
Week 12: Minimum Spanning trees and

Shortest Paths

Agenda:

• Kruskal’s Algorithm

• Single-source shortest paths

• Dijkstra’s algorithm for non-negatively weighted case

Reading:

• Textbook : 561-574, 580-587, 595-601

1

Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem:

• Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

• Output: an MST

• Idea:

– Start with a forest T on all the vertices and no edges

– Grow the forest T to become a tree by adding one edge
at a time

– The edges are considered in non-decreasing order of their
weight

– an edge can be added if it joins two different connected
components (i.e. two trees of T)

– So an edge is added if it does not create a cycle, otherwise
it is discarded

– For each vertex we keep an index which tells the index of
the “cluster” to which it belongs.

– When we add an edge, we merge the clusters (i.e. the
sub-trees) that it connects.

2

Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem:

• procedure kruskal (G)

T ← ∅
for each v ∈ V (G) do

Define cluster C(v)← v
sort edges in E(G) into non-decreasing weight order

for each edge ei = (u, v) ∈ E(G) do

if C(u) 6= C(v) then

T ← T ∪ {ei}
merge clusters C(u) and C(v)

return T

• An example:

1
2 3

5

6 7

4

9 2

19 18

3

17

1312

14

8 15

4

• kruskalMST(G,w) returns:

1
2 3

5

6 7

4

2

3
1312 8

4

3

Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem — analysis:

Correctness:

• We prove that after every step, where we have selected i
edges and put into T , call it Ti, there is a MST Topt which has
all these i edges and has none of the edges we discarded.

• This is proved by induction on i, for all 0 ≤ i ≤ n− 1.

• Once we prove it for i = n − 1 it implies that the solution is
a MST.

• The critical point is in the induction step when we select an
edge e to be added to Ti−1 to obtain Ti but Topt does not have
it.

• In this case, T ′ = Topt + e has a cycle, C.

• This cycle contains at least one edge e′ that is not in Ti (why?)

• Furthermore edge e′ is among the edges we have not consid-
ered yet, because up until edge e, all the decisions made were
consisten with Topt.

• So w(e′) ≥ w(e). So T ′′ = Topt + e − e′ is also a MST that
extends Ti.

• Running time analysis: how to implement “Merge clusters
C(u) and C(v)”?

4

Week 12: Kruskal’s MST algorithm

Kruskal’s algorithm for the MST problem — analysis:

Running time analysis:

• Each cluster will be an unordered linked list of vertices in that
cluster

• Each vertex v also keeps the index of the cluster to which it
belongs

• To find C(v) it takes O(1) time only (check the index)

• To merge C(v) and C(u): merge the smaller list into the
larger one and update the index of the vertices whose list is
merged.

• Thus, merging C(v) and C(u) takes O(min{|C(u)|, |C(v)|})
time.

• Observation: each time we update the reference for a vertex
the size of the cluster to which it belongs at least doubles;
starts from 1 and goes up to n

• Thus: number of times we update a vertex’s reference is
O(logn).

• Total time for all merges and cluster updates: O(n logn).

• Time for sorting edges: O(m logm) = O(m logn), time for
the while loop: O(m) + O(n logn).

• Total time for Kruskal’s algorithm O((m + n) logn), same as
Prim’s algorithm.

5

Week 12: Graph Algorithms

Shortest path problems:

• BFS recall: outputs every s-to-v shortest path

– s — start vertex

– v — reachable vertex from s (residing in a same connected
component)

– shortest — # edges

– running time Θ(n + m)

• BFS solves the single-source-shortest-path problem on undi-
rected unweighted graphs

Single-Source-Shortest-Path (SSSP) problem: given a source
s, find out for all vertices their shortest paths from s

• Variants:

– single source vs. all pairs

– graphs: undirected vs. directed

– edges: unweighted vs. weighted

– edge weights: non-negative vs. may have negative weights

– digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to ∞ ...

•

SSSP problem on non-negatively weighted digraphs

Dijkstra’s algorithm (today)

6

Week 12: Graph Algorithms

Dijkstra’s SSSP algorithm:

• d[v] — weight of the shortest path from source s to v

if no such path, set to ∞

• Idea in Dijkstra’s algorithm:

– greedily grows an SSSP tree

– ensures that when adding a vertex, its shortest path in
the current (induced) subgraph is determined

– records for every non-tree vertex v its best parent tree
vertex p[v]

Note: very similar to Prim’s MST algorithm (the min-priority
queue implementation)

• Pseudocode (use d[v] as the key):

procedure dijkstra(G, w, s) **G = (V, E)

for each v ∈ V (G) do **initialization

d[v]←∞
p[v]← NIL

d[s]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **s dequeued first

for each v ∈ Adj[u] do

if d[u] + w(u, v) < d[v] then

**update v
p[v]← u
decrease-key(v, d[u] + w(u, v))

**d[v]← d[u] + w(u, v)

7

Week 12: Graph Algorithms

Dijkstra’s SSSP algorithm — an example:

• Input graph G:

1
2 3

5

6 7

4

9 1

19 18

3

17

1312

10

8 15

4

• dijkstra(G,1):

1
2 3

5

6 7

4

9 1

3
12

10
4

• dijkstra(G,1) trace:

v 1 2 3 4 5 6 7
d[v]/p[v] 0/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL

1 dequeued 0/NIL 9/1 ∞/NIL ∞/NIL 3/1 12/1 ∞/NIL

5 dequeued 0/NIL 9/1 11/5 ∞/NIL 3/1 12/1 ∞/NIL

2 dequeued 0/NIL 9/1 10/2 ∞/NIL 3/1 12/1 19/2

3 dequeued 0/NIL 9/1 10/2 25/3 3/1 12/1 19/2

6 dequeued 0/NIL 9/1 10/2 25/3 3/1 12/1 19/2

7 dequeued 0/NIL 9/1 10/2 23/7 3/1 12/1 19/2

8

Week 12: Graph Algorithms

Dijkstra’s SSSP algorithm — analysis:

• Applies to undirected graphs too

See the last example :-)

• Running time:

Same as the running time for Prim’s MST algorithm

— Θ(m logn), assuming adjacency list graph representation
and min-priority queue implemented by a heap

• Correctness:

Let S = V −Q

(while) Loop Invariant: for every v ∈ S, d[v] records the weight
of the shortest path from s to v in graph G

Proof:

– initialization (S is empty):

– maintenance:

Exercise: fill in the detail

– termination: S becomes V , so LI implies that for every v,
d[v] records the weight of the shortest path from s to v
in graph G

9

