
Week 11: Minimum Spanning trees

Agenda:

• Minimum Spanning Trees

• Prim’s Algorithm

Reading:

• Textbook : 561-574

1

Week 11: Minimum Spanning trees

Minimum spanning tree (MST) problem:

• Input: edge-weighted (simple, undirected) connected graphs
(positive weights)

• Notions:

– subgraph, acyclic, tree

– spanning subgraph: subgraph including all the vertices

– spanning tree: spanning subgraph which is a tree —
acyclic connected subgraph T = (V, E ′), where E′ ⊂ E

e.g., BFS/DFS (on a connected input graph) tree is a
spanning tree of the graph

– minimum spanning tree: minimum weight

• The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

1
2 3

5

6 7

4

9 2

19 18

3

17

1312

14

8 15

4

• The minimum spanning forest problem:

The given graph is not necessarily connected.

Find an MST for each connected component.

2

Week 11: Minimum Spanning trees

Greedy algorithms and MST problem:

• Greedy algorithms:

– greedy — each step makes the best choice (locally max-
imum)

– iterative algorithms

– optimal substructure

an optimal solution to the original problem contains within
it optimal solutions to subproblems

• Greedy solution may NOT be globally optimum

e.g., matrix-chain multiplication: A6×5 ×A5×2 ×A2×5 ×A5×6

Greedy: 50 + 150 + 180 = 380 scalar multiplications

Dynamic programming: 60+60+72 = 192 scalar multiplica-
tions

• The MST problem:

Two greedy solutions are globally optimum

– Prim’s (Prim + Dijkstra + Boruvka’s)

growing the tree to include more vertices

– Kruskal’s (Kruskal + Boruvka’s)

growing the forest to become a tree

3

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem:

• Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

• Output: an MST

• Idea:

– suppose we have already an MST T ′ spanning subset V ′

of vertices (T ′ is initialized empty and V ′ is initialized to
contain any one vertex)

– grow T ′ to span one more vertex v ∈ V − V ′

– v is selected such that there is a vertex u ∈ V ′, edge (u, v)
is the minimum weighted over all edges of form (u′, v′)
where u′ ∈ V ′ and v′ ∈ V − V ′

– when V ′ becomes V , terminate

• One simplest implementation:

procedure primMST(G) **G = (V, E)

S = {1}
T = ∅
while |S| < |V | do

find a minimum weight edge e = uv: u ∈ S and v ∈ V − S
S ← S + v
T ← T + {uv}

return T

Running time analysis:

1. finding such an edge in O(n2) (or O(m)) time

2. there are n− 1 edges in the output MST

3. therefore, in total O(n3) (or O(nm)) time

4

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem — an example:

• Input graph G:

1
2 3

5

6 7

4

9 2

19 18

3

17

1312

14

8 15

4

• primMST(G,w,1) returns:

1
2 3

5

6 7

4

2

3
1312 8

4

• Correctness of Prim’s algorithm (to follow)

• Improvement over the simplest implementation

Observation: every iteration it looks for minimum weight edge

— heap might help

5

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem — correctness:

• Input graph G = (V,E): E = {e1, e2, . . . , em}

• Suppose edges in the output tree T are ei1, ei2, . . . , ein−1 (in the
order picked by Prim’s algorithm)

• Want to prove: T is an MST

• Suppose T ′ is an MST and it contains edges ej1, ej2, . . . , ejn−1

(sorted in the way that it maps the edge order in T as much
as possible). If T 6= T ′ (otherwise we are done), then

– there is a minimum index k, such that ejk
6= eik

– let T0 denote the tree formed by {ei1, ei2, . . . , eik−1}

– let V0 = V (T0) and V1 = V − V0

– adding eik to T ′ creates a cycle which contains some edge,
say ejp, that has one ending vertex in V0 and the other in
V1

– T ′′ = T ′+ eik − ejp is another spanning tree

– T ′′ is another MST (why ?) sharing one more edge with
T

– repeat this argument to claim that T is also an MST

• Note: this is a proof using ‘contradiction’ + ‘graph theory’.

• Proof can also be done by

(while) Loop Invariant: T is a MST on S.

Exercise !

6

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem — improvement:

• Where to improve: finding the minimum weight edge (u, v)

• Initially we need to scan all the edges, Θ(m) (worst case)

• Example: input graph G:

1
2 3

5

6 7

4

9 2

19 18

3

17

1312

14

8 15

4

• primMST(G,w,1) returns:

1
2 3

5

6 7

4

2

3
1312 8

4

• primMST(G,w,1): an intermediate tree

What are the candidate edges ?

1
2 3

5

6 7

43
8

7

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem — improvement:

• Ideas:

1. for each non-tree vertex v, store its minimum-weight tree
neighbor p[v]

2. store edges of type (p[v], v]) in a min-priority queue Q

3. therefore, every time the target edge can be extracted
ExtractMin(Q)

note: need to update the neighbor information for non-
tree vertices after the extraction

• Pseudocode:

procedure primMST(G) **G = (V, E)

for each v ∈ V (G) do

key[v]←∞
p[v]← NIL

key[r]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **r dequeued first

for each v ∈ Adj[u] do

if v ∈ Q && w(u, v) < key[v] then **update v

p[v]← u

decrease-key(v, w(u, v)) **key[v]← w(u, v)

8

Week 11: Prim’s MST algorithm

Prim’s algorithm for the MST problem — improvement:

• Analysis of the improved algorithm:

– correctness (almost done — need to prove that ExtractMin(Q)
does extract the minimum weight edge)

– running time: Θ

(

n logn +
∑

u∈V

(

degree(u)× logn

))

so: Θ(m logn) — adjacency list graph representation

• Remark: there may be several optimum spanning trees, Prim’s
algorithm only finds one.

• But if all the edge weights are distinct then the MST is unique.

• Next we will see another algorithm for computing MST.

9

