Week 10: Graph Algorithms
Agenda:

e Graph traversal — Depth-first search

e DFS application:
— Finding biconnected components
— Strongly Connected components

— Topological sorting

Reading:

e [Textbook pages 540 —559

Week 10: Graph Algorithms
Depth First Search (DFS):

e Input: simple undirected graph G = (V, F)

e Output: all vertices discovered (pick one vertex from each
component as the start vertex)

e Idea: to search deeper in the graph whenever possible ...

e Pseudocode (recursive version):

procedure DFS(Q&) x»*G = (V, F)
for each v € V do
c[v] « WHITE **unknown yet
p[v] < NIL **predecessor

time «— O
for each v € V do
if c[v] = WHITE then
DFS-visit(v)

procedure DFS-visit(v) **any v €V

c[v] « GRAY **start discovering v
time «— time + 1
dtime[v] < time
for each u € Adj[v] do
if c[u] = WHITE then

plu] < v

DFS-visit(u)
c[v] < BLACK **xfinished discovering
time «— time + 1
ftime[v] < time

Week 10: Graph Algorithms

DFES example:

e V=1{1,2,3,4,56}

E={{1,3},{1,5},{2,4},{2,5},{3,4},{3,5},{4,6}}
s =2

Adjacency lists:

QUARWNE
ArENRPW
NWAOO
w o 01

2

DFS-visit path

color
parent
dtime
ftime

g 8

initialization

color
parent
dtime
ftime

Z2
=

DFS-visit(1)

color
parent
dtime
ftime

DFS-visit (1-3)

color
parent
dtime
ftime

DFS-visit(1-3-4)

color
parent
dtime
ftime

DFS-visit(1-3-4-2)

color
parent
dtime
ftime

DFS-visit (1-3-4-2-5)

color
parent
dtime
ftime

DFS-visit(1-3-4-2-5)

color
parent
dtime
ftime

DFS-visit(1-3-4-2)

color
parent
dtime
ftime

DFS-visit(1-3-4-6)

color
parent
dtime
ftime

DFS-visit (1-3-4-6)

color
parent
dtime
ftime

BEUW@QE Wwog wwag wwegweag wweg weog wwog g

DFS-visit(1-3-4)

color
parent
dtime
ftime

(@)

DFS-visit(1-3)

color
parent
dtime
ftime

NAPDNAA@NPEPONAA@NPLPONAA@R ERQYAPARPPO] Y

W= wwm
OUNEOUNEONON@POOUNEDOINEOOONENONDY TNEQR K

© 0 & OO0 EOoDEOomsEgE ®EQAg Y

L
'_l
=W W
(@]

DFS-visit (1)

Week 10: Graph Algorithms
DFS example:

e Adjacency lists:

QU ARWNE

AERENRPW
NWPH OO
Wo O

e DFS tree: [dtime,ftime]

1 [1, 12]
3: [2, 11]
4: [3,1
6: [8, 9]

5: [5, 6]
Notes:

— the result would be a forest of rooted trees

— the root of each tree is up to the selection (ordering of
the vertices)

— parent of x is predecessor p|x]

— different orderings of adjacency lists might result in dif-
ferent trees

— nested structure of [dtime, ftime]
— they don't intersect each other

Week 10: Graph Algorithms

DFS analysis:
e n=1|V|, m=|E|
e Handshaking Lemma: ZUEV degree(v) = 2m

e Analysis:

— each vertex is discovered exactly once (WHITE — GRAY
— BLACK)

each edge is examined exactly twice
— running time:
1. adjacency list representation:
O(n+2m) =0(n+m)
2. adjacency matrix representation:
O(n + n?) = O(n?)
— Space complexity:
1. adjacency list representation:
O(n+ m)

2. adjacency matrix representation:
O(n?)

Week 10: Graph Algorithms

Classifying graph edges with BFS/DFS:

e During the traversal, all vertices and edges are examined

e Given a BFS/DFS traversal forest:
— tree root — start vertex for that component
— tree edge — child discovered while processing the parent

— each edge in the original graph is examined twice

e Question:
Where are the other possible edges, besides tree edges 777

e Answer:

With respect to the traversal forest, categorize graph edges
by their first time encounter:

— tree edges

— back edges: to ancestor

— forward edges: to descendant

— cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, “back’” = ‘“forward”

e Examples:

Week 10: Graph Algorithms

An example:

e Adjacency lists:

QUARWNE

APERENRPW
NWPH OO
wWo O

e DFS tree (start vertex 1):

e BFS Tree (start vertex 2):

2

Week 10: Graph Algorithms
Properties of BFS/DFS:
e BFS:

— each graph edge connects two vertices with level-difference
<1

Proof.
— no back / forward edges
e DFS:

— each non-tree edge is a back edge
Proof.

— no forward edges (if G is undirected)
— Nno cross edges

— vertex processing time intervals [dtime[v], ftime[v]] and
[dtime[w], ftime[w]]:

[dtime[v], ftime[v]] C [dtime[w], ftime[w]] — v is a de-
scendant of w in the DFS forest

[dtime[v], ftime[v]] N [dtime[w], ftime[w]] = 0 — no ancestor-
descendant relationship between v and w

e BFS vertex order:
level-order of each tree in the BFS forest

e DFS vertex order:
pre-order of each tree in the DFS forest
e Some other vertex order associated with rooted trees:
— in-order (for binary trees only)

— post-order

Week 10: Graph Algorithms

Vertex order with respect to a binary rooted tree:

e [ree:

e \Vertex orders:

— level-order: level by level (each level: left to right)
(2747 5737 67 1)

— pre-order:. parent - child one - child two - .. .- last child
(274737 67 57 1)

— in-order: left child - parent - right child
(37 47 6727 175)

— post-order: child one - child two - .. .- last child - parent
(37 67 47 17 57 2)

Week 10: Graph Algorithms

Biconnected component:

e Definition — every pair of vertices are connected by two
vertex-disjoint paths

e (Cut vertex — its removal increases the number of connected
components

e Fact: biconnected «—— no cut vertices

e Biconnected component <— maximal connected subgraph
containing no cut vertex

e In a DFS tree:

— root is a cut vertex iff it has > 2 child vertices (Why 777)
— One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeppg(v) > 1, decompose the
graph accordingly into degree »s(v) subgraphs sharing
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has root degree 1

Problem: too time consuming @(n(n+ m)) ...

— any other vertex is a cut vertex Iff vertices in the child
subtrees have no back edges to its proper ancestors

— Idea in the improved implementation — (©(n+m)):

for each vertex v, and each of its child w, keep track of
furthest back edge from the w-subtree

10

Week 10: Graph Algorithms

DFES application: finding biconnected components

e Idea in the improved implementation — (©(n + m)):
for each vertex v, and each of its child w, keep track of furthest

back edge from the w-subtree
e Details:
— for every vertex v, 1St encounter child w, recur from w

— last encounter w (just before backing up to v), check
whether v cuts off the w-subtree (rooted at w)

— maintain dtime[v], b[v], p[v] for v:

1. dtime[v] — discovery time

2. b[v] — dtime of the furthest ancestor of v to which
there is back edge from a descendant w of v

(a) updated when the first back edge is encountered
(b) updated when last time encounter of v (backing up)

3. p[v] — parent of v in the DFS tree

e Reporting biconnected components:

— recall that biconnected components form a partition of
edge set FE

— when edge e first encountered, push into edge stack

— when a cut vertex discovered, pop necessary edges

11

Week 10: Graph Algorithms

Finding biconnected components — pseudocode:

procedure bicomponents(G) **G = (V, F)

S =10 **S is the edge stack
time «— O
for each ve V do
plv] < 0 *x*unknown yet: NIL
dtime[v] <+ time
blv] — n+1
for each ve V do
if dtime[v] = O then
biDFS(v)

procedure biDFS(v) *x*xdiscover v

time <« time —+1
dtime[v] < time

b[v] «+ dtime[v] **no back edge from descendant yet
for each neighbor w of v do **first time encounter w
if dtime[w] = O then *x*unknown yet
push(v, w)
plw] — v
biDFS(w) **krecursive call

if b[w] > dtime[v] then
print ¢ ‘new biconnected component’’
repeat
pop & print
until (popped edge is (v, w))
else
b[v] < min{b[v], b[w]}
else if (dtime[w] < dtime[v] and w # p[v]) then
**(v,w) is a back edge from v
push(v, w)
b[v] < min{b[v], dtime[w]}

12

Week 10: Graph Algorithms

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous
biDFS() calls:

CONDOHWNH

WHRWH~NO N

2 5
9
6
3

5 7 8 DFS(4) tree:

8

7 9

8

9

3 4

2 4

6

13

Week 10: Graph Algorithms
Finding biconnected components — answer:

1: 2 5 7 8 DFS(4) tree: g4
2: 1 8
3: 6 7 9
4. 7 8
5. 1
6: 3 9
7: 1 3 4
8. 1 2 4
9: 3 6
dtime 3 4 7 1 6 8 2 5 9
b[1] b[2] b[3] b[4] b[5] b[6] b[7] ©b[8] b[9]
biDFS(4) 10 10 10 1 10 10 10 10 10
4} biDFS(7) 10 10 10 1 10 10 2 10 10
4, 7} biDFS(1) 3 10 10 1 10 10 2 10 10
4, 7, 1} biDFS(2) 3 4 10 1 10 10 2 10 10
4, 7, 1, 2} (2,1)
4, 7, 1, 2} biDFS(8) 3 4 10 1 10 10 2 5 10
4, 7, 1, 2, 8} (8,1) 3 4 10 1 10 10 2 3 10
4, 7, 1, 2, 8} (8,2)
4, 7, 1, 2, 8} (8,4) 3 4 10 1 10 10 2 1 10
4, 7, 1, 2} biDFS(8) done | 3 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(2) done 1 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(5) 1 1 10 1 6 10 2 1 10
4, 7, 1, 5} (5,1)
4, 7, 1} biDFS(5) done new biconnected component: (1, 5)
4, 7, 1} (1,7)
4, 7, 1} (1,8)
4, 7} biDFS(1) done 1 1 10 1 6 10 1 1 10
4, 7} biDFS(3) 1 1 7 1 6 10 1 1 10
4, 7, 3} biDFS(6) 1 1 7 1 6 8 1 1 10
4, 7, 3, 6} (6,3)
4, 7, 3, 6} biDFS(9) 1 1 7 1 6 8 1 1 9
4, 7, 3, 6, 9} (9,3) 1 1 7 1 6 8 1 1 7
4, 7, 3, 6, 9} (9,6)
4, 7, 3, 6} biDFS(9) done | 1 1 7 1 6 7 1 1 7
4, 7, 3} biDFS(6) done new biconnected component: (9, 3), (6, 9), (3, 6)
4, 7, 3} (3,7)
4, 7, 3} (3,9)
4, 7} biDFS(3) done new biconnected component: (7, 3)
4, 7} (7,4)
4} biDFS(7) done new biconnected component: (8, 4), (8, 1), (2, 8),
1, 2), (7, 1), (4, 7
biDFS(4) done 1 1 7 1 6 7 1 1 7

14

Week 10: Graph Algorithms

Finding biconnected components — analysis:

e Correctness 777

e Complexity — running time and space requirement:

— running time:
constant for each vertex encounter and each edge en-
counter —

O(cin + c2 Zvev degree(v)) = ©(n+ m)

— space:

assume adjacency list representation: space for graph,
arrays of size n, edge stack, and runtime stack

1.
2.
3.

space for graph and arrays ©(m + n)
edge stack requires O(m) — since every edge pushed

runtime stack O(n) — since at most n biDFS activa-
tions each is of constant size

therefore, ©(n + m) in total

15

Week 10: Directed Graphs

Comparing DFS and BFS:
e BFS works well for finding shortest path

e All non-tree edges in
— BFS are cross edges

— DFS are back edges

Directed graphs:

e Recall that in a directed graph every edge is directed (i.e. it
is an ordered pair)

e We say u reaches v if there is a directed path from « to v

e Strongly connected digraph: A digraph G is strongly con-
nected if for every pair u,v of vertices u is reachable from v
and v is reachable from u

e The notion of a directed cycle is defined similarly.

e Directed Acyclic Graph (DAG): A digraph with no (di)cycles.

16

Week 10: Directed Graphs
Traversing Directed graphs:
e DFS and BFS can be adapted to work on directed graphs.

The only difference is that we travel edges according to their
direction.

Every edge that is discovered is a ‘tree-edge”

In a DFS, back-edges may exist (from a node to one of its
ancestors)

We may also have a ‘“forward-edge”: a non-tree edge from a
node to one of its descendant:

Example: V ={1,2,3,4,5,6,7}
E=1{(1,2),(1,3),(3,4),(3,6),(4,1),(4,2),(4,5),(6,5),(6,7),(7,3)}

17

Week 10: Directed Graphs

e Then calling DFS(3) gives:

e edges (1,3) and (7,3) are back edges and (4,2) is a forward
edge.

e If we call DFS(v) in a digraph, we visit all vertices that are
reachable from v in G. The DFS tree contains directed paths
from v to every such vertex.

e How to check if G is strongly connected?

e Run DFS from every v. If every tree visit all the vertices then
it is strongly connected.

e Time: O(nx (n+m)).

e Do we really need that many calls to DFS? or can we do
better?

18

Week 10: Directed Graphs

Strongly connected
e First run DFS from some vertex v
e If it does not reach some vertex then return “No”

e Else (all vertices are reachable from v) reverse the directions
of all edges.

e Run DFS again from v. If all vertices (in this new graph) are
reachable then G is strongly connected because every vertex
has a directed path “to” and ‘“from” v in G.

So every vertex is reachable from every other one via wv.
e Time: ©(n+m).
Topological ordering in DAG’s
e Suppose we have a set of tasks to be performed

e For each task we have a requirement that some of the other
tasks must be done before we can perform this.

e This requirement is given as a directed graph G which is DAG
(directed acyclic).

e If (u,v) € E it means we must perform u before we can per-
form wv.

e Goal: find an ordering of the tasks (vertices of G) such that for
each task all its requirements appear earlier in that ordering,

19

Week 10: Directed Graphs

i.e. find an ordering vi1,...,v, Of vertices of G such that for
every edge (v;,v;), ¢ < j. This is called a “topological soring”

Theorem: A digraph has a topological soring if and only if it
is acyclic.

Clearly if we have a cycle we cannot have a topological order-
ing (why?)

Now suppose that GG is a DAG.

We prove the theorem by induction on n. Base casen =1 is
trivial (any ordering will do).

So assume that n > 2. There is a vertex in G which has no
ingoing edges or else G has a cycle (why?)

Say in —degree(u) = 0. Remove v from G, call the new graph
G’ (which has n — 1 vertices).

G’ is acyclic so by I.H. has a topological ordering vo, ..., v,.

Since u has only outgoing edges, u,vo,...,v, iS a topological
ordering of G.

20

Week 10: Directed Graphs

procedure Topological-Sort(G)
S — 0
for each v €V do
if in — degree(v) = O then
S.push(v)
1+— 1
While S # 0 do
v — S.pop()
output v
1+—1+1
for each vu do
Remove uv (so decrease in — degree(u))
if in — degree(u) = O then
S.push(u)
if ¢+ <n then
return ‘‘G has a cycle’’

21

