Week 2: Logic

Agenda:
e 1.3 Valid and Invalid Arguments
e 1.4 Application: Digital Logic Circuits

e 1.5 Application: Number Systems and Circuits for Ad-
dition

e 2.1 Predicates and Quantifiers.

Reading:

e [extbook pages 29—88.



Statement: a declarative sentence that is either true or false, but
not both

— E.g., “The sum of z and y is greater than 0" is NOT a state-
ment

Argument: a sequence of statements aimed at demonstrating the
truth of an assertion

Statement Form: an expression made up of statement variables
and logical connectives

Argument Form: a sequence of statement forms.

All except the last statement are called Premise / assumption /
hypothesis.
last statement is Conclusion.

Valid Argument form: No matter what statements are substi-
tuted for statement variables in the assumption, if the resulting
assumptions are true then so is the conclusion.

E.g.,

if p then ¢
p
q

Testing an Argument Form for Validity:
1. Identify the premises and the conclusion

2. Construct a truth table showing the truth values of all premises
and the conclusion

3. If there is a row as follows, then it is invalid:
— All premises are true

— The conclusion is false
Otherwise, it is valid.



P q|p—q p q|
O O 1 O O
Truth table for (p - g) A(p) = (¢): 0 1 1 0O 1
1 0] 0] 1 0
1 1 1 1 1

e Testing an Argument Form for Validity:

A general form: [pt Ap2o ApsA...Ap] — ¢

— p1,p2,pP3,...,Pn Are premises

— ¢ is the conclusion

— After the validity is proved, we write [p1 Apo ApsA...Aps] = ¢
‘ read as logically implies

="

e T he validity can be shown by a truth table

— We only need to exam those rows in which all premises are
true

— In the other case, ‘="' holds true vacuously

e c.g. "If the sum of digits of 12822 is divisable by 3 and the last
digit is even then it is divisable by 6" .
“The sum of digits of 12822 is divisable by 3".
“The last digit is even.”
“Therefore, 12822 is divisable by 6.

Rules of Inference:

e They are (simple enough) valid argument forms
Syllogism: two premises and a conclusion

e Why these rules?

— To simplify the other proofs of validity (cannot afford truth
tables with large number of variables)

e Several important rules (Table 1.3.1 in Page 40 summarizes 9 rules)



— Modus Ponens (Rule of Detachment, Method of Affirming):
[pA(p—a)] =g

— Modus Tollens (Rule/Method of Denying): [(p — ¢)A ~ q] =~
p

— Elimination: [(pV ¢@)A ~ p] = ¢

— Transitivity: [(p—= ¢ A(g—7r)]=(p—r1)

— Contradiction Rule: [~ p — Fo]l = p

— generalization: p= (pV q)

— specialization: pAg=1p

— Divistion into cases: [(pVg A(p—qg) AN(qg—1)] =T

e Validity is NOT being true; a valid argument may have a false
conclusion

e e.g. “if I am teaching 272 I know everything in the world.”
“I am teaching 272".
“Therefore, I know everything in the world."” .

e More complex example:

~pVqg—r
sV ~ q

~ 1

p—t
~pPAT —~ S
S~ q

[~tA(p—t)] =~ p by Modus tollen

[~ p] =~ pV ¢ by generalization
[(~pVg—1)AN(~pVqg)] =r by Modus ponen

[~ pAr] =~ pAr by conjunction

[(~~pAr —=~3)A(~pAT)] =~ s by Modus ponen
[~ s A (sV ~ q)] =~ ¢ by elimination



Section 1.4: The circuits

e Operations of switches in series and parallel circuits
— P and @ in series is equivalent to PAQ

— P and @ in parallel is equivalent to PV Q

e Gates: the basic circuits accepting input turning into output
— NOT-gate (one input signal P, one output signal ~ P):
— AND-gate (two input signals P and @, one output signal PAQ)
— OR-gate (two input signals P and @Q, one output signal PV Q)

e Combinatorial circuits:
- Don’'t combine two different inputs
- No feedback (output going back to the input of a gate)

e Computation on circuits:
— G@Given a circuit and its input, determine its output
— G@Given a circuit, construct its input/output table
— @Given a circuit, find its Boolean expression
— Given a Boolean expression, construct its circuit

— Given an input/output table, design its circuit

e Given an input/output table:

Input Output
P Q@ R S
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0




Identify the rows with output 1
For each row with output 1, construct a multi-input AND-gate

Construct a multi-input OR-gate to have its inputs being the out-
puts of the constructed AND-gates

(PAQAR)V (PAN~QAR)V(PA~QA~R)

Equivalent circuits:

Two digital logic circuits are equivalent iff their input/output ta-
bles are identical

Two statement forms are equivalent iff their truth tables are iden-
tical

This gives another way of proving equivalence

Note: they are essentially the same ...

This gives a way to simplify the circuit design !!!

For example, ((PA~Q)V (PAQ))ANQ can be simplified as P A Q,
an AND-gate

Binary representation of numbers:

e Decimal system: 1,321 = 1 - (1,000) + 3 - (100) + 2 - (10) + 1

- (1)

or 1,321 =1 -10% 4+ 3 :10%2 + 2 -10t + 1 -10°



Digits: 0, 1, 2, 3, 4,5,6,7,8,9

e Binary representation to use digits 0 and 1 (for those a;'s):

1,321 =1 2k 4+ a1 -2F 1 4+ ap_o-2F2 4 .. ap-29, for some k
e How do we determine a;'s 7

ap is the remainder of 1,321 divided by 2 (quotient is 660)

a1 is the remainder of 660 (the last quotient) divided by 2 (quotient
330)

Addition of binary numbers:
e The same as we do for adding decimal numbers

e For example, 1101, + 111, = 10100

1 1 1
1 1 0 1,
1 1 1
1 0 1 0 O

e Design circuits for addition
— how do we add single digit numbers?
— how to take care of carry?

— the table for adding two bits p, g:

p q | Carry Sum
0O O 0 0
0O 1 0 1
1 O 0 1
1 1 1 0]

— We can write: sum = (pV @A ~ (pAq)
carry = p A q.



— Now it's easy to build the circuit for sum and carry; this is
called half-adder

— half-adder: adds three bits; two bits plus a carry from previous
step.

the circuits, the input/output tables

— expanding full-adder to any fixed number of digits
Other frequently used representations for numbers:

e T he octal system — base-8 representation
5710 = 71g

e To transform from binary to octal: consider the bits in groups of
three and write the digit (in base 8) for each group; to go from
octal to binary do the revers.

e e.g. for 11101011, consider the bits as 011 101 011 then we get:
353g

e The hexadecimal system — base-16 representation (A, B, C, D,
E, F denote 10, 11, 12, 13, 14, 15, respectively)

21610 = 10 x 161 4+ 8 x 169 = A845.

e To transform between Hex and binary: consider the binary bits in
groups of 4:

e.g. for 11101011 we consider the bits as 1110 1011 and we get:
EB.6.



Sectioon 2.1: Predicate logic:

e Statement: a declarative sentence that is either true or false, but
not both

— 2 is an integer
— 2.1 is an integer
— 20 is an integer

— 2,000.78 is an integer
e x iS an integer — this is not a statement

e Predicate: a declarative sentence that contains a finite number
of variables and becomes a statement when specific values are
substituted for the variables

Also known as open statements, propositional functions, and
SO on

e Domain of a predicate variable
Quantifiers:

e Notations for number sets
— R: real numbers
— @Q: rational numbers
— Z: integers
— RT: positive real numbers

— R=29: nonnegative real numbers

e EXistential quantifier:
There is/exists an z, or there is/exists at least one =, or Jz, p(x)



Eg.,3xe€Z, 22°2—2—-3=0

e Universal quantifier:
For all z, or for any z, or Vz, p(x)
Eg.,VxeZ 22°2—x—-3>0

Quantified Statements:

e EXxistential statement:
“Jr € Z, 222 —x—3 = 0" is true, since x = —1 makes 222—x—3 =0

e Universal statement:
“Ve € Z, 2z2—x—3 > 0" is false, since z = 0 makes 2z°—xz—3 < 0

Such an “xz = 0” is called a counterexample to the universal
statement

e Clearly, Vz p(z) = 3z p(x)
Relations between quantifiers and negation:
e Predicate p(z), its negation is ~ p(x)

e Four quantified statements:

— dx p(x) negation becomes Vz ~ p(x)

e.g. “There is somebody in this room who is at least 6 feet.”
Negation: “Everybody in this room is shorter than 6.

— Vz p(x) negation becomes Jdz ~ p(x) e.g. "“All CS courses
involve programming’ .
Negation: “There is a CS course that does not involve pro-
gramming.” .

e Predicates with multiple variables:
dz,y, P(x,y) = 3x3y, P(x,y) = Jy3z, P(zx,y)



Va,y, P(x,y) = VaVy, P(x,y) = VyVe, P(z,y)
e.g. Vz,y € R, (x4 y)? = 2% + 2zy + v°.

e BUT Vzdy, P(x,y) # Iyvz, P(x,y)

e.g. Vzdy, x +y = 10 means for every value of x we can choose y
to be 10 — z, and thus x 4+ y = 10 will be true. But it is not true
that there is a value of y s.t. for every value of = that we choose
x+y=10.

e Note: JzVy, P(z,y) = Vy3x, P(x,y);



