Week 9: Dynammic programming/Graph
Algorithms

Agenda:
e LCS
e Basic Graph definitions
e BFS

Reading:

e Textbook: 350-356, 527-540

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem:

Definitions:

Sequence/string:

dynamicprogramming iS a sequence over the English alpha-
bet

Base/letter/character

Subsequence:
the given sequence with zero or more bases left out
e.d., dog is a subsequence of dynamicprogramming

WARNINg: bases appear in the same order, but not nec-
essarily consecutive

Common subsequence

LCS problem: given two sequences X = zix2...x, and
Y = y1y2...ym, find @ maximum-length common subse-
quence of them.

e The LCS problem has the “optimal substructure” ...

— if z, is NOT in the LCS (to be computed), then we only

need to compute an LCS of zi1x2...2p—1 and y1y2...Ym

— similarly, if y, is NOT in the LCS (to be computed),

then we only need to compute an LCS of z1x5...2, and
Y1y2 . .- Ym—1 ...

if ,, and y,,, are both in the LCS (to be computed), then
Tn = Ym and we need to compute an LCS of x1z2...xp—1

and y1y2 ... Ym—1,
and then adding z, to the end to form an LCS for the
original problem

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont’'d):

e Therefore, we define DP[i,j] to be the length of LCS of
x1,...,x; and yi,...,y;;, foreach 0 <i:<n and 0 <j <m.

Letting DP[n,m] to denote the length of an LCS of X and
Y, then it is equal to

LCS(z125 ... Tn1, Y1Y2-..Ym),
max length of LCS(x1x0...Tn, Y1Y2 .. -Ym_1),

LCS(x1x2...Tn-1, Y1Y2 - - Ym—1) + 'z, if zp = ym
e Correctness

e In general, let DPJi, j] denote the length of an LCS of x125 ... x;
and y1y2...y;.

e Recurrence:

DP[i —1,],
DP[i,5] = max< DPJ[i, 5 — 1],
DP[’L—].,]—].]—|—1, Ifa:lzy]

e Base cases 777

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont'd)

— solving the recurrence:
e Divide-and-Conquer running time: Q(3mMin{nm})

e Dynamic programming:

Order of computations 777

procedure dpLCS(X,Y)

n « length[X]
m «— length[Y]
for 1 <— 1 to m do
DP[i,0] <~ O
for j «— 0 to n do
DP[0,j] < O
for 1+ 1 to n do
for j«— 1 to m do
if x; = y; then
DPli,j] «— DP[:—1,7—1]+1
else if DP[i—1,75] > DP[i,j — 1] then
else
return DP[n,m]

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont'd):
e Correctness
e Can return an associated LCS ... trace back

e Running time: ©(n x m)
There are n x m entries each takes constant time to compute.

Can be reduced to ©(n x =) (CMPUT 606)

logm

e Space requirement ... ©(n x m)

Can be reduced to ©(min{n,m}) (CMPUT 606)

e Applications:
— Human (and other species) Genome Project

— Detecting cheating :-)

Week 9: Graphs

An example:

~@

O O O

MW —=0

— N M L

Week 9: Graphs

An example:

o—©

o~

1 2 3 4 5 6 T 8 9
1 * *
2 % %
3k * %
4 *
5 koK ¥
6 * * X
-
8 *
9 *

Week 9: Graphs

Definitions:

o ——o

e (simple, undirected) graph G = (V, E)
— vertex set V

— edge set £

* an edge e is a pair of vertices v1 and v
* unordered — undirected

x v1 7= v — Ssimple and no repeated edges.

e V=1{1,2,3,4,5,6,7,8,9}
E = {{1,3},{1,6},{2,5},{2,6},{3,5},{3,6},{4,9},{5,8}}

e Notions:

— adjacent (vertex — vertex, edge — edge)
e.g., 1 and 3 are adjacent; (1,3) and (3,5) are adjacent

— incident (vertex — edge)
e.g., 1 is incident with (1, 3)

Week 9: Graphs
Graph notions:

e Computer representations:
— adjacency lists
— adjacency matrix
e Neighborhood of a vertex
e Degree of a vertex — size of its neighborhood

e Walk (vertex — vertex), simple path

e.g., (1,3,5,2,6,3,5,8) and (1, 3,5,2,6) the former (which has
repeated nodes) is a walk and

the latter is a simple path
e Connected (every pair of vertices is connected via a path)
e Subgraph G' = (V',E") of G = (V,E)
— it is a graph
A%
— EFCE

e Connected component (maximal connected subgraph)

9

Week 9: Graphs

Binary equivalence relation:

e A relation ~ involving two elements (in a set A)

for example, “<" relation for real numbers
e Reflexive: a ~a for any ac A
e Symmetric: a1 ~ as iff ax ~ a1
e Transitive: a1 ~ a2 and a> ~ a3z imply a1 ~ a3

e Binary equivalence relation:
reflexive + symmetric + transitive

e.g., "=" relation for real numbers

e Equivalence class of a

the subset of elements b such that a ~ b

Therefore, the equivalence class of a contains b implies it is
also the equivalence class of b ...

e T he equivalence classes form a partition of A
— union to A

— disjoint

10

Week 9: Graphs
Connected component:

e A binary equivalence relation ~ on vertex set V

v1 ~ vo Iff “there is a path connecting v1 and vy”

e The connected component containing vertex v is the equiva-
lence class of v:

— the connected components form a partition of G,
such that

— NO edge crossing the components
Biconnected component:

e Two paths connecting v1 and wvo are vertex-disjoint if share no
common internal vertex (other than v; and v5).

e Biconnected graph: |V| > 2, connected, and every pair of
vertices are connected via two vertex-disjoint (simple) paths

e Notes:
— connectivity does NOT implies biconnectivity

— articulation vertex — cut vertex: its removal disconnects
G

— bridge — cut edge : its removal disconnects GG

e Biconnected component — maximal biconnected subgraph

— a partition of E (not necessarily a partition of V)

11

Week 9: Graph Algorithms

More notions:

e Notions on simple, undirected graphs:

cycle — a path with two ending vertices collapsed
simple cycle

acyclic graph — a graph containing no cycles — also
called forest

tree — connected forest
V| x (V] -1)

2
every pair of vertices are adjacent

complete graph (|E| =)

induced subgraph on a subset of vertices, say U C V

((?,E[U]), where E[U] = {(vi,v2) : (v1,v2) € E&&wv1,v2 €
U

cligue (subset of vertices) — the induced subgraph is
complete
independent set (of vertices) — the induced subgraph

contains no edge

e Graph variants:

multigraph (remove “simple”), may have loops or parallel
edges.

digraph (remove “undirected”), every edge is an ordered
pair of vertices.

edge-weighted graph (every edge has a weight or cost)

12

Week 9: Graph Algorithms

More notions:

e T he following properies can be proved for a tree:
— Every tree on n nodes has n — 1 edges.

— Every node of degree 1 in a tree is called a leaf; Each
tree of size at least 2 has at least two leaves.

— Adding any edge uv to a tree creates exactly one cycle
which consists of the edge wv and the unique path be-
tween u and v in the tree.

— A spanning subgraph is a subgraph containing all the ver-
tices; A spanning tree is a spanning subgraph that is a
tree

— A graph is connected if and only if it has a spanning tree.

e Graph traversal:
The most elementary graph algorithm:

— goal: visit all vertices, by following all edges in some order
— e.g., maze traversal

— the most common graph traversal with a list storing “wait-
ing" vertices

1. FIFO list (queue) — breadth first search
2. LIFO list (stack) — depth first search

3. recursive — depth first search

13

Week 9: Graph Algorithms

Two representations:

e Adjacency lists: for example,

1: 3 6
2: 5 6
3: 1 5 6
4: 9

5: 2 3 8
7. 1 2 3
l:

8: 5

O: 4

e Adjacency matrix: for example,

1 2 3 4 5 6 7 8 9
1 * *
2 * ok
3 % * ok
4 *
5 x ok *
6 x ok
-
8 *
9 *

They both describe the following graph (graphical view):

14

Week 9: Graph Algorithms

Breadth First Search (BFS):
e Input: simple undirected graph G = (V, E) and start vertex s
e Output: distance (smallest number of edges) from s to each
reachable vertex

(in @ same connected component, if G is not connected)

e Pseudocode:

procedure BFS(G, s) **G = (V,FE), s €V start vertex
for each v €V — s do
c[v] < WHITE **unknown yet
d[v] + oo xkdistance from s
p[v] <« NIL **predecessor
Q10 **yaiting vertex queue
enqueue (Q), s)
c[s] < GRAY **in queue @
d[s] < O

while Q #) do
u «— dequeue(Q)
for each v € Adj[u] do
if c[v] = WHITE then
c[v] < GRAY
d[v] < d[u] + 1
plv] —u

enqueue(Q, v)
c[u] < BLACK **visited

e An example:
V ={1,2,3,4,5,6}
E={{1,3},{1,5},{2,4},{2,5},{3,4},{3,5},{4,6}}
s =2

15

Week 9: Graph Algorithms

BFS example:

e V=1{1,2,3,4,56}

E={{1,3},{1,5},{2,4},{2,5},{3,4},{3,5},{4,6}}
s =2

Adjacency lists:

QUARWNE
ArENRPW
NWAOO
w o 01

16

Week 9: Graph Algorithms

BFS example:
1 2 3 4 5 6 Q

color W G W W W W {2}
distance | o 0 o0 00 o0 00
parent NIL NIL NIL NIL NIL NIL
color W B W G G W {4, 5}
distance | oo 0] 00 1 1 o0
parent NIL NIL NIL 2 2 NIL
color W B G B G G {5, 3, 6}
distance | o 0] 2 1 1 2
parent NIL NIL 4 2 2 4
color G B G B B G {3, 6, 1}
distance | 2 0] 2 1 1 2
parent 5 NIL 4 2 2 4
color G B B B B G {6, 1}
distance | 2 0] 2 1 1 2
parent 5 NIL 4 2 2 4
color G B B B B B {1}
distance | 2 0] 2 1 1 2
parent 5 NIL 4 2 2 4
color B B B B B B 0
distance | 2 0] 2 1 1 2
parent 5 NIL 4 2 2 4

17

Week 9: Graph Algorithms

BFS example:

e Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4
e BFS tree:
2
4 5
3 6 1
Notes:

— root is the start vertex s
— parent of x is predecessor p|x]

— left-to-right child order depends on neighbor ordering (in
Adjlu])

18

Week 9: Graph Algorithms
BFS analysis:

« n=|V], m=|B
e Handshaking Lemma: Zuev degree(v) = 2m

e Analysis:
— each vertex enqueued exactly once: WHITE — GRAY
— each vertex dequeued exactly once: GRAY — BLACK

— running time:

1. adjacency list representation:
o(n+ ZUEV degree(v)) =n+2m) =0 (n+m)

2. adjacency matrix representation:
o(n+ Zvevn =n+n?) = O(n?)

— space complexity:

1. adjacency list representation:
o(n+ ZUEV degree(v)) =n+2m) = (n+m)

2. adjacency matrix representation:
@(Zvevn = n?) = ©(n?)
e BFS product:
1. every s-to-v shortest path (tracing the parents)

2. putting these paths together forms the BFS tree

e \Warning: vertices in other connected components wouldn’t
be discovered !!!

EXERCISE: modify the pseudocode to discover ALL vertices

19

