Week 5: Applications to Cryptograph and Proofs
by Induction

Agenda:
e More example of proof techniques
e Operations mod n and an application

e Induction

Reading:

e [extbook pages 179—227.



e Theorem: /2 is irrational.

Proof: By way of contradiction, assume that V2 is rational, i.e.
there are integers a,b % 0 such that v/2 = 7

Without loss of genrality, we assume that a and b do not have any
commont factors other than 1 (i.e. are relatively prime to each
other) otherwise, we can cancel out any common factors they have.
Then:

a2

== = 2b°=a"
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Since a? is even (the LHS is even because has a factor of 2), so
must be a; that is a = 2k for some integer k. Thus:

202 = (2k)? = 4k* = b%=2k>

This implies that b2 is even which in turn means b must be even.
But then both a and b have a common factor (of 2, as they are
even); which contradicts our assumption.

Arithmetic Operations in mod n

e (m mod n) is the reminder of dividing m by n; i.e. if m = ng+r
for some 0 <r<gq, then m mod n=r

e.d. 21 mod 9 =3 and 15 mod 4 =3

e Theorem: : mod n = (¢« + kn) mod n, for any integer k.

Proof: By Quotient Reminder Theorem, there are unique integers
gand O <r<gqgsuchthati=ng+r. Soi1+kn=ng+r+ kn =
n(q + k) 4+ r which implies i + kn mod n = r.

e Theorem: (i+ j) mod n = ((¢ mod n) + (j mod n)) mod n and
(75) mod n = ((¢« mod n)(5 mod n)) mod n.

Proof: We prove the first statement. The proof of the second one
is almost identical. By Q-R Theorem, there are unique integers qi



and g¢» such that i = ¢an + (: mod n) and j = ¢on + (j mod n).
Therefore:

(74 75) mod n

(¢gin + (¢ mod n) + gon + (j mod n)) mod n
((g1 + g2)n+ (2 mod n) + (7 mod n)) mod n
((z mod n) + (j mod n)) mod n

where the last equality uses the previous theorem.

Using this theorem, it is easy to prove the following:

Theorem: a't7 mod n = ((a' mod n)(a’ mod n)) mod n.

Some examples:

3 mod 7=1

3 mod 7=3

32 mod 7= (3 mod 7)? mod 7 =2

33 mod 7= ((3°2 mod 7)(3 mod 7)) mod 7 =6
34 mod 7= ((32 mod 7)(3 mod 7)) mod 7 =4
3®>mod 7=5

3°*mod 7=1

3’ mod 7=3



A puzzle with application in Cryptography

e T here are two people Alice and Bob that want to agree on some
secrete key.

e Thereis a communication line they can use which is not secure; a
malicious third party, Eve, is tapping the line.

e Eve can see everything being transmitted on the line (but cannot
change it).

e How can Alice and Bob do this seemingly impossible task?

e Solution: First Alice and Bob agree on some prime number p with
a few hundred bits and some other integer 2 < g < p—1 (one of
them picks the numbers and sends to the other).

e It is Ok if Eve sees p and g.

e Alice and Bob choose random numbers A and B respectively each
from 2,...,p— 1.

e Then Alice computes a = g4 mod p and sends to Bob
Bob comptues b = g% mod p and sends to Alice

e Now Alice computes x = b4 mod p and
Bob computes y = a? mod p.

e Note that z = ¢4 mod p and y = ¢B4 mod p =
xr =1y, oW z is their secret common key.

e T he only operations that Alice and Bob do are exponentiation and
mod.

e What can Eve do to find out the key 7 She has values of p,g,a,
and b



So Eve needs to compute an integer A’ s.t. a = gA’ mod p and

then calculate 2’ = b4 mod p.
If p is an odd prime then A’ must be equal to A and so 2’ = x.

For this, Eve needs compute the discrete logarithm of a in base
g; but all known algorithms for computing discrete logarithm of a
number a take about ~ a steps.

note that a is a number with hundreds of bits (say 400 bits); so the

value of a is in the range of 2490: it takes Eve forever to compute
the discrete log then.

What about Alice and Bob? how easy/fast is to compute the
exponentiation and mod?

The naive algorithm to compute gA takes g and multiplies it A —1
times; so takes roughly A multiplications.

If A has a few hundred bits (say 400) this is going to take ~ 2400
steps for Alice and Bob too!!

So not only Eve cannot find the secret, even Alice and Bob cannot
compute their secret either.

But there is a faster way to compute gA;

Observation:
9°* = (¢")? = ((4®)*)* = (((¢*)*)?)* = (((((¢" - ?)?

note that taking square of a number needs only one multiplication;
this way, to compute ¢?* we need only 5 multiplication instead of
24 .

In general, using this technique, it will require about ~ 21og A mul-
tiplications to compute gA. If A has 400 bits, then log A is about
400, and so Alice and Bob only need to do about 800 multiplica-
tions.



Inductive proofs

e Squence: A (possibly infinite) row of numbers. e.g. 1,4,9,16,25,....

We may rewrite this as ai,as,..., where a; = i° for ¢ > 1.
e A sequence could be finite/infinite
e The number of distinct values could be finite/infinite
e There could be multiple explicit/general formulae

Summations and Products:

n

¢ ) a=amtan1t.. +a

k=m

4
Eg. Zk2:12+22-|—32-|—42:30

k=1
e Note: n > m, otherwise there is no term in the summation

n

® | |ak=am-am+1-...-an

k=m

e n factorial (n positive integer) is n! = Hk
k=1

ol=1

Properties:

n

° Zak-l—zn:bk = Zn:(ak+bk)
k=m k=m

k=m



3

n

ap | - b | = H(%'bk)
m k=m

k=m k=

Mathematical Induction:

e Principle (axiom): Let P(n) be a property defined for integers n,

and a a fixed integer
— P(a) is true
— For all integers k > a, if P(k) is true then P(k+ 1) is true

Then, “for all integers n > a, P(n)" is true.

Proof by (the principle of) Mathematical Induction:
— (basis step): P(a) is true

— (inductive step): Show that for all integers k& > a, if P(k) is
true then P(k+ 1) is true

Example: Prove that for all n > 1: Y7 = 2t

n

Proof: Let predicate P(n) be “Zizli = n(n+1)/2". We prove
that P(n) holds for all values of n > 1 by induction.
Basis: For n = 1 we have Zil:l =1=1(14+1)/2; so P(1) holds.

Ind. Step: Let kK > 1 be an arbitrary integer and assume that P(k)
holds. We prove that P(k + 1) holds.

k+1 k
doi= ) +Gk+1)
=1 =1

k(k + 1)

5 + (k4 1) by induction hyp that P(k) holds



k(k+1) 2(k+1)
_|_
2 2
(E+1)(k+2)
2

as wanted. So P(k+ 1) holds.

Example: Prove that for every real »r # 1 and every integer n > O:
n i rrtl_q

Zi:Or - =1 -

Proof: Let P(n) be “for every real r # 1, Z;O ri =

prove P(n) holds for all integers n > 0.

1"”+1—111
r—1

. We

Basis: For n = O: Z?:O ri=1=1I=1 so P(0) holds.

Ind. Step: Let k> 0 be an arbitrary integer and assume that P(k)
holds. We prove P(k + 1).

k+1 k
k+1 1
= "2 1 pyind. hyp
r—1
B LS N T Tk—l-l(r —1)
o r—1
rk+t2 _ 1
o r—1 7

So P(k+ 1) holds.

Example: Any amount of postage greater than or equal to 8c can
be paid for using only 5¢ and 3¢ stamps.

Proof: Let P(n) be “n cent postage can be paid for using 5¢ and
3c stamps'.

We prove P(n) holds for all n > 8.
Basis: Clearly P(8) is true as you pay by one 5¢ and one 3¢ stamp.



Ind. Step: Let k > 8 be an arbitrary integer and assume that P(k)
is true; i.e. there are integers xz,y > 0 s.t. kK = 3z + 5y (z being the
number of 3c stamps and y being the number of 5¢ stamps.

We prove that P(k+ 1) is true. Consider two cases:

— Case 1: if y > 1 then we can replace a 5¢ stamp with two 3c
stamps: so k+1=3(x+2)+5(y—1).

— Case 2: if y = 0 then because £ > 8 we must have at least
three 3¢ stamps, i.e. * > 3. SO we can replace three 3¢ stamps
with two 5¢ stamps and get: k+1=3(z—3) +5(y+ 2);

In either case we can pay for k+ 1 cents; thus P(k+ 1) holds.

Example: Prove that for every real x s.t. 14z > 0 and all integers
n>0: (14+2)">1+4+ nx.

Let P(n) be the predicate: “with 14+ 2 > 0 we have (1 4+ x)" >
14+ nx".

We prove P(n) for all values of n > 0.
Basis: Forn=0: (14+2)°=1> 14 0.z; so P(0) holds.

Ind. Step: Let k> 0 be an arbitrary integer and assume that P(k)
holds.

We prove that P(k+ 1) holds too.

(14 z)*t (14+2)"(1+ =)
(1 4+ kx)(1+x) by P(k) and because 1 +z >0
14z + kx + kx?

14+ (kE+1)x because kx? > 0 always

Vv



