Agenda:

- Graph traversal Depth-first search
- DFS application:
 - Finding biconnected components
 - Strongly Connected components
 - Topological sorting

Reading:

• Textbook pages 540 –559

Depth First Search (DFS):

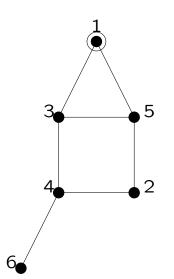
- Input: simple undirected graph G = (V, E)
- Output: all vertices discovered (pick one vertex from each component as the start vertex)
- Idea: to search deeper in the graph whenever possible ...
- Pseudocode (recursive version):

```
**G = (V, E)
procedure DFS(G)
for each v \in V do
    c[v] \leftarrow \text{WHITE}
                                 **unknown yet
    p[v] \leftarrow \text{NIL}
                                 **predecessor
time \leftarrow 0
for each v \in V do
     if c[v] = WHITE then
         DFS-visit(v)
procedure DFS-visit(v)
                                **any v \in V
c[v] \leftarrow \text{GRAY}
                                 **start discovering v
time \leftarrow time + 1
dtime[v] \leftarrow time
for each u \in Adj[v] do
     if c[u] = WHITE then
         p[u] \leftarrow v
         DFS-visit(u)
c[v] \leftarrow \mathsf{BLACK}
                                 **finished discovering
time \leftarrow time + 1
ftime[v] \leftarrow time
```

DFS example:

•
$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$
 $s = 2$



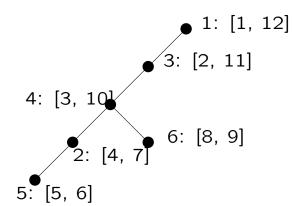
Adjacency lists:

3	5	
4	5	
1	4	5
2	3	6
1	2	3
4		
	4 1 2 1	4 5 1 4 2 3 1 2

	1	2	3	4	5	6	DFS-visit path
color	W	W	W	W	W	W	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
dtime	∞	∞	∞	∞	∞	∞	initialization
ftime	∞	∞	∞	∞	∞	∞	
color	G	W	W	W	W	W	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
dtime	1	∞	∞	∞	∞	∞	DFS-visit(1)
ftime	∞	∞	∞	∞	∞	∞	
color	G	W	G	W	W	W	
parent	NIL	NIL	1	NIL	NIL	NIL	
dtime	1	∞	2	∞	∞	∞	DFS-visit(1-3)
ftime	∞	∞	∞^{-}	∞	∞	∞	
color	G	W	G	G	W	W	
parent	NIL	NIL	1	3	NIL	NIL	
dtime	1	∞	2	3	∞	∞	DFS-visit(1-3-4)
ftime	∞	$\infty \infty$	∞	∞	$\infty \infty$	$\infty \infty$	
color	G	G	G	G	$\frac{\infty}{W}$	$\frac{\infty}{W}$	-
parent	NIL	4	1	3	NIL	NIL	
dtime	1	4	2	3			DFS-visit(1-3-4-2)
ftime	_				∞	∞	DF5 - VISIC(1 - 3 - 4 - 2)
	∞ G	G	G	G	G	$\frac{\infty}{W}$	
color	-						
parent	NIL	4	1	3	2	NIL	
dtime	1	4	2	3	5	∞	DFS-visit(1-3-4-2-5)
ftime	∞	∞	∞	∞	∞	∞	
color	G	G	G	G	В	W	
parent	NIL	4	1	3	2	NIL	
dtime	1	4	2	3	5	∞	DFS-visit(1-3-4-2-5)
ftime	∞	∞	∞	∞	6	∞	
color	G	В	G	G	В	W	
parent	NIL	4	1	3	2	NIL	
dtime	1	4	2	3	5	∞	DFS-visit(1-3-4-2)
ftime	∞	7	∞	∞	6	∞	
color	G	В	G	G	В	G	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
ftime	∞	7	∞	∞	6	∞	
color	G	В	G	G	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
ftime	∞	7	∞	∞	6	9	
color	G	В	G	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4)
ftime	∞	7	∞	10	6	9	
color	G	В	В	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3)
ftime	∞	7	11	10	6	9	
color	В	В	В	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1)
ftime	12	7	11	10	6	9	
	1						l

DFS example:

- Adjacency lists:
- DFS tree: [dtime,ftime]



Notes:

- the result would be a forest of rooted trees
- the root of each tree is up to the selection (ordering of the vertices)
- parent of x is predecessor p[x]
- different orderings of adjacency lists might result in different trees

nested structure of [dtime, ftime]
 they don't intersect each other

DFS analysis:

- n = |V|, m = |E|
- Handshaking Lemma: $\sum_{v \in V} \text{degree}(v) = 2m$
- Analysis:
 - each vertex is discovered exactly once (WHITE \rightarrow GRAY \rightarrow BLACK) each edge is examined exactly twice
 - running time:
 - 1. adjacency list representation: $\Theta(n+2m) = \Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n + n^2) = \Theta(n^2)$
 - space complexity:
 - 1. adjacency list representation: $\Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n^2)$

Classifying graph edges with BFS/DFS:

- During the traversal, all vertices and edges are examined
- Given a BFS/DFS traversal forest:
 - tree root start vertex for that component
 - tree edge child discovered while processing the parent
 - each edge in the original graph is examined twice
- Question:

Where are the other possible edges, besides tree edges ???

• Answer:

With respect to the traversal forest, categorize graph edges by their first time encounter:

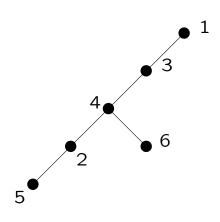
- tree edges
- back edges: to ancestor
- forward edges: to descendant
- cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, "back" = "forward"

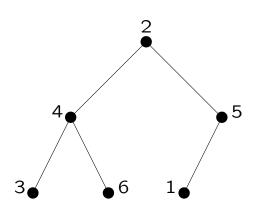
• Examples:

An example:

- Adjacency lists:
- DFS tree (start vertex 1):



• BFS Tree (start vertex 2):



Properties of BFS/DFS:

- BFS:
 - each graph edge connects two vertices with level-difference ≤ 1 Proof.
 - no back / forward edges
- DFS:
 - each non-tree edge is a back edge Proof.
 - no forward edges (if G is undirected)
 - no cross edges
 - vertex processing time intervals [dtime[v], ftime[v]] and [dtime[w], ftime[w]]: [dtime[v], ftime[v]] \subset [dtime[w], ftime[w]] — v is a descendant of w in the DFS forest [dtime[v], ftime[v]] \cap [dtime[w], ftime[w]] = \emptyset — no ancestordescendant relationship between v and w
- BFS vertex order:

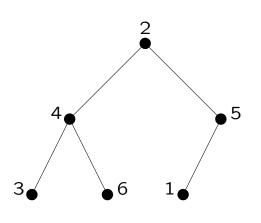
level-order of each tree in the BFS forest

• DFS vertex order:

pre-order of each tree in the DFS forest

- Some other vertex order associated with rooted trees:
 - in-order (for binary trees only)
 - post-order

Vertex order with respect to a binary rooted tree:



- Vertex orders:
 - level-order: level by level (each level: left to right)
 (2,4,5,3,6,1)
 - pre-order: parent child one child two ... last child
 (2,4,3,6,5,1)
 - in-order: left child parent right child
 (3,4,6,2,1,5)
 - post-order: child one child two ... last child parent (3,6,4,1,5,2)

Biconnected component:

- Definition every pair of vertices are connected by two vertex-disjoint paths
- Cut vertex its removal increases the number of connected components
- <u>Fact</u>: biconnected \iff no cut vertices
- Biconnected component ↔ maximal connected subgraph containing no cut vertex
- In a DFS tree:
 - root is a cut vertex iff it has ≥ 2 child vertices (Why ???)
 → One simplest implementation (assuming connected):
 - 1. try every vertex v as the start vertex and do the DFS
 - 2. in the DFS tree, if $degree_{DFS}(v) > 1$, decompose the graph accordingly into $degree_{DFS}(v)$ subgraphs sharing one common vertex v
 - 3. repeat on subgraphs until for every subgraph the DFS tree with every possible start vertex has root degree 1

Problem: too time consuming $\Theta(n(n+m))$...

 any other vertex is a cut vertex iff vertices in the child subtrees have no back edges to its proper ancestors

 \longrightarrow Idea in the improved implementation — ($\Theta(n+m)$): for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

DFS application: finding biconnected components

• Idea in the improved implementation — $(\Theta(n+m))$:

for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

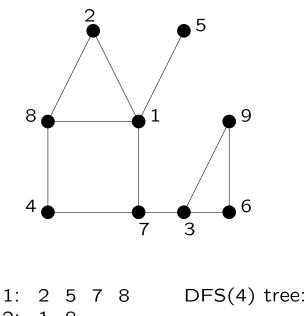
- Details:
 - for every vertex v, 1st encounter child w, recur from w
 - last encounter w (just before backing up to v), check whether v cuts off the w-subtree (rooted at w)
 - maintain dtime[v], b[v], p[v] for v:
 - 1. dtime[v] discovery time
 - 2. b[v] dtime of the furthest ancestor of v to which there is back edge from a descendant w of v
 - (a) updated when the first back edge is encountered
 - (b) updated when last time encounter of v (backing up)
 - 3. p[v] parent of v in the DFS tree
- Reporting biconnected components:
 - recall that biconnected components form a partition of edge set ${\cal E}$
 - when edge e first encountered, push into edge stack
 - when a cut vertex discovered, pop necessary edges

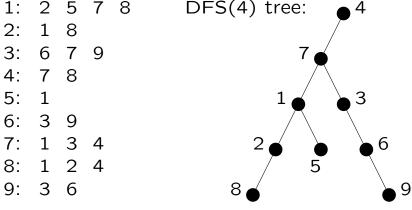
Finding biconnected components — pseudocode:

```
procedure bicomponents(G)
                                        **G = (V, E)
S = \emptyset
                                        **S is the edge stack
time \leftarrow 0
for each v \in V do
    p[v] \leftarrow 0
                                        **unknown yet:
                                                             NIL
    dtime[v] \leftarrow time
    b[v] \leftarrow n+1
for each v \in V do
    if dtime[v] = 0 then
         biDFS(v)
procedure biDFS(v)
                                        **discover v
time \leftarrow time +1
\texttt{dtime}[v] \leftarrow \texttt{time}
b[v] \leftarrow \texttt{dtime}[v]
                                        **no back edge from descendant yet
for each neighbor w of v do **first time encounter w
    if dtime[w] = 0 then
                                        **unknown yet
        push(v, w)
        p[w] \leftarrow v
         biDFS(w)
                                        **recursive call
         if b[w] \geq \operatorname{dtime}[v] then
             print ''new biconnected component''
             repeat
                  pop & print
             until (popped edge is (v, w))
         else
             b[v] \leftarrow \min\{b[v], b[w]\}
    else if (dtime[w] < dtime[v] and w \neq p[v]) then
                                        **(v,w) is a back edge from v
        push(v, w)
         b[v] \leftarrow \min\{b[v], \mathtt{dtime}[w]\}
```

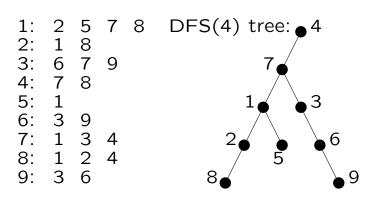
Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous biDFS() calls:





Finding biconnected components — answer:



dtime	3	4	7	1	6	8	2	5	9
	b[1]	<i>b</i> [2]	b[3]	<i>b</i> [4]	b[5]	<i>b</i> [6]	b[7]	b[8]	b[9]
biDFS(4)	10	10	10	1	10	10	10	10	10
4} $biDFS(7)$	10	10	10	1	10	10	2	10	10
4, 7} $biDFS(1)$	3	10	10	1	10	10	2	10	10
4, 7, 1} biDFS(2)	3	4	10	1	10	10	2	10	10
4, 7, 1, 2} (2,1)	-	-		_			_		
4, 7, 1, 2} $(2, 1)$ 4, 7, 1, 2} $biDFS(8)$	3	4	10	1	10	10	2	5	10
4, 7, 1, 2, 8} (8,1)	3	4	10	1	10	10	2	3	10
4, 7, 1, 2, 8} (8,2)	5	-	10	1	10	10	2	0	10
4, 7, 1, 2, 8 (8,4)	3	4	10	1	10	10	2	1	10
4, 7, 1, 2, b) (0,4) 4, 7, 1, 2} biDFS(8) done	3	$\frac{1}{1}$	10	1	10	10	2	1	10
4, 7, 1} biDFS(2) done	1	1	10	1	10	10	2	1	10
	1	1	10	1	6	10	∠ 2	1	
4, 7, 1 biDFS(5)	T	T	10	T	0	10	2	T	10
$4, 7, 1, 5\}(5,1)$									
4, 7, 1 biDFS(5) done	new biconnected component: (1, 5)								
$4, 7, 1\} (1,7)$									
$4, 7, 1\} (1,8)$					~				
4, 7} biDFS(1) done	1	1	10	1	6	10	1	1	10
4, 7} biDFS(3)	1	1	7	1	6	10	1	1	10
4, 7, 3} biDFS(6)	1	1	7	1	6	8	1	1	10
4, 7, 3, 6} (6,3)									
4, 7, 3, 6} $biDFS(9)$	1	1	7	1	6	8	1	1	9
4, 7, 3, 6, 9} (9,3)	1	1	7	1	6	8	1	1	7
4, 7, 3, 6, 9} (9,6)									
4, 7, 3, 6} biDFS(9) done	1	1	7	1	6	7	1	1	7
4, 7, 3} biDFS(6) done	new	biconne	ected o	compone	ent:	(9, 3),	(6, 9), (3,	6)
4, 7, 3} (3,7)				-					
4, 7, 3} (3,9)									
4, 7 biDFS(3) done	new	biconne	ected o	compone	ent:	(7, 3)			
$4, 7\} (7, 4)$	new biconnected component: (7, 3)								
4} biDFS(7) done	new	biconne	ected o	compone	ent:	(8, 4)	(8.1). (2.	8).
-,	new biconnected component: (8, 4), (8, 1), (2, 8), (1, 2), (7, 1), (4, 7)								
biDFS(4) done	1	1	7	1	6	7	1	1	7
		-		-	~	•	-	_	

Finding biconnected components — analysis:

- Correctness ???
- Complexity running time and space requirement:
 - running time: constant for each vertex encounter and each edge encounter \longrightarrow $\Theta(c_1n + c_2 \sum_{v \in V} \text{degree}(v)) = \Theta(n + m)$
 - space:

assume adjacency list representation: space for graph, arrays of size n, edge stack, and runtime stack

- 1. space for graph and arrays $\Theta(m+n)$
- 2. edge stack requires O(m) since every edge pushed
- 3. runtime stack O(n) since at most n biDFS activations each is of constant size
- 4. therefore, $\Theta(n+m)$ in total

Week 10: Directed Graphs

Comparing DFS and BFS:

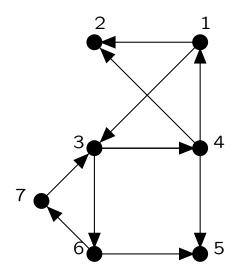
- BFS works well for finding shortest path
- All non-tree edges in
 - BFS are cross edges
 - DFS are back edges

Directed graphs:

- Recall that in a directed graph every edge is directed (i.e. it is an ordered pair)
- We say u reaches v if there is a directed path from u to v
- Strongly connected digraph: A digraph G is strongly connected if for every pair u, v of vertices u is reachable from v and v is reachable from u
- The notion of a directed cycle is defined similarly.
- Directed Acyclic Graph (DAG): A digraph with no (di)cycles.

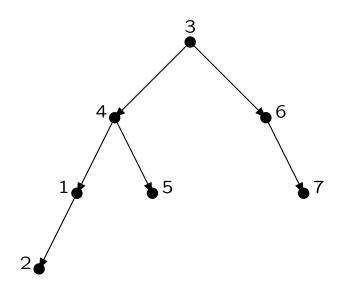
Traversing Directed graphs:

- DFS and BFS can be adapted to work on directed graphs.
- The only difference is that we travel edges according to their direction.
- Every edge that is discovered is a "tree-edge"
- In a DFS, back-edges may exist (from a node to one of its ancestors)
- We may also have a "forward-edge": a non-tree edge from a node to one of its descendant:
- Example: $V = \{1, 2, 3, 4, 5, 6, 7\}$ $E = \{(1, 2), (1, 3), (3, 4), (3, 6), (4, 1), (4, 2), (4, 5), (6, 5), (6, 7), (7, 3)\}$



Week 10: Directed Graphs

• Then calling DFS(3) gives:



- edges (1,3) and (7,3) are back edges and (4,2) is a forward edge.
- If we call DFS(v) in a digraph, we visit all vertices that are reachable from v in G. The DFS tree contains directed paths from v to every such vertex.
- How to check if G is strongly connected?
- Run DFS from every v. If every tree visit all the vertices then it is strongly connected.
- Time: $\Theta(n \times (n+m))$.
- Do we really need that many calls to DFS? or can we do better?

Strongly connected

- First run DFS from some vertex v
- If it does not reach some vertex then return "No"
- Else (all vertices are reachable from v) reverse the directions of all edges.
- Run DFS again from v. If all vertices (in this new graph) are reachable then G is strongly connected because every vertex has a directed path "to" and "from" v in G.

So every vertex is reachable from every other one via v.

• Time: $\Theta(n+m)$.

Topological ordering in DAG's

- Suppose we have a set of tasks to be performed
- For each task we have a requirement that some of the other tasks must be done before we can perform this.
- This requirement is given as a directed graph G which is DAG (directed acyclic).
- If (u, v) ∈ E it means we must perform u before we can perform v.
- Goal: find an ordering of the tasks (vertices of G) such that for each task all its requirements appear earlier in that ordering,

Week 10: Directed Graphs

- i.e. find an ordering v_1, \ldots, v_n of vertices of G such that for every edge (v_i, v_j) , i < j. This is called a "topological soring"
- Theorem: A digraph has a topological soring if and only if it is acyclic.
- Clearly if we have a cycle we cannot have a topological ordering (why?)
- Now suppose that G is a DAG.
- We prove the theorem by induction on n. Base case n = 1 is trivial (any ordering will do).
- So assume that $n \ge 2$. There is a vertex in G which has no ingoing edges or else G has a cycle (why?)
- Say in degree(u) = 0. Remove v from G, call the new graph G' (which has n 1 vertices).
- G' is acyclic so by I.H. has a topological ordering v_2, \ldots, v_n .
- Since u has only outgoing edges, u, v_2, \ldots, v_n is a topological ordering of G.

```
procedure Topological-Sort(G)
    S \leftarrow \emptyset
    for each v \in V do
    if in - degree(v) = 0 then
         S.push(v)
    i \leftarrow 1
    While S \neq \emptyset do
         v \leftarrow \mathsf{S.pop}()
         output v
         i \leftarrow i + 1
         for each vu do
              Remove uv (so decrease in - degree(u))
              if in - degree(u) = 0 then
                   S.push(u)
     \quad \text{if } i < n \text{ then } \quad
         return ''G has a cycle''
```