
Week 10: Graph Algorithms

Agenda:

• Graph traversal — Depth-first search

• DFS application:

– Finding biconnected components

– Strongly Connected components

– Topological sorting

Reading:

• Textbook pages 540 –559

1

Week 10: Graph Algorithms

Depth First Search (DFS):

• Input: simple undirected graph G = (V, E)

• Output: all vertices discovered (pick one vertex from each
component as the start vertex)

• Idea: to search deeper in the graph whenever possible ...

• Pseudocode (recursive version):

procedure DFS(G) **G = (V,E)

for each v ∈ V do
c[v]← WHITE **unknown yet
p[v]← NIL **predecessor

time ← 0
for each v ∈ V do

if c[v] = WHITE then
DFS-visit(v)

procedure DFS-visit(v) **any v ∈ V

c[v]← GRAY **start discovering v
time ← time + 1
dtime[v]← time
for each u ∈ Adj[v] do

if c[u] = WHITE then
p[u]← v
DFS-visit(u)

c[v]← BLACK **finished discovering
time ← time + 1
ftime[v]← time

2

Week 10: Graph Algorithms

DFS example:

• V = {1,2,3,4,5,6}

E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}

s = 2

1

3 5

4 2

6

Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

3

1 2 3 4 5 6 DFS-visit path

color W W W W W W
parent NIL NIL NIL NIL NIL NIL
dtime ∞ ∞ ∞ ∞ ∞ ∞ initialization

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W W W W W
parent NIL NIL NIL NIL NIL NIL
dtime 1 ∞ ∞ ∞ ∞ ∞ DFS-visit(1)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W G W W W
parent NIL NIL 1 NIL NIL NIL
dtime 1 ∞ 2 ∞ ∞ ∞ DFS-visit(1-3)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W G G W W
parent NIL NIL 1 3 NIL NIL
dtime 1 ∞ 2 3 ∞ ∞ DFS-visit(1-3-4)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G W W
parent NIL 4 1 3 NIL NIL
dtime 1 4 2 3 ∞ ∞ DFS-visit(1-3-4-2)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G G W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2-5)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G B W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2-5)

ftime ∞ ∞ ∞ ∞ 6 ∞
color G B G G B W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2)

ftime ∞ 7 ∞ ∞ 6 ∞
color G B G G B G
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4-6)

ftime ∞ 7 ∞ ∞ 6 ∞
color G B G G B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4-6)

ftime ∞ 7 ∞ ∞ 6 9

color G B G B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4)

ftime ∞ 7 ∞ 10 6 9

color G B B B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3)

ftime ∞ 7 11 10 6 9

color B B B B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1)

ftime 12 7 11 10 6 9

Week 10: Graph Algorithms

DFS example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• DFS tree: [dtime,ftime]

1: [1, 12]

3: [2, 11]

4: [3, 10]

2: [4, 7]

5: [5, 6]

6: [8, 9]

Notes:

– the result would be a forest of rooted trees

– the root of each tree is up to the selection (ordering of
the vertices)

– parent of x is predecessor p[x]

– different orderings of adjacency lists might result in dif-
ferent trees

– nested structure of [dtime, ftime]

— they don’t intersect each other

4

Week 10: Graph Algorithms

DFS analysis:

• n = |V |, m = |E|

• Handshaking Lemma:
∑

v∈V
degree(v) = 2m

• Analysis:

– each vertex is discovered exactly once (WHITE → GRAY
→ BLACK)

each edge is examined exactly twice

– running time:

1. adjacency list representation:

Θ(n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(n + n2) = Θ(n2)

– space complexity:

1. adjacency list representation:

Θ(n + m)

2. adjacency matrix representation:

Θ(n2)

5

Week 10: Graph Algorithms

Classifying graph edges with BFS/DFS:

• During the traversal, all vertices and edges are examined

• Given a BFS/DFS traversal forest:

– tree root — start vertex for that component

– tree edge — child discovered while processing the parent

– each edge in the original graph is examined twice

• Question:

Where are the other possible edges, besides tree edges ???

• Answer:

With respect to the traversal forest, categorize graph edges
by their first time encounter:

– tree edges

– back edges: to ancestor

– forward edges: to descendant

– cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, “back” = “forward”

• Examples:

6

Week 10: Graph Algorithms

An example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• DFS tree (start vertex 1):

1

3

4

2

5

6

• BFS Tree (start vertex 2):

2

4 5

3 6 1

7

Week 10: Graph Algorithms

Properties of BFS/DFS:

• BFS:

– each graph edge connects two vertices with level-difference
≤ 1

Proof.

– no back / forward edges

• DFS:

– each non-tree edge is a back edge

Proof.

– no forward edges (if G is undirected)

– no cross edges

– vertex processing time intervals [dtime[v], ftime[v]] and
[dtime[w], ftime[w]]:

[dtime[v], ftime[v]] ⊂ [dtime[w], ftime[w]] — v is a de-
scendant of w in the DFS forest

[dtime[v], ftime[v]] ∩ [dtime[w], ftime[w]] = ∅— no ancestor-
descendant relationship between v and w

• BFS vertex order:

level-order of each tree in the BFS forest

• DFS vertex order:

pre-order of each tree in the DFS forest

• Some other vertex order associated with rooted trees:

– in-order (for binary trees only)

– post-order

8

Week 10: Graph Algorithms

Vertex order with respect to a binary rooted tree:

• Tree:

2

4 5

3 6 1

• Vertex orders:

– level-order: level by level (each level: left to right)

(2,4,5,3,6,1)

– pre-order: parent - child one - child two - . . . - last child

(2,4,3,6,5,1)

– in-order: left child - parent - right child

(3,4,6,2,1,5)

– post-order: child one - child two - . . . - last child - parent

(3,6,4,1,5,2)

9

Week 10: Graph Algorithms

Biconnected component:

• Definition — every pair of vertices are connected by two
vertex-disjoint paths

• Cut vertex — its removal increases the number of connected
components

• Fact: biconnected ⇐⇒ no cut vertices

• Biconnected component ⇐⇒ maximal connected subgraph
containing no cut vertex

• In a DFS tree:

– root is a cut vertex iff it has ≥ 2 child vertices (Why ???)

−→ One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeDFS(v) > 1, decompose the
graph accordingly into degreeDFS(v) subgraphs sharing
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has root degree 1

Problem: too time consuming Θ(n(n + m)) ...

– any other vertex is a cut vertex iff vertices in the child
subtrees have no back edges to its proper ancestors

−→ Idea in the improved implementation — (Θ(n+ m)):

for each vertex v, and each of its child w, keep track of
furthest back edge from the w-subtree

10

Week 10: Graph Algorithms

DFS application: finding biconnected components

• Idea in the improved implementation — (Θ(n + m)):

for each vertex v, and each of its child w, keep track of furthest
back edge from the w-subtree

• Details:

– for every vertex v, 1st encounter child w, recur from w

– last encounter w (just before backing up to v), check
whether v cuts off the w-subtree (rooted at w)

– maintain dtime[v], b[v], p[v] for v:

1. dtime[v] — discovery time

2. b[v] — dtime of the furthest ancestor of v to which
there is back edge from a descendant w of v

(a) updated when the first back edge is encountered

(b) updated when last time encounter of v (backing up)

3. p[v] — parent of v in the DFS tree

• Reporting biconnected components:

– recall that biconnected components form a partition of
edge set E

– when edge e first encountered, push into edge stack

– when a cut vertex discovered, pop necessary edges

11

Week 10: Graph Algorithms

Finding biconnected components — pseudocode:

procedure bicomponents(G) **G = (V, E)

S = ∅ **S is the edge stack
time ← 0
for each v ∈ V do

p[v]← 0 **unknown yet: NIL
dtime[v]← time
b[v]← n + 1

for each v ∈ V do
if dtime[v] = 0 then

biDFS(v)

procedure biDFS(v) **discover v

time ← time +1
dtime[v]← time
b[v]← dtime[v] **no back edge from descendant yet
for each neighbor w of v do **first time encounter w

if dtime[w] = 0 then **unknown yet
push(v, w)
p[w]← v
biDFS(w) **recursive call
if b[w] ≥ dtime[v] then

print ‘‘new biconnected component’’
repeat

pop & print
until (popped edge is (v, w))

else
b[v]← min{b[v], b[w]}

else if (dtime[w] < dtime[v] and w 6= p[v]) then
**(v, w) is a back edge from v

push(v, w)
b[v]← min{b[v], dtime[w]}

12

Week 10: Graph Algorithms

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous
biDFS() calls:

2

8 1

5

4

7 3

6

9

1: 2 5 7 8

2: 1 8

3: 6 7 9

4: 7 8

5: 1

6: 3 9

7: 1 3 4

8: 1 2 4

9: 3 6

DFS(4) tree: 4

7

1

2

8

3

6

9

5

13

Week 10: Graph Algorithms

Finding biconnected components — answer:

1: 2 5 7 8
2: 1 8
3: 6 7 9
4: 7 8
5: 1
6: 3 9
7: 1 3 4
8: 1 2 4
9: 3 6

DFS(4) tree: 4

7

1

2

8

3

6

9
5

dtime 3 4 7 1 6 8 2 5 9
b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

biDFS(4) 10 10 10 1 10 10 10 10 10
4} biDFS(7) 10 10 10 1 10 10 2 10 10
4, 7} biDFS(1) 3 10 10 1 10 10 2 10 10
4, 7, 1} biDFS(2) 3 4 10 1 10 10 2 10 10
4, 7, 1, 2} (2,1)
4, 7, 1, 2} biDFS(8) 3 4 10 1 10 10 2 5 10
4, 7, 1, 2, 8} (8,1) 3 4 10 1 10 10 2 3 10
4, 7, 1, 2, 8} (8,2)
4, 7, 1, 2, 8} (8,4) 3 4 10 1 10 10 2 1 10
4, 7, 1, 2} biDFS(8) done 3 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(2) done 1 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(5) 1 1 10 1 6 10 2 1 10
4, 7, 1, 5} (5,1)
4, 7, 1} biDFS(5) done new biconnected component: (1, 5)
4, 7, 1} (1,7)
4, 7, 1} (1,8)
4, 7} biDFS(1) done 1 1 10 1 6 10 1 1 10
4, 7} biDFS(3) 1 1 7 1 6 10 1 1 10
4, 7, 3} biDFS(6) 1 1 7 1 6 8 1 1 10
4, 7, 3, 6} (6,3)
4, 7, 3, 6} biDFS(9) 1 1 7 1 6 8 1 1 9
4, 7, 3, 6, 9} (9,3) 1 1 7 1 6 8 1 1 7

4, 7, 3, 6, 9} (9,6)
4, 7, 3, 6} biDFS(9) done 1 1 7 1 6 7 1 1 7
4, 7, 3} biDFS(6) done new biconnected component: (9, 3), (6, 9), (3, 6)
4, 7, 3} (3,7)
4, 7, 3} (3,9)
4, 7} biDFS(3) done new biconnected component: (7, 3)
4, 7} (7,4)
4} biDFS(7) done new biconnected component: (8, 4), (8, 1), (2, 8),

(1, 2), (7, 1), (4, 7)
biDFS(4) done 1 1 7 1 6 7 1 1 7

14

Week 10: Graph Algorithms

Finding biconnected components — analysis:

• Correctness ???

• Complexity — running time and space requirement:

– running time:

constant for each vertex encounter and each edge en-
counter −→

Θ(c1n + c2

∑
v∈V

degree(v)) = Θ(n + m)

– space:

assume adjacency list representation: space for graph,
arrays of size n, edge stack, and runtime stack

1. space for graph and arrays Θ(m + n)

2. edge stack requires O(m) — since every edge pushed

3. runtime stack O(n) — since at most n biDFS activa-
tions each is of constant size

4. therefore, Θ(n + m) in total

15

Week 10: Directed Graphs

Comparing DFS and BFS:

• BFS works well for finding shortest path

• All non-tree edges in

– BFS are cross edges

– DFS are back edges

Directed graphs:

• Recall that in a directed graph every edge is directed (i.e. it
is an ordered pair)

• We say u reaches v if there is a directed path from u to v

• Strongly connected digraph: A digraph G is strongly con-
nected if for every pair u, v of vertices u is reachable from v

and v is reachable from u

• The notion of a directed cycle is defined similarly.

• Directed Acyclic Graph (DAG): A digraph with no (di)cycles.

16

Week 10: Directed Graphs

Traversing Directed graphs:

• DFS and BFS can be adapted to work on directed graphs.

• The only difference is that we travel edges according to their
direction.

• Every edge that is discovered is a “tree-edge”

• In a DFS, back-edges may exist (from a node to one of its
ancestors)

• We may also have a “forward-edge”: a non-tree edge from a
node to one of its descendant:

• Example: V = {1,2,3,4,5,6,7}

E = {(1,2), (1,3), (3,4), (3,6), (4,1), (4,2), (4,5), (6,5), (6,7), (7,3)}

12

3 4

6 5

7

17

Week 10: Directed Graphs

• Then calling DFS(3) gives:

3

4 6

1 5 7

2

• edges (1,3) and (7,3) are back edges and (4,2) is a forward
edge.

• If we call DFS(v) in a digraph, we visit all vertices that are
reachable from v in G. The DFS tree contains directed paths
from v to every such vertex.

• How to check if G is strongly connected?

• Run DFS from every v. If every tree visit all the vertices then
it is strongly connected.

• Time: Θ(n× (n + m)).

• Do we really need that many calls to DFS? or can we do
better?

18

Week 10: Directed Graphs

Strongly connected

• First run DFS from some vertex v

• If it does not reach some vertex then return “No”

• Else (all vertices are reachable from v) reverse the directions
of all edges.

• Run DFS again from v. If all vertices (in this new graph) are
reachable then G is strongly connected because every vertex
has a directed path “to” and “from” v in G.

So every vertex is reachable from every other one via v.

• Time: Θ(n + m).

Topological ordering in DAG’s

• Suppose we have a set of tasks to be performed

• For each task we have a requirement that some of the other
tasks must be done before we can perform this.

• This requirement is given as a directed graph G which is DAG
(directed acyclic).

• If (u, v) ∈ E it means we must perform u before we can per-
form v.

• Goal: find an ordering of the tasks (vertices of G) such that for
each task all its requirements appear earlier in that ordering,

19

Week 10: Directed Graphs

• i.e. find an ordering v1, . . . , vn of vertices of G such that for
every edge (vi, vj), i < j. This is called a “topological soring”

• Theorem: A digraph has a topological soring if and only if it
is acyclic.

• Clearly if we have a cycle we cannot have a topological order-
ing (why?)

• Now suppose that G is a DAG.

• We prove the theorem by induction on n. Base case n = 1 is
trivial (any ordering will do).

• So assume that n ≥ 2. There is a vertex in G which has no
ingoing edges or else G has a cycle (why?)

• Say in− degree(u) = 0. Remove v from G, call the new graph
G′ (which has n− 1 vertices).

• G′ is acyclic so by I.H. has a topological ordering v2, . . . , vn.

• Since u has only outgoing edges, u, v2, . . . , vn is a topological
ordering of G.

20

Week 10: Directed Graphs

procedure Topological-Sort(G)
S ← ∅
for each v ∈ V do

if in− degree(v) = 0 then

S.push(v)

i← 1
While S 6= ∅ do

v ← S.pop()
output v

i← i + 1
for each vu do

Remove uv (so decrease in− degree(u))
if in− degree(u) = 0 then

S.push(u)
if i < n then

return ‘‘G has a cycle’’

21

