
Week 9: Dynammic programming/Graph

Algorithms

Agenda:

• LCS

• Basic Graph definitions

• BFS

Reading:

• Textbook: 350-356, 527-540

1

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem:

Definitions: – Sequence/string:

dynamicprogramming is a sequence over the English alpha-
bet

– Base/letter/character

– Subsequence:

the given sequence with zero or more bases left out

e.g., dog is a subsequence of dynamicprogramming

WARNing: bases appear in the same order, but not nec-
essarily consecutive

– Common subsequence

– LCS problem: given two sequences X = x1x2 . . . xn and
Y = y1y2 . . . ym, find a maximum-length common subse-
quence of them.

• The LCS problem has the “optimal substructure” ...

– if xn is NOT in the LCS (to be computed), then we only
need to compute an LCS of x1x2 . . . xn−1 and y1y2 . . . ym

...

– similarly, if ym is NOT in the LCS (to be computed),
then we only need to compute an LCS of x1x2 . . . xn and
y1y2 . . . ym−1 ...

– if xn and ym are both in the LCS (to be computed), then
xn = ym and we need to compute an LCS of x1x2 . . . xn−1

and y1y2 . . . ym−1;

and then adding xn to the end to form an LCS for the
original problem

2

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d):

• Therefore, we define DP [i, j] to be the length of LCS of
x1, . . . , xi and y1, . . . , yj; for each 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Letting DP [n, m] to denote the length of an LCS of X and
Y , then it is equal to

max length of

{

LCS(x1x2 . . . xn−1, y1y2 . . . ym),
LCS(x1x2 . . . xn, y1y2 . . . ym−1),
LCS(x1x2 . . . xn−1, y1y2 . . . ym−1) + ‘x′n, if xn = ym

• Correctness

• In general, let DP [i, j] denote the length of an LCS of x1x2 . . . xi

and y1y2 . . . yj.

• Recurrence:

DP [i, j] = max

{

DP [i− 1, j],
DP [i, j − 1],
DP [i− 1, j − 1] + 1, if xi = yj

• Base cases ???

3

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d)

— solving the recurrence:

• Divide-and-Conquer running time: Ω(3min{n,m})

• Dynamic programming:

Order of computations ???

procedure dpLCS(X, Y)

n← length[X]
m← length[Y]
for i← 1 to m do

DP [i,0]← 0
for j ← 0 to n do

DP [0, j]← 0
for i← 1 to n do

for j ← 1 to m do

if xi = yj then

DP [i, j]← DP [i− 1, j − 1] + 1
else if DP [i− 1, j] ≥ DP [i, j − 1] then

DP [i, j]← DP [i− 1, j]
else

DP [i, j]← DP [i, j − 1]
return DP [n, m]

4

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d):

• Correctness

• Can return an associated LCS ... trace back

• Running time: Θ(n×m)

There are n×m entries each takes constant time to compute.

Can be reduced to Θ(n× m
logm

) (CMPUT 606)

• Space requirement ... Θ(n×m)

Can be reduced to Θ(min{n, m}) (CMPUT 606)

• Applications:

– Human (and other species) Genome Project

– Detecting cheating :-)

5

Week 9: Graphs

An example:

1

3 6

5 2

8

4 9

7

1: 3 6
2: 5 6
3: 1 5 6
4: 9
5: 2 3 8
6: 1 2 3
7:
8: 5
9: 4

6

Week 9: Graphs

An example:

1

3 6

5 2

8

4 9

7

1 2 3 4 5 6 7 8 9
1 * *
2 * *
3 * * *
4 *
5 * * *
6 * * *
7
8 *
9 *

7

Week 9: Graphs

Definitions:

1

3 6

5 2

8

4 9

7

• (simple, undirected) graph G = (V,E)

– vertex set V

– edge set E

∗ an edge e is a pair of vertices v1 and v2

∗ unordered — undirected

∗ v1 6= v2 — simple and no repeated edges.

• V = {1,2,3,4,5,6,7,8,9}

E = {{1,3}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,9}, {5,8}}

• Notions:

– adjacent (vertex – vertex, edge – edge)

e.g., 1 and 3 are adjacent; (1,3) and (3,5) are adjacent

– incident (vertex – edge)

e.g., 1 is incident with (1,3)

8

Week 9: Graphs

Graph notions:

1

3 6

5 2

8

4 9

7

• Computer representations:

– adjacency lists

– adjacency matrix

• Neighborhood of a vertex

• Degree of a vertex — size of its neighborhood

• Walk (vertex – vertex), simple path

e.g., 〈1,3,5,2,6,3,5,8〉 and 〈1,3,5,2,6〉 the former (which has
repeated nodes) is a walk and

the latter is a simple path

• Connected (every pair of vertices is connected via a path)

• Subgraph G′ = (V ′, E′) of G = (V,E)

– it is a graph

– V ′ ⊆ V

– E′ ⊆ E

• Connected component (maximal connected subgraph)

9

Week 9: Graphs

Binary equivalence relation:

• A relation ∼ involving two elements (in a set A)

for example, “≤” relation for real numbers

• Reflexive: a ∼ a for any a ∈ A

• Symmetric: a1 ∼ a2 iff a2 ∼ a1

• Transitive: a1 ∼ a2 and a2 ∼ a3 imply a1 ∼ a3

• Binary equivalence relation:

reflexive + symmetric + transitive

e.g., “=” relation for real numbers

• Equivalence class of a

the subset of elements b such that a ∼ b

Therefore, the equivalence class of a contains b implies it is
also the equivalence class of b ...

• The equivalence classes form a partition of A

– union to A

– disjoint

10

Week 9: Graphs

Connected component:

• A binary equivalence relation ∼ on vertex set V

v1 ∼ v2 iff “there is a path connecting v1 and v2”

• The connected component containing vertex v is the equiva-
lence class of v:

– the connected components form a partition of G,

such that

– no edge crossing the components

Biconnected component:

• Two paths connecting v1 and v2 are vertex-disjoint if share no
common internal vertex (other than v1 and v2).

• Biconnected graph: |V | ≥ 2, connected, and every pair of
vertices are connected via two vertex-disjoint (simple) paths

• Notes:

– connectivity does NOT implies biconnectivity

– articulation vertex — cut vertex: its removal disconnects
G

– bridge — cut edge : its removal disconnects G

• Biconnected component — maximal biconnected subgraph

– a partition of E (not necessarily a partition of V)

11

Week 9: Graph Algorithms

More notions:

• Notions on simple, undirected graphs:

– cycle — a path with two ending vertices collapsed

– simple cycle

– acyclic graph — a graph containing no cycles — also
called forest

– tree — connected forest

– complete graph (|E| =
|V | × (|V | − 1)

2
)

every pair of vertices are adjacent

– induced subgraph on a subset of vertices, say U ⊂ V

(U, E[U]), where E[U] = {(v1, v2) : (v1, v2) ∈ E&&v1, v2 ∈
U}

– clique (subset of vertices) — the induced subgraph is
complete

– independent set (of vertices) — the induced subgraph
contains no edge

• Graph variants:

– multigraph (remove “simple”), may have loops or parallel
edges.

– digraph (remove “undirected”), every edge is an ordered
pair of vertices.

– edge-weighted graph (every edge has a weight or cost)

12

Week 9: Graph Algorithms

More notions:

• The following properies can be proved for a tree:

– Every tree on n nodes has n− 1 edges.

– Every node of degree 1 in a tree is called a leaf; Each
tree of size at least 2 has at least two leaves.

– Adding any edge uv to a tree creates exactly one cycle
which consists of the edge uv and the unique path be-
tween u and v in the tree.

– A spanning subgraph is a subgraph containing all the ver-
tices; A spanning tree is a spanning subgraph that is a
tree

– A graph is connected if and only if it has a spanning tree.

• Graph traversal:

The most elementary graph algorithm:

– goal: visit all vertices, by following all edges in some order

– e.g., maze traversal

– the most common graph traversal with a list storing “wait-
ing” vertices

1. FIFO list (queue) — breadth first search

2. LIFO list (stack) — depth first search

3. recursive — depth first search

13

Week 9: Graph Algorithms

Two representations:

• Adjacency lists: for example,

1: 3 6
2: 5 6
3: 1 5 6
4: 9
5: 2 3 8
7: 1 2 3
7:
8: 5
9: 4

• Adjacency matrix: for example,

1 2 3 4 5 6 7 8 9
1 * *
2 * *
3 * * *
4 *
5 * * *
6 * * *
7
8 *
9 *

They both describe the following graph (graphical view):

1

3 6

5 2

8

4 9

7

14

Week 9: Graph Algorithms

Breadth First Search (BFS):

• Input: simple undirected graph G = (V, E) and start vertex s

• Output: distance (smallest number of edges) from s to each
reachable vertex
(in a same connected component, if G is not connected)

• Pseudocode:

procedure BFS(G, s) **G = (V,E), s ∈ V start vertex

for each v ∈ V − s do
c[v]← WHITE **unknown yet
d[v]←∞ **distance from s
p[v]← NIL **predecessor

Q← ∅ **waiting vertex queue
enqueue(Q, s)
c[s]← GRAY **in queue Q
d[s]← 0
while Q 6= ∅ do

u← dequeue(Q)
for each v ∈ Adj[u] do

if c[v] = WHITE then
c[v]← GRAY
d[v]← d[u] + 1
p[v]← u
enqueue(Q, v)

c[u]← BLACK **visited

• An example:

V = {1,2,3,4,5,6}

E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}

s = 2

15

Week 9: Graph Algorithms

BFS example:

• V = {1,2,3,4,5,6}

E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}

s = 2

1

3 5

4 2

6

Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

16

Week 9: Graph Algorithms

BFS example:

1 2 3 4 5 6 Q
color W G W W W W {2}

distance ∞ 0 ∞ ∞ ∞ ∞

parent NIL NIL NIL NIL NIL NIL
color W B W G G W {4, 5}

distance ∞ 0 ∞ 1 1 ∞

parent NIL NIL NIL 2 2 NIL
color W B G B G G {5, 3, 6}

distance ∞ 0 2 1 1 2

parent NIL NIL 4 2 2 4
color G B G B B G {3, 6, 1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color G B B B B G {6, 1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color G B B B B B {1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color B B B B B B ∅

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4

17

Week 9: Graph Algorithms

BFS example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• BFS tree:

2

4 5

3 6 1

Notes:

– root is the start vertex s

– parent of x is predecessor p[x]

– left-to-right child order depends on neighbor ordering (in
Adj[u])

18

Week 9: Graph Algorithms

BFS analysis:

• n = |V |, m = |E|

• Handshaking Lemma:
∑

v∈V
degree(v) = 2m

• Analysis:

– each vertex enqueued exactly once: WHITE → GRAY

– each vertex dequeued exactly once: GRAY → BLACK

– running time:

1. adjacency list representation:

Θ(n +
∑

v∈V
degree(v)) = n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(n +
∑

v∈V
n = n + n2) = Θ(n2)

– space complexity:

1. adjacency list representation:

Θ(n +
∑

v∈V
degree(v)) = n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(
∑

v∈V
n = n2) = Θ(n2)

• BFS product:

1. every s-to-v shortest path (tracing the parents)

2. putting these paths together forms the BFS tree

• Warning: vertices in other connected components wouldn’t
be discovered !!!

EXERCISE: modify the pseudocode to discover ALL vertices

19

