
Week 2: Logic

Agenda:

• 1.3 Valid and Invalid Arguments

• 1.4 Application: Digital Logic Circuits

• 1.5 Application: Number Systems and Circuits for Ad-
dition

• 2.1 Predicates and Quantifiers.

Reading:

• Textbook pages 29–88.
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• Statement: a declarative sentence that is either true or false, but
not both

– E.g., “The sum of x and y is greater than 0” is NOT a state-
ment

• Argument: a sequence of statements aimed at demonstrating the
truth of an assertion

• Statement Form: an expression made up of statement variables
and logical connectives

• Argument Form: a sequence of statement forms.

All except the last statement are called Premise / assumption /
hypothesis.
last statement is Conclusion.

• Valid Argument form: No matter what statements are substi-
tuted for statement variables in the assumption, if the resulting
assumptions are true then so is the conclusion.

• E.g.,

if p then q
p

∴ q

• Testing an Argument Form for Validity:

1. Identify the premises and the conclusion

2. Construct a truth table showing the truth values of all premises
and the conclusion

3. If there is a row as follows, then it is invalid:

– All premises are true

– The conclusion is false

Otherwise, it is valid.



Truth table for (p → q) ∧ (p) ⇒ (q):

p q p → q p q
0 0 1 0 0
0 1 1 0 1
1 0 0 1 0
1 1 1 1 1

• Testing an Argument Form for Validity:

A general form: [p1 ∧ p2 ∧ p3 ∧ . . . ∧ pn] → q

– p1, p2, p3, . . . , pn are premises

– q is the conclusion

– After the validity is proved, we write [p1 ∧ p2 ∧ p3 ∧ . . .∧ pn] ⇒ q

‘⇒’: read as logically implies

• The validity can be shown by a truth table

– We only need to exam those rows in which all premises are
true

– In the other case, ‘⇒’ holds true vacuously

• e.g. “If the sum of digits of 12822 is divisable by 3 and the last
digit is even then it is divisable by 6”.
“The sum of digits of 12822 is divisable by 3”.
“The last digit is even.”
“Therefore, 12822 is divisable by 6”.

Rules of Inference:

• They are (simple enough) valid argument forms

Syllogism: two premises and a conclusion

• Why these rules?

– To simplify the other proofs of validity (cannot afford truth
tables with large number of variables)

• Several important rules (Table 1.3.1 in Page 40 summarizes 9 rules)



– Modus Ponens (Rule of Detachment, Method of Affirming):
[p ∧ (p → q)] ⇒ q

– Modus Tollens (Rule/Method of Denying): [(p → q)∧ ∼ q] ⇒∼
p

– Elimination: [(p ∨ q)∧ ∼ p] ⇒ q

– Transitivity: [(p → q) ∧ (q → r)] ⇒ (p → r)

– Contradiction Rule: [∼ p → F0] ⇒ p

– generalization: p ⇒ (p ∨ q)

– specialization: p ∧ q ⇒ p

– Divistion into cases: [(p ∨ q) ∧ (p → q) ∧ (q → r)] ⇒ r

• Validity is NOT being true; a valid argument may have a false
conclusion

• e.g. “if I am teaching 272 I know everything in the world.”
“I am teaching 272”.
“Therefore, I know everything in the world.”.

• More complex example:

∼ p ∨ q → r

s∨ ∼ q

∼ t

p → t

∼ p ∧ r →∼ s

∴∼ q

[∼ t ∧ (p → t)] ⇒∼ p by Modus tollen
[∼ p] ⇒∼ p ∨ q by generalization
[(∼ p ∨ q → r) ∧ (∼ p ∨ q)] ⇒ r by Modus ponen
[∼ p ∧ r] ⇒∼ p ∧ r by conjunction
[(∼ p ∧ r →∼ s) ∧ (∼ p ∧ r)] ⇒∼ s by Modus ponen
[∼ s ∧ (s∨ ∼ q)] ⇒∼ q by elimination



Section 1.4: The circuits

• Operations of switches in series and parallel circuits

– P and Q in series is equivalent to P ∧ Q

– P and Q in parallel is equivalent to P ∨ Q

• Gates: the basic circuits accepting input turning into output

– NOT-gate (one input signal P , one output signal ∼ P ):

– AND-gate (two input signals P and Q, one output signal P ∧Q)

– OR-gate (two input signals P and Q, one output signal P ∨Q)

• Combinatorial circuits:

- Don’t combine two different inputs
- No feedback (output going back to the input of a gate)

• Computation on circuits:

– Given a circuit and its input, determine its output

– Given a circuit, construct its input/output table

– Given a circuit, find its Boolean expression

– Given a Boolean expression, construct its circuit

– Given an input/output table, design its circuit

• Given an input/output table:

Input Output
P Q R S

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0



• Identify the rows with output 1

• For each row with output 1, construct a multi-input AND-gate

• Construct a multi-input OR-gate to have its inputs being the out-
puts of the constructed AND-gates

(P ∧ Q ∧ R) ∨ (P∧ ∼ Q ∧ R) ∨ (P∧ ∼ Q∧ ∼ R)

Equivalent circuits:

• Two digital logic circuits are equivalent iff their input/output ta-
bles are identical

• Two statement forms are equivalent iff their truth tables are iden-
tical

• This gives another way of proving equivalence

Note: they are essentially the same ...

• This gives a way to simplify the circuit design !!!

For example, ((P∧ ∼ Q) ∨ (P ∧ Q)) ∧ Q can be simplified as P ∧ Q,
an AND-gate

Binary representation of numbers:

• Decimal system: 1,321 = 1 · (1,000) + 3 · (100) + 2 · (10) + 1
· (1)

or 1,321 = 1 ·103 + 3 ·102 + 2 ·101 + 1 ·100



Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Binary representation to use digits 0 and 1 (for those ai’s):

1,321 = 1 ·2k + ak−1 · 2k−1 + ak−2 · 2k−2 + . . . a0 · 20, for some k

• How do we determine ai’s ?

a0 is the remainder of 1,321 divided by 2 (quotient is 660)

a1 is the remainder of 660 (the last quotient) divided by 2 (quotient
330)

. . .

Addition of binary numbers:

• The same as we do for adding decimal numbers

• For example, 11012 + 1112 = 101002

1 1 1
1 1 0 12

1 1 12

1 0 1 0 02

• Design circuits for addition

– how do we add single digit numbers?

– how to take care of carry?

– the table for adding two bits p, q:

p q Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

– We can write: sum = (p ∨ q)∧ ∼ (p ∧ q)
carry = p ∧ q.



– Now it’s easy to build the circuit for sum and carry; this is
called half-adder

– half-adder: adds three bits; two bits plus a carry from previous
step.

the circuits, the input/output tables

– expanding full-adder to any fixed number of digits

Other frequently used representations for numbers:

• The octal system — base-8 representation

5710 = 718

• To transform from binary to octal: consider the bits in groups of
three and write the digit (in base 8) for each group; to go from
octal to binary do the revers.

• e.g. for 11101011, consider the bits as 011 101 011 then we get:
3538

• The hexadecimal system — base-16 representation (A, B, C, D,
E, F denote 10, 11, 12, 13, 14, 15, respectively)

21610 = 10× 161 + 8 × 160 = A816.

• To transform between Hex and binary: consider the binary bits in
groups of 4:

e.g. for 11101011 we consider the bits as 1110 1011 and we get:
EB16.



Sectioon 2.1: Predicate logic:

• Statement: a declarative sentence that is either true or false, but
not both

– 2 is an integer

– 2.1 is an integer

– 20 is an integer

– 2,000.78 is an integer

• x is an integer — this is not a statement

• Predicate: a declarative sentence that contains a finite number
of variables and becomes a statement when specific values are
substituted for the variables

Also known as open statements, propositional functions, and
so on

• Domain of a predicate variable

Quantifiers:

• Notations for number sets

– R: real numbers

– Q: rational numbers

– Z: integers

– R+: positive real numbers

– R≥0: nonnegative real numbers

• Existential quantifier:

There is/exists an x, or there is/exists at least one x, or ∃x, p(x)



E.g., ∃x ∈ Z, 2x2 − x − 3 = 0

• Universal quantifier:

For all x, or for any x, or ∀x, p(x)

E.g., ∀x ∈ Z, 2x2 − x − 3 > 0

Quantified Statements:

• Existential statement:

“∃x ∈ Z, 2x2−x−3 = 0” is true, since x = −1 makes 2x2−x−3 = 0

• Universal statement:

“∀x ∈ Z, 2x2−x−3 > 0” is false, since x = 0 makes 2x2−x−3 < 0

Such an “x = 0” is called a counterexample to the universal
statement

• Clearly, ∀x p(x) ⇒ ∃x p(x)

Relations between quantifiers and negation:

• Predicate p(x), its negation is ∼ p(x)

• Four quantified statements:

– ∃x p(x) negation becomes ∀x ∼ p(x)

e.g. “There is somebody in this room who is at least 6 feet.”
Negation: “Everybody in this room is shorter than 6”.

– ∀x p(x) negation becomes ∃x ∼ p(x) e.g. “All CS courses
involve programming”.
Negation: “There is a CS course that does not involve pro-
gramming.”.

• Predicates with multiple variables:

∃x, y, P (x, y) ≡ ∃x∃y, P (x, y) ≡ ∃y∃x, P (x, y)



∀x, y, P (x, y) ≡ ∀x∀y, P (x, y) ≡ ∀y∀x, P (x, y)

e.g. ∀x, y ∈ R, (x + y)2 = x2 + 2xy + y2.

• BUT ∀x∃y, P (x, y) 6≡ ∃y∀x, P (x, y)

e.g. ∀x∃y, x + y = 10 means for every value of x we can choose y

to be 10 − x, and thus x + y = 10 will be true. But it is not true
that there is a value of y s.t. for every value of x that we choose
x + y = 10.

• Note: ∃x∀y, P (x, y) ⇒ ∀y∃x, P (x, y);


