
Week 5: Applications to Cryptograph and Proofs

by Induction

Agenda:

• More example of proof techniques

• Operations mod n and an application

• Induction

Reading:

• Textbook pages 179–227.
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• Theorem:
√

2 is irrational.

Proof: By way of contradiction, assume that
√

2 is rational, i.e.
there are integers a, b 6= 0 such that

√
2 = a

b
.

Without loss of genrality, we assume that a and b do not have any
commont factors other than 1 (i.e. are relatively prime to each
other) otherwise, we can cancel out any common factors they have.
Then:

2 =
a2

b2
=⇒ 2b2 = a2.

Since a2 is even (the LHS is even because has a factor of 2), so
must be a; that is a = 2k for some integer k. Thus:

2b2 = (2k)2 = 4k2 =⇒ b2 = 2k2.

This implies that b2 is even which in turn means b must be even.
But then both a and b have a common factor (of 2, as they are
even); which contradicts our assumption.

Arithmetic Operations in mod n

• (m mod n) is the reminder of dividing m by n; i.e. if m = nq + r
for some 0 ≤ r < q, then m mod n = r

e.g. 21 mod 9 = 3 and 15 mod 4 = 3

• Theorem: i mod n = (i + kn) mod n, for any integer k.

Proof: By Quotient Reminder Theorem, there are unique integers
q and 0 ≤ r < q such that i = nq + r. So i + kn = nq + r + kn =
n(q + k) + r which implies i + kn mod n = r.

• Theorem: (i + j) mod n = ((i mod n) + (j mod n)) mod n and
(ij) mod n = ((i mod n)(j mod n)) mod n.

Proof: We prove the first statement. The proof of the second one
is almost identical. By Q-R Theorem, there are unique integers q1



and q2 such that i = q1n + (i mod n) and j = q2n + (j mod n).
Therefore:

(i + j) mod n = (q1n + (i mod n) + q2n + (j mod n)) mod n

= ((q1 + q2)n + (i mod n) + (j mod n)) mod n

= ((i mod n) + (j mod n)) mod n

where the last equality uses the previous theorem.

• Using this theorem, it is easy to prove the following:

Theorem: ai+j mod n = ((ai mod n)(aj mod n)) mod n.

• Some examples:

30 mod 7 = 1
31 mod 7 = 3
32 mod 7 = (3 mod 7)2 mod 7 = 2
33 mod 7 = ((32 mod 7)(3 mod 7)) mod 7 = 6
34 mod 7 = ((33 mod 7)(3 mod 7)) mod 7 = 4
35 mod 7 = 5
36 mod 7 = 1
37 mod 7 = 3



A puzzle with application in Cryptography

• There are two people Alice and Bob that want to agree on some
secrete key.

• There is a communication line they can use which is not secure; a
malicious third party, Eve, is tapping the line.

• Eve can see everything being transmitted on the line (but cannot
change it).

• How can Alice and Bob do this seemingly impossible task?

• Solution: First Alice and Bob agree on some prime number p with
a few hundred bits and some other integer 2 ≤ g ≤ p − 1 (one of
them picks the numbers and sends to the other).

• It is Ok if Eve sees p and g.

• Alice and Bob choose random numbers A and B respectively each
from 2, . . . , p − 1.

• Then Alice computes a = gA mod p and sends to Bob

Bob comptues b = gB mod p and sends to Alice

• Now Alice computes x = bA mod p and

Bob computes y = aB mod p.

• Note that x = gAB mod p and y = gBA mod p =⇒
x = y; now x is their secret common key.

• The only operations that Alice and Bob do are exponentiation and
mod.

• What can Eve do to find out the key x? She has values of p, g, a,
and b



• So Eve needs to compute an integer A′ s.t. a = gA′
mod p and

then calculate x′ = bA′
mod p.

• If p is an odd prime then A′ must be equal to A and so x′ = x.

• For this, Eve needs compute the discrete logarithm of a in base
g; but all known algorithms for computing discrete logarithm of a
number a take about ∼ a steps.

• note that a is a number with hundreds of bits (say 400 bits); so the
value of a is in the range of 2400; it takes Eve forever to compute
the discrete log then.

• What about Alice and Bob? how easy/fast is to compute the
exponentiation and mod?

• The naive algorithm to compute gA takes g and multiplies it A − 1
times; so takes roughly A multiplications.

• If A has a few hundred bits (say 400) this is going to take ≈ 2400

steps for Alice and Bob too!!

• So not only Eve cannot find the secret, even Alice and Bob cannot
compute their secret either.

• But there is a faster way to compute gA;

• Observation:

g24 = (g12)2 = ((g6)2)2 = (((g3)2)2)2 = (((((g2 · g)2)2)2

• note that taking square of a number needs only one multiplication;
this way, to compute g24 we need only 5 multiplication instead of
24.

• In general, using this technique, it will require about ∼ 2 logA mul-
tiplications to compute gA. If A has 400 bits, then logA is about
400, and so Alice and Bob only need to do about 800 multiplica-
tions.



Inductive proofs

• Squence: A (possibly infinite) row of numbers. e.g. 1,4,9,16,25, . . ..
We may rewrite this as a1, a2, . . . , where ai = i2 for i ≥ 1.

• A sequence could be finite/infinite

• The number of distinct values could be finite/infinite

• There could be multiple explicit/general formulae

Summations and Products:

•
n
∑

k=m

ak = am + am+1 + . . . + an

E.g.,

4
∑

k=1

k2 = 12 + 22 + 32 + 42 = 30

• Note: n ≥ m, otherwise there is no term in the summation

•
n
∏

k=m

ak = am · am+1 · . . . · an

• n factorial (n positive integer) is n! =

n
∏

k=1

k

0! = 1

Properties:

•
n
∑

k=m

ak +

n
∑

k=m

bk =

n
∑

k=m

(ak + bk)



• c

n
∑

k=m

ak =

n
∑

k=m

cak

•

(

n
∏

k=m

ak

)

·

(

n
∏

k=m

bk

)

=

n
∏

k=m

(ak · bk)

Mathematical Induction:

• Principle (axiom): Let P (n) be a property defined for integers n,
and a a fixed integer

– P (a) is true

– For all integers k ≥ a, if P (k) is true then P (k + 1) is true

Then, “for all integers n ≥ a, P (n)” is true.

• Proof by (the principle of) Mathematical Induction:

– (basis step): P (a) is true

– (inductive step): Show that for all integers k ≥ a, if P (k) is
true then P (k + 1) is true

• Example: Prove that for all n ≥ 1:
∑n

i=1
i = n(n+1)

2
.

Proof: Let predicate P (n) be “
∑n

i=1
i = n(n + 1)/2”. We prove

that P (n) holds for all values of n ≥ 1 by induction.

Basis: For n = 1 we have
∑1

i=1
= 1 = 1(1 + 1)/2; so P (1) holds.

Ind. Step: Let k ≥ 1 be an arbitrary integer and assume that P (k)
holds. We prove that P (k + 1) holds.

k+1
∑

i=1

i =

k
∑

i=1

+(k + 1)

=
k(k + 1)

2
+ (k + 1) by induction hyp that P (k) holds



=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2

as wanted. So P (k + 1) holds.

• Example: Prove that for every real r 6= 1 and every integer n ≥ 0:
∑n

i=0
ri = rn+1−1

r−1
.

Proof: Let P (n) be “for every real r 6= 1,
∑n

i=0
ri = rn+1−1

r−1
”. We

prove P (n) holds for all integers n ≥ 0.

Basis: For n = 0:
∑0

i=0
ri = 1 = r−1

r−1
, so P (0) holds.

Ind. Step: Let k ≥ 0 be an arbitrary integer and assume that P (k)
holds. We prove P (k + 1).

k+1
∑

i=0

ri =

(

k
∑

i=0

ri

)

+ rk+1

=
rk+1 − 1

r − 1
+ rk+1 by ind. hyp

=
rk+1 − 1 + rk+1(r − 1)

r − 1

=
rk+2 − 1

r − 1
,

So P (k + 1) holds.

• Example: Any amount of postage greater than or equal to 8c can
be paid for using only 5c and 3c stamps.

Proof: Let P (n) be “n cent postage can be paid for using 5c and
3c stamps”.

We prove P (n) holds for all n ≥ 8.

Basis: Clearly P (8) is true as you pay by one 5c and one 3c stamp.



Ind. Step: Let k ≥ 8 be an arbitrary integer and assume that P (k)
is true; i.e. there are integers x, y ≥ 0 s.t. k = 3x+5y (x being the
number of 3c stamps and y being the number of 5c stamps.

We prove that P (k + 1) is true. Consider two cases:

– Case 1: if y ≥ 1 then we can replace a 5c stamp with two 3c
stamps: so k + 1 = 3(x + 2) + 5(y − 1).

– Case 2: if y = 0 then because k ≥ 8 we must have at least
three 3c stamps, i.e. x ≥ 3. So we can replace three 3c stamps
with two 5c stamps and get: k + 1 = 3(x − 3) + 5(y + 2);

In either case we can pay for k + 1 cents; thus P (k + 1) holds.

• Example: Prove that for every real x s.t. 1+x > 0 and all integers
n ≥ 0: (1 + x)n ≥ 1 + nx.

Let P (n) be the predicate: “with 1 + x > 0 we have (1 + x)n ≥
1 + nx”.

We prove P (n) for all values of n ≥ 0.

Basis: For n = 0: (1 + x)0 = 1 ≥ 1 + 0.x; so P (0) holds.

Ind. Step: Let k ≥ 0 be an arbitrary integer and assume that P (k)
holds.

We prove that P (k + 1) holds too.

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) by P (k) and because 1 + x > 0

= 1 + x + kx + kx2

≥ 1 + (k + 1)x because kx2 ≥ 0 always


