Week 12: Minimum Spanning trees and
Shortest Paths

Agenda:

e Kruskal's Algorithm

e Single-source shortest paths

e Dijkstra’s algorithm for non-negatively weighted case
Reading:

e Textbook : 561-574, 580-587, 595-601



Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem:

e Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

e OQutput: an MST

e Idea:

Start with a forest T' on all the vertices and no edges

Grow the forest T' to become a tree by adding one edge
at a time

The edges are considered in non-decreasing order of their
weight

an edge can be added if it joins two different connected
components (i.e. two trees of T')

So an edge is added if it does not create a cycle, otherwise
it is discarded

For each vertex we keep an index which tells the index of
the “cluster” to which it belongs.

When we add an edge, we merge the clusters (i.e. the
sub-trees) that it connects.



Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem:

e procedure kruskal (G)

T — 0
for each v € V(G) do
Define cluster C(v) « v
sort edges in E((G) into non-decreasing weight order
for each edge e¢; = (u,v) € E(G) do
if C(u) # C(v) then
T —TU {61}
merge clusters C(u) and C'(v)
return T

e An example:




Week 12: Kruskal’s MST algorithm
Kruskal’s algorithm for the MST problem — analysis:

Correctness:

e We prove that after every step, where we have selected 1
edges and put into 7', call it T;, there is a MST T,,; which has
all these 7 edges and has none of the edges we discarded.

e This is proved by induction on ¢, forall 0 <:<mn-—1.

e Once we prove it for s = n — 1 it implies that the solution is
a MST.

e The critical point is in the induction step when we select an
edge e to be added to 7;_; to obtain 7; but 7T,, does not have
it.

e In this case, T = T, + e has a cycle, C.
e This cycle contains at least one edge ¢’ that is not in T; (why?)

e Furthermore edge € is among the edges we have not consid-
ered yet, because up until edge e, all the decisions made were
consisten with Tj.

e So w(e) > w(e). SO T" = Tyt +e— € is also a MST that
extends T;.

e Running time analysis: how to implement “Merge clusters
C(u) and C(v)"7?



Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem — analysis:

Running time analysis:

e Each cluster will be an unordered linked list of vertices in that
cluster

e Each vertex v also keeps the index of the cluster to which it
belongs

e To find C(v) it takes O(1) time only (check the index)

e To merge C(v) and C(u): merge the smaller list into the
larger one and update the index of the vertices whose list is
merged.

e Thus, merging C(v) and C(u) takes O(min{|C(u)|,|C(v)|})
time.

e Observation: each time we update the reference for a vertex
the size of the cluster to which it belongs at least doubles;
starts from 1 and goes up to n

e Thus: number of times we update a vertex's reference is
O(logn).

e Total time for all merges and cluster updates: O(nlogn).

e Time for sorting edges: O(mlogm) = O(mlogn), time for
the while loop: O(m) + O(nlogn).

e Total time for Kruskal's algorithm O((m + n)logn), same as
Prim’'s algorithm.



Week 12: Graph Algorithms

Shortest path problems:

e BFS recall: outputs every s-to-v shortest path

s — start vertex

v — reachable vertex from s (residing in a same connected
component)

shortest — # edges

running time ©(n + m)

e BFS solves the single-source-shortest-path problem on undi-
rected unweighted graphs

Single-Source-Shortest-Path (SSSP) problem: given a source
s, find out for all vertices their shortest paths from s

e Variants:

single source vs. all pairs

graphs: undirected vs. directed

edges: unweighted vs. weighted

edge weights: non-negative vs. may have negative weights

digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to oo ...

SSSP problem on non-negatively weighted digraphs

Dijkstra’s algorithm (today)



Week 12: Graph Algorithms

Dijkstra’s SSSP algorithm:

e d[v] — weight of the shortest path from source s to v

if no such path, set to oo

e Idea in Dijkstra’'s algorithm:

greedily grows an SSSP tree

ensures that when adding a vertex, its shortest path in
the current (induced) subgraph is determined

records for every non-tree vertex v its best parent tree
vertex p|v]

Note: very similar to Prim’'s MST algorithm (the min-priority
queue implementation)

e Pseudocode (use d[v] as the key):

procedure dijkstra(G,w,s) **G = (V, F)

for each v € V(G) do **initialization

d[v] + oo
p[v] < NIL

d[s] — O
Q — V(G)
while Q #= ) do

u < ExtractMin(Q) **s dequeued first
for each v € Adj[u] do
if d[u] + w(u,v) < d[v] then
**xupdate v
p[v] —u
decrease-key(v, d[u] + w(u,v))
*xd[v] — dfu] + w(u,v)



Week 12: Graph Algorithms

Dijkstra’'s SSSP algorithm — an example:

e Input graph G:

e dijkstra(G,1):

1 9 2 1 3‘
12
3 4
10
5 4
6 7
e dijkstra(G,1) trace:
v |1 2 3 4 5 6 7
d[v]/p[v] | O/NIL oo/NIL oo/NIL oo/NIL oo/NIL oo/NIL oo/NIL

1 dequeued | O/NIL 9/1 oo/NIL oo/NIL 3/1 12/1 oo /NIL
5 dequeued | O/NIL 9/1 11/5 oco/NIL 3/1 12/1 oo /NIL
2 dequeued | O/NIL 9/1 10/2 oo/NIL 3/1 12/1 19/2
3 dequeued | O/NIL 9/1 10/2 25/3 3/1 12/1 19/2
6 dequeued | O/NIL 9/1 10/2 25/3 3/1 12/1 19/2
7 dequeued | O/NIL 9/1 10/2 23/7 3/1 12/1 19/2




Week 12: Graph Algorithms

Dijkstra’'s SSSP algorithm — analysis:

e Applies to undirected graphs too
See the last example :-)

e Running time:
Same as the running time for Prim’'s MST algorithm

— ©(mlogn), assuming adjacency list graph representation
and min-priority queue implemented by a heap

e Correctness:
Let S=V —Q

(while) Loop Invariant: for every v € S, d[v] records the weight
of the shortest path from s to v in graph G

Proof:
— initialization (S is empty):

— maintenance:
Exercise: fill in the detail

— termination: S becomes V, so LI implies that for every v,
d[v] records the weight of the shortest path from s to v
in graph G



