ∃xP (x) ∨ ∃xQ(x)

Example 3:

∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)

Example 4:

∀xP (x) ∨ ∀xQ(x) ⇒ ∀x(P (x) ∨ Q(x))

but these are not logically equivalent; for example let P (x) denote
x > 0 and Q(x) denote x ≤ 0. Then clearly, for every real P (x) ∨
Q(x) but clearly it is not the case that ∀xP (x) ∨ ∀xQ(x).

• Negation of universal conditional statement:

∼ (∀x, P (x) → Q(x)) ≡ ∃x ∼ (P (x) → Q(x))

≡ ∃x, P (x)∧ ∼ Q(x)

e.g. for all students in CS program, if you have taken CMPUT 114
then you have taken 101 too.

Negation: there is a student that has taken 114 but not 101.

• For statement ∀x,P (x) → Q(x):

– Contrapositive: ∀x,∼ Q(x) →∼ P (x)

– Converse: ∀x, Q(x) → P (x)

– Inverse: ∀x,∼ P (x) →∼ Q(x)



and the contrapositive is LEQ to the original; similarly, converse
and inverse are LEQ but not to the original.

e.g. ∀x ∈ R, x2 ≤ 1 → x ≤ 1 ≡ ∀x ∈ R, x > 1 → x2 > 1
∀x ∈ R, x ≤ 1 → x2 ≤ 1 ≡ ∀x ∈ R, x2 > 1 → x > 1

• Note:

∃x∀yP (x, y) 6⇐6⇒ ∀x∃yP (x, y)

∃x∀yP (x, y) 6⇐⇒ ∀y∃xP (x, y)

• Free Variables

An occurance of a variable x is free in a formula F if it does not
appear within a subformula of F of the form ∀xE or ∃xE.

e.g. ∀x(x2 > 4∨x+y = 1), y is free but x is bound to the quantifier.

Variables that are not free are bound (to some quantifier).

• Scope of Quantifier and binding of variables

In ∀xF , we say F is the scope of varible x.

∃x (∀y

scope of y
︷ ︸︸ ︷

(P (x, y) → Q(y))∧∃u

scope of u
︷ ︸︸ ︷

P (u, x) )
︸ ︷︷ ︸

scope of x

By this, we can say an occurance of a variable x is free if it does
not appear within the scope of any quantifier.

• How to determine the quantifier to which a variable is bound?

An occurance of a variable x is bound to the closest quantifer with
that variable (inner most). This is similar to variable definitions in
nested loops/procedures in a program: if a variable x is defined in
nested loops, each use of x referres to the inner most definition of
it.

e.g. Let M(x) mean “x is male”; F (x) mean “y is female”; and
S(x, y) mean “x is a sibling of y”. Then:



∀x∀y(F (y) ∧ ∀y(S(x, y) → M(y)) →∼ S(y, x))

(every female person is not the sibling of anyone all of whose sib-
lings are male)

• One reason the above example is difficult to interpret is that dif-
ferent occurances of y are bound to different quantifiers. Easier if
we change variable names.

• How can we change a variable name?

• Let Q be any quantifier (∀ or ∃) and QxF be a quantified predicate.
If y does not appear in F then we can replace every free occurance
of x in F with y to obtain F y

x and then QxF ≡ QyF y
x .

e.g. ∃x(P (u, v, w) ∧ S(x, w) → P (u, v, x)) ≡ ∃y(P (u, v, w) ∧ S(y, w) →
P (u, v, y))

∃x(P (u, v, w) ∧ S(x, w) → ∃xP (u, v, x)) ≡ ∃y(P (u, v, w, ) ∧ S(y, w) →
∃xP (u, v, x)).

• Note:

– in the second example, the second x is not free (bound to
quantifier ∃).

– We can change variable name only in quantified predicates in
the above rule.

• Another example: note that ∀x(M(x) ∨ F (x) 6≡ ∀xM(x) ∨ ∀xF (x).

The LHS says, every person is either a man or woman. The RHS
says, either everybody is a man or everybody is a woman.

Some more laws of equivalence.

• We have already seen that:



I) ∼ ∀xF ≡ ∃x ∼ F

∼ ∃xF ≡ ∀x ∼ F

• Suppose that x is not free in F then

IIa) F ∧ ∀xE ≡ ∀x(F ∧ E)

F ∧ ∃xE ≡ ∃x(F ∧ E)

e.g. ∀x(P (x) ∧ ∃yQ(x, y)) ≡ ∀x∃y(P (x) ∧ Q(x, y)).

Similarly:

IIb) F ∨ ∀xE ≡ ∀x(F ∨ E)

F ∨ ∃xE ≡ ∃x(F ∨ E)

IIc) ∀xE ∧ F ≡ ∀x(E ∧ F )

∃xE ∧ F ≡ ∃x(E ∧ F )

IId) ∀xE ∨ F ≡ ∀x(E ∨ F )

∃xE ∨ F ≡ ∃x(E ∨ F )

IIe) ∀xE → F ≡ ∃x(E → F )

∃xE → F ≡ ∀x(E → F )

IIf) F → ∀xE ≡ ∀x(F → E)

F → ∃xE ≡ ∃x(F → E)

Note that IIc) and IIb) can be obtained from IIa) and IIb). Also
we can obtain IIe) as follows:

∀xE → F ≡ ∼ ∀xE ∨ F

≡ ∃x ∼ E ∨ F

≡ ∃x(∼ E ∨ F )

≡ ∃x(E → F ).



• example:

(∀xP (x)) → ∀x(Q(x) → A(x) ∨ B(x))

≡ (∀xP (x)) → ∀y(Q(y) → A(y) ∨ B(y)) change of var

≡∼ (∀xP (x)) ∨ ∀y(∼ Q(y) ∨ A(y) ∨ B(y)) → law twice

≡ ∃x(∼ P (x)) ∨ ∀y(∼ Q(y) ∨ A(y) ∨ B(y)) using I)

≡ ∃x(∼ P (x) ∨ ∀y(∼ Q(y) ∨ A(y) ∨ B(y))) using IId)

≡ ∃x∀y(∼ P (x)∨ ∼ Q(y) ∨ A(y) ∨ B(y))) using IIc)

Arguments with quantified statements:

• Universal modus ponens:

∀x,P (x) → Q(x)
P (a)

∴ Q(a)

• Universal modus tollens:

∀x,P (x) → Q(x)
∼ Q(a)

∴ ∼ P (a)

Applications: Relational database systems

• Predicate logic provides mathematical basis and conceptual frame-
work for the most popular types of database systems: relational
database

• Consider a library database; have three predicates:

– Books: has a book id b, title t, and author name a; Books(b, t, a)
is true if there is a book with id b and title t and author a.

– Subs: a subscriber predicate which has a parameter s corre-
sponding to SIN number, a name n, and an address a; Subs(s, n, a)
is true if there is a subscriber with SIN number s, name n, and
address a.

– Borrowed: a predicate which shows subscriber s has borrowed
book with id b and has a due date d: Borrowed(s, b, d).



• We use predicate formulas to send queries;

• Example: Find all books writtne by “Williams”

∃bBooks(b, t,′′ Williams′′).

We have a free variabe t for titles. It reads: find the set of all
values t′ that can be substituted for t s.t. for some book id b, triple
(b, t,′′ williams′′) is true, i.e. there is a book with id b and title t′

with author “Williams′′.

• Example: find names and addresses of all that have borrowed books
with due date 2007/1/1.

∃s(Subs(s, n, a) ∧ ∃bBorrowed(s, b,2007/1/1)).

Note that the results we look for always correspond to the free
variables.
It reads: find the set of all pairs n′, a′ that can be substituted for
variables n and a s.t. there is a subscriber with some SIN number
and name n′ and address a′ that has borrowed some book b with
due date 2007/1/1.

• Note that the following is different from example above:

∃sSubs(s, n, a) ∧ ∃s∃bBorrowed(s, b,2007/1/1).

This returns the names and address of all subscribers if there is
somebody that has borrowed a book with due date 2007/1/1.

• Example: Find the names of all subscribers who have borrowed a
copy of “Mathematics” by “Kleene” and the due date by which it
is to be returned.

∃s(∃aSubs(s, n, a)∧∃b(Books(b,′′ Mathematics′′,′′ kleene′′)∧Borrowed(s, b, d)).

Two free variables n and d; it reads:
find all pairs n′ and d′ that can be substitued for n and d s.t.
for some SIN s, there is a subscriber with SIN s, name n′, and
some address, and for some book, say b, the book with id b is
“Mathematics” by “Kleene”, and the subscriber has borrowed b
and must be returned by d′.


