Week 5: Applications to Cryptograph and Proofs by Induction

Agenda:

- More example of proof techniques
- Operations mod n and an application
- Induction

Reading:

• Textbook pages 179–227.

• **Theorem:** $\sqrt{2}$ is irrational.

Proof: By way of contradiction, assume that $\sqrt{2}$ is rational, i.e. there are integers $a, b \neq 0$ such that $\sqrt{2} = \frac{a}{b}$.

Without loss of genrality, we assume that a and b do not have any commont factors other than 1 (i.e. are relatively prime to each other) otherwise, we can cancel out any common factors they have. Then:

$$2 = \frac{a^2}{b^2} \qquad \Longrightarrow \qquad 2b^2 = a^2.$$

Since a^2 is even (the LHS is even because has a factor of 2), so must be a; that is a = 2k for some integer k. Thus:

$$2b^2 = (2k)^2 = 4k^2 \implies b^2 = 2k^2.$$

This implies that b^2 is even which in turn means b must be even. But then both a and b have a common factor (of 2, as they are even); which contradicts our assumption.

Arithmetic Operations in mod n

(m mod n) is the reminder of dividing m by n; i.e. if m = nq + r for some 0 ≤ r < q, then m mod n = r
e.g. 21 mod 9 = 3 and 15 mod 4 = 3

• **Theorem:** $i \mod n = (i + kn) \mod n$, for any integer k.

Proof: By Quotient Reminder Theorem, there are unique integers q and $0 \le r < q$ such that i = nq + r. So i + kn = nq + r + kn = n(q+k) + r which implies $i + kn \mod n = r$.

• Theorem: $(i + j) \mod n = ((i \mod n) + (j \mod n)) \mod n$ and $(ij) \mod n = ((i \mod n)(j \mod n)) \mod n$.

Proof: We prove the first statement. The proof of the second one is almost identical. By Q-R Theorem, there are unique integers q_1

and q_2 such that $i = q_1n + (i \mod n)$ and $j = q_2n + (j \mod n)$. Therefore:

$$(i+j) \mod n = (q_1n + (i \mod n) + q_2n + (j \mod n)) \mod n$$

= $((q_1 + q_2)n + (i \mod n) + (j \mod n)) \mod n$
= $((i \mod n) + (j \mod n)) \mod n$

where the last equality uses the previous theorem.

Using this theorem, it is easy to prove the following:
 Theorem: a^{i+j} mod n = ((aⁱ mod n)(a^j mod n)) mod n.

```
• Some examples:
```

```
3^{0} \mod 7 = 1

3^{1} \mod 7 = 3

3^{2} \mod 7 = (3 \mod 7)^{2} \mod 7 = 2

3^{3} \mod 7 = ((3^{2} \mod 7)(3 \mod 7)) \mod 7 = 6

3^{4} \mod 7 = ((3^{3} \mod 7)(3 \mod 7)) \mod 7 = 4

3^{5} \mod 7 = 5

3^{6} \mod 7 = 1

3^{7} \mod 7 = 3
```

A puzzle with application in Cryptography

- There are two people Alice and Bob that want to agree on some secrete key.
- There is a communication line they can use which is not secure; a malicious third party, Eve, is tapping the line.
- Eve can see everything being transmitted on the line (but cannot change it).
- How can Alice and Bob do this seemingly impossible task?
- Solution: First Alice and Bob agree on some prime number p with a few hundred bits and some other integer $2 \le g \le p 1$ (one of them picks the numbers and sends to the other).
- It is Ok if Eve sees p and g.
- Alice and Bob choose random numbers A and B respectively each from 2,..., p − 1.
- Then Alice computes a = g^A mod p and sends to Bob Bob comptues b = g^B mod p and sends to Alice
- Now Alice computes x = b^A mod p and Bob computes y = a^B mod p.
- Note that $x = g^{AB} \mod p$ and $y = g^{BA} \mod p \Longrightarrow x = y$; now x is their secret common key.
- The only operations that Alice and Bob do are exponentiation and mod.
- What can Eve do to find out the key $x?\,$ She has values of p,g,a, and $b\,$

- So Eve needs to compute an integer A' s.t. $a = g^{A'} \mod p$ and then calculate $x' = b^{A'} \mod p$.
- If p is an odd prime then A' must be equal to A and so x' = x.
- For this, Eve needs compute the discrete logarithm of a in base g; but all known algorithms for computing discrete logarithm of a number a take about $\sim a$ steps.
- note that a is a number with hundreds of bits (say 400 bits); so the value of a is in the range of 2^{400} ; it takes Eve forever to compute the discrete log then.
- What about Alice and Bob? how easy/fast is to compute the exponentiation and mod?
- The naive algorithm to compute g^A takes g and multiplies it A-1 times; so takes roughly A multiplications.
- If A has a few hundred bits (say 400) this is going to take $\approx 2^{400}$ steps for Alice and Bob too!!
- So not only Eve cannot find the secret, even Alice and Bob cannot compute their secret either.
- But there is a faster way to compute g^A ;
- Observation:

$$g^{24} = (g^{12})^2 = ((g^6)^2)^2 = (((g^3)^2)^2)^2 = (((((g^2 \cdot g)^2)^2)^2)^2)^2$$

- note that taking square of a number needs only one multiplication; this way, to compute g^{24} we need only 5 multiplication instead of 24.
- In general, using this technique, it will require about $\sim 2 \log A$ multiplications to compute g^A . If A has 400 bits, then $\log A$ is about 400, and so Alice and Bob only need to do about 800 multiplications.

Inductive proofs

- Squence: A (possibly infinite) row of numbers. e.g. $1, 4, 9, 16, 25, \ldots$. We may rewrite this as a_1, a_2, \ldots , where $a_i = i^2$ for $i \ge 1$.
- A sequence could be finite/infinite
- The number of distinct values could be finite/infinite
- There could be multiple explicit/general formulae

Summations and Products:

•
$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

E.g., $\sum_{k=1}^{4} k^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30$

- Note: $n \ge m$, otherwise there is no term in the summation
- $\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$
- *n* factorial (*n* positive integer) is $n! = \prod_{k=1}^{n} k$

0! = 1

Properties:

•
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

•
$$c \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} ca_k$$

• $\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k)$

Mathematical Induction:

- **Principle (axiom)**: Let P(n) be a property defined for integers n, and a a fixed integer
 - P(a) is true
 - For all integers $k \ge a$, if P(k) is true then P(k+1) is true

Then, "for all integers $n \ge a$, P(n)" is true.

- Proof by (the principle of) Mathematical Induction:
 - (basis step): P(a) is true
 - (inductive step): Show that for all integers $k \ge a$, if P(k) is true then P(k+1) is true
- Example: Prove that for all $n \ge 1$: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof: Let predicate P(n) be " $\sum_{i=1}^{n} i = n(n+1)/2$ ". We prove that P(n) holds for all values of $n \ge 1$ by induction.

Basis: For n = 1 we have $\sum_{i=1}^{1} = 1 = 1(1+1)/2$; so P(1) holds. Ind. Step: Let $k \ge 1$ be an arbitrary integer and assume that P(k) holds. We prove that P(k+1) holds.

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} +(k+1)$$
$$= \frac{k(k+1)}{2} + (k+1) \text{ by induction hyp that } P(k) \text{ holds}$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2} \\ = \frac{(k+1)(k+2)}{2}$$

as wanted. So P(k+1) holds.

• Example: Prove that for every real $r \neq 1$ and every integer $n \ge 0$: $\sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}.$

Proof: Let P(n) be "for every real $r \neq 1$, $\sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}$ ". We prove P(n) holds for all integers $n \geq 0$.

Basis: For n = 0: $\sum_{i=0}^{0} r^i = 1 = \frac{r-1}{r-1}$, so P(0) holds.

Ind. Step: Let $k \ge 0$ be an arbitrary integer and assume that P(k) holds. We prove P(k+1).

$$\sum_{i=0}^{k+1} r^{i} = \left(\sum_{i=0}^{k} r^{i}\right) + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + r^{k+1} \text{ by ind. hyp}$$

$$= \frac{r^{k+1} - 1 + r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{r^{k+2} - 1}{r - 1},$$

So P(k+1) holds.

• Example: Any amount of postage greater than or equal to 8c can be paid for using only 5c and 3c stamps.

Proof: Let P(n) be "*n* cent postage can be paid for using 5*c* and 3*c* stamps".

We prove P(n) holds for all $n \ge 8$.

Basis: Clearly P(8) is true as you pay by one 5c and one 3c stamp.

Ind. Step: Let $k \ge 8$ be an arbitrary integer and assume that P(k) is true; i.e. there are integers $x, y \ge 0$ s.t. k = 3x + 5y (x being the number of 3c stamps and y being the number of 5c stamps.

We prove that P(k+1) is true. Consider two cases:

- Case 1: if $y \ge 1$ then we can replace a 5*c* stamp with two 3*c* stamps: so k + 1 = 3(x + 2) + 5(y 1).
- Case 2: if y = 0 then because $k \ge 8$ we must have at least three 3c stamps, i.e. $x \ge 3$. So we can replace three 3c stamps with two 5c stamps and get: k + 1 = 3(x 3) + 5(y + 2);

In either case we can pay for k + 1 cents; thus P(k + 1) holds.

• Example: Prove that for every real x s.t. 1 + x > 0 and all integers $n \ge 0$: $(1 + x)^n \ge 1 + nx$.

Let P(n) be the predicate: "with 1 + x > 0 we have $(1 + x)^n \ge 1 + nx$ ".

We prove P(n) for all values of $n \ge 0$.

Basis: For n = 0: $(1 + x)^0 = 1 \ge 1 + 0.x$; so P(0) holds.

Ind. Step: Let $k \ge 0$ be an arbitrary integer and assume that P(k) holds.

We prove that P(k+1) holds too.

$$\begin{array}{rcl} (1+x)^{k+1} &=& (1+x)^k(1+x)\\ &\geq& (1+kx)(1+x) & \text{by } P(k) \text{ and because } 1+x>0\\ &=& 1+x+kx+kx^2\\ &\geq& 1+(k+1)x & \text{because } kx^2 \geq 0 \text{ always} \end{array}$$