Week 12: Minimum Spanning trees and Shortest Paths

Agenda:

- Kruskal's Algorithm
- Single-source shortest paths
- Dijkstra's algorithm for non-negatively weighted case

Reading:

• Textbook : 561-574, 580-587, 595-601

Kruskal's algorithm for the MST problem:

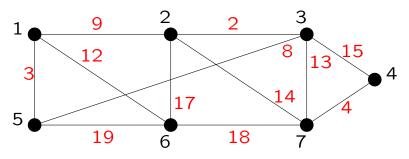
- Input: an edge-weighted (simple, undirected, connected) graph (positive weights)
- Output: an MST
- Idea:
 - Start with a forest T on all the vertices and no edges
 - Grow the forest T to become a tree by adding one edge at a time
 - The edges are considered in non-decreasing order of their weight
 - an edge can be added if it joins two different connected components (i.e. two trees of T)
 - So an edge is added if it does not create a cycle, otherwise it is discarded
 - For each vertex we keep an index which tells the index of the "cluster" to which it belongs.
 - When we add an edge, we merge the clusters (i.e. the sub-trees) that it connects.

Kruskal's algorithm for the MST problem:

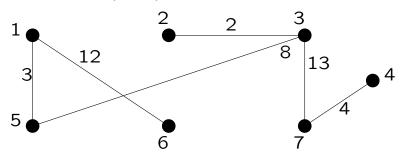
• procedure kruskal (G)

 $\begin{array}{l} T \leftarrow \emptyset \\ \text{for each } v \in V(G) \text{ do} \\ & \text{Define cluster } C(v) \leftarrow v \\ \text{sort edges in } E(G) \text{ into non-decreasing weight order} \\ \text{for each edge } e_i = (u,v) \in E(G) \text{ do} \\ & \text{if } C(u) \neq C(v) \text{ then} \\ & T \leftarrow T \cup \{e_i\} \\ & \text{merge clusters } C(u) \text{ and } C(v) \\ \text{return } T \end{array}$

• An example:



• kruskalMST(G, w) returns:



Kruskal's algorithm for the MST problem — analysis:

Correctness:

- We prove that after every step, where we have selected i edges and put into T, call it T_i , there is a MST T_{opt} which has all these i edges and has none of the edges we discarded.
- This is proved by induction on *i*, for all $0 \le i \le n-1$.
- Once we prove it for i = n 1 it implies that the solution is a MST.
- The critical point is in the induction step when we select an edge e to be added to T_{i-1} to obtain T_i but T_{opt} does not have it.
- In this case, $T' = T_{opt} + e$ has a cycle, C.
- This cycle contains at least one edge e' that is not in T_i (why?)
- Furthermore edge e' is among the edges we have not considered yet, because up until edge e, all the decisions made were consisten with T_{opt} .
- So $w(e') \ge w(e)$. So $T'' = T_{opt} + e e'$ is also a MST that extends T_i .
- Running time analysis: how to implement "Merge clusters C(u) and C(v)"?

Kruskal's algorithm for the MST problem — analysis:

Running time analysis:

- Each cluster will be an unordered linked list of vertices in that cluster
- Each vertex \boldsymbol{v} also keeps the index of the cluster to which it belongs
- To find C(v) it takes O(1) time only (check the index)
- To merge C(v) and C(u): merge the smaller list into the larger one and update the index of the vertices whose list is merged.
- Thus, merging C(v) and C(u) takes $O(\min\{|C(u)|, |C(v)|\})$ time.
- Observation: each time we update the reference for a vertex the size of the cluster to which it belongs at least doubles; starts from 1 and goes up to *n*
- Thus: number of times we update a vertex's reference is $O(\log n)$.
- Total time for all merges and cluster updates: $O(n \log n)$.
- Time for sorting edges: $O(m \log m) = O(m \log n)$, time for the while loop: $O(m) + O(n \log n)$.
- Total time for Kruskal's algorithm $O((m + n) \log n)$, same as Prim's algorithm.

Week 12: Graph Algorithms

Shortest path problems:

- BFS recall: outputs every *s*-to-*v* shortest path
 - s start vertex
 - v reachable vertex from s (residing in a same connected component)
 - shortest # edges
 - running time $\Theta(n+m)$
- BFS solves *the single-source-shortest-path problem* on undirected unweighted graphs

Single-Source-Shortest-Path (SSSP) problem: given a source s, find out for all vertices their shortest paths from s

- Variants:
 - single source vs. all pairs
 - graphs: undirected vs. directed
 - edges: unweighted vs. weighted
 - edge weights: non-negative vs. may have negative weights
 - digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to ∞ ...

•

SSSP problem on non-negatively weighted digraphs Dijkstra's algorithm (today)

Week 12: Graph Algorithms

Dijkstra's SSSP algorithm:

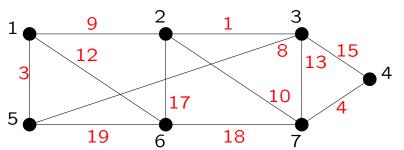
- d[v] weight of the shortest path from source s to v if no such path, set to ∞
- Idea in Dijkstra's algorithm:
 - greedily grows an SSSP tree
 - ensures that when adding a vertex, its shortest path in the current (induced) subgraph is determined
 - records for every non-tree vertex v its best parent tree vertex p[v]

Note: very similar to Prim's MST algorithm (the min-priority queue implementation)

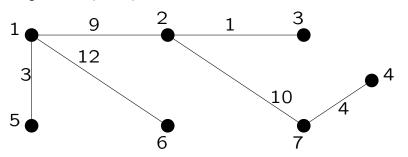
• Pseudocode (use d[v] as the key):

G = (V, E)procedure dijkstra(G, w, s)for each $v \in V(G)$ do **initialization $d[v] \leftarrow \infty$ $p[v] \leftarrow \text{NIL}$ $d[s] \leftarrow 0$ $Q \leftarrow V(G)$ while $Q \neq \emptyset$ do $u \leftarrow \texttt{ExtractMin}(Q)$ ****s dequeued first for each $v \in Adj[u]$ do if d[u] + w(u, v) < d[v] then **update v $p[v] \leftarrow u$ decrease-key(v, d[u] + w(u, v)) $**d[v] \leftarrow d[u] + w(u, v)$ Dijkstra's SSSP algorithm — an example:

• Input graph G:



• dijkstra(G, 1):



• dijkstra(G, 1) trace:

d[v]/p[v]	1 O/NIL	$_{\infty/ ext{NIL}}^2$	$_{\infty/{ t NIL}}^{ ext{3}}$	$4 \ \infty/{ t NIL}$	$5 \ \infty/{ t NIL}$	$_{\infty/ ext{NIL}}^{6}$	$_{\infty/{ t NIL}}^{7}$
1 dequeued	O/NIL	9/1	$\infty/{ t NIL}$	$\infty/{ t NIL}$	3/1	12/1	$\infty/{ t NIL}$
5 dequeued	O/NIL	9/1	11/5	$\infty/{ t NIL}$	3/1	12/1	$\infty/{ t NIL}$
2 dequeued	O/NIL	9/1	10/2	$\infty/{ t NIL}$	3/1	12/1	19/2
3 dequeued	O/NIL	9/1	10/2	25/3	3/1	12/1	19/2
6 dequeued	O/NIL	9/1	10/2	25/3	3/1	12/1	19/2
7 dequeued	O/NIL	9/1	10/2	23/7	3/1	12/1	19/2

Week 12: Graph Algorithms

Dijkstra's SSSP algorithm — analysis:

- Applies to undirected graphs too See the last example :-)
- Running time:

Same as the running time for Prim's MST algorithm

— $\Theta(m \log n)$, assuming adjacency list graph representation and min-priority queue implemented by a heap

• Correctness:

Let S = V - Q

(while) Loop Invariant: for every $v \in S$, d[v] records the weight of the shortest path from s to v in graph G

Proof:

- initialization (S is empty):
- maintenance:
 Exercise: fill in the detail
- termination: S becomes V, so LI implies that for every v, d[v] records the weight of the shortest path from s to v in graph G