Week 9: Dynammic programming/Graph Algorithms

Agenda:

- LCS
- Basic Graph definitions
- BFS

Reading:

• Textbook: 350-356, 527-540

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem:

- Definitions: Sequence/string: dynamicprogramming is a sequence over the English alphabet
 - Base/letter/character
 - Subsequence:

the given sequence with zero or more bases left out e.g., dog is a subsequence of dynamicprogramming WARNing: bases appear in the same order, but not necessarily consecutive

- Common subsequence
- LCS problem: given two sequences $X = x_1x_2...x_n$ and $Y = y_1y_2...y_m$, find a maximum-length common subsequence of them.
- The LCS problem has the "optimal substructure" ...
 - if x_n is NOT in the LCS (to be computed), then we only need to compute an LCS of $x_1x_2...x_{n-1}$ and $y_1y_2...y_m$...
 - similarly, if y_m is NOT in the LCS (to be computed), then we only need to compute an LCS of $x_1x_2...x_n$ and $y_1y_2...y_{m-1}$...
 - if x_n and y_m are both in the LCS (to be computed), then $x_n = y_m$ and we need to compute an LCS of $x_1x_2...x_{n-1}$ and $y_1y_2...y_{m-1}$; and then adding x_n to the end to form an LCS for the original problem

Longest common subsequence (LCS) problem (cont'd):

• Therefore, we define DP[i, j] to be the length of LCS of x_1, \ldots, x_i and y_1, \ldots, y_j ; for each $0 \le i \le n$ and $0 \le j \le m$.

Letting DP[n,m] to denote the length of an LCS of X and Y, then it is equal to

max length of $\begin{cases} LCS(x_{1}x_{2}...x_{n-1}, y_{1}y_{2}...y_{m}), \\ LCS(x_{1}x_{2}...x_{n}, y_{1}y_{2}...y_{m-1}), \\ LCS(x_{1}x_{2}...x_{n-1}, y_{1}y_{2}...y_{m-1}) + 'x'_{n}, & \text{if } x_{n} = y_{m} \end{cases}$

- Correctness
- In general, let DP[i, j] denote the length of an LCS of $x_1x_2...x_i$ and $y_1y_2...y_j$.
- Recurrence:

$$DP[i, j] = \max \begin{cases} DP[i - 1, j], \\ DP[i, j - 1], \\ DP[i - 1, j - 1] + 1, & \text{if } x_i = y_j \end{cases}$$

• Base cases ???

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont'd) — solving the recurrence:

- Divide-and-Conquer running time: $\Omega(3^{\min\{n,m\}})$
- Dynamic programming:

Order of computations ???

```
procedure dpLCS(X, Y)
n \leftarrow length[X]
m \leftarrow length[Y]
for i \leftarrow 1 to m do
    DP[i, 0] \leftarrow 0
for j \leftarrow 0 to n do
    DP[0, j] \leftarrow 0
for i \leftarrow 1 to n do
    for j \leftarrow 1 to m do
         if x_i = y_j then
              DP[i,j] \leftarrow DP[i-1,j-1] + 1
         else if DP[i-1,j] \ge DP[i,j-1] then
              DP[i, j] \leftarrow DP[i-1, j]
         else
              DP[i, j] \leftarrow DP[i, j-1]
return DP[n,m]
```

Week 9: Dynamic Programming

Longest common subsequence (LCS) problem (cont'd):

- Correctness
- Can return an associated LCS ... trace back
- Running time: ⊖(n × m)
 There are n × m entries each takes constant time to compute.

Can be reduced to $\Theta(n \times \frac{m}{\log m})$ (CMPUT 606)

• Space requirement ... $\Theta(n \times m)$

Can be reduced to $\Theta(\min\{n, m\})$ (CMPUT 606)

- Applications:
 - Human (and other species) Genome Project
 - Detecting cheating :-)

Week 9: Graphs

An example:

9

Week 9: Graphs

An example:

7

Week 9: Graphs

Definitions:

- (simple, undirected) graph G = (V, E)
 - vertex set V
 - edge set E
 - * an edge e is a pair of vertices v_1 and v_2
 - * unordered undirected
 - * $v_1 \neq v_2$ simple and no repeated edges.
- $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- Notions:
 - adjacent (vertex vertex, edge edge)
 e.g., 1 and 3 are adjacent; (1,3) and (3,5) are adjacent
 - incident (vertex edge)
 e.g., 1 is incident with (1,3)

Week 9: Graphs

Graph notions:

- Computer representations:
 - adjacency lists
 - adjacency matrix
- Neighborhood of a vertex
- Degree of a vertex size of its neighborhood
- Walk (vertex vertex), simple path

e.g., $\langle 1,3,5,2,6,3,5,8\rangle$ and $\langle 1,3,5,2,6\rangle$ the former (which has repeated nodes) is a walk and

the latter is a simple path

- Connected (every pair of vertices is connected via a path)
- Subgraph G' = (V', E') of G = (V, E)
 - it is a graph
 - $V' \subseteq V$
 - $E' \subseteq E$
- Connected component (maximal connected subgraph)

Binary equivalence relation:

- A relation ~ involving two elements (in a set A) for example, "≤" relation for real numbers
- Reflexive: $a \sim a$ for any $a \in A$
- Symmetric: $a_1 \sim a_2$ iff $a_2 \sim a_1$
- Transitive: $a_1 \sim a_2$ and $a_2 \sim a_3$ imply $a_1 \sim a_3$
- Binary equivalence relation: reflexive + symmetric + transitive e.g., "=" relation for real numbers
- Equivalence class of a

the subset of elements b such that $a \sim b$

Therefore, the equivalence class of a contains b implies it is also the equivalence class of b ...

- The equivalence classes form a partition of A
 - union to A
 - disjoint

Connected component:

• A binary equivalence relation \sim on vertex set V

 $v_1 \sim v_2$ iff "there is a path connecting v_1 and v_2 "

- The connected component containing vertex v is the equivalence class of v:
 - the connected components form a partition of G, such that
 - no edge crossing the components

Biconnected component:

- Two paths connecting v_1 and v_2 are vertex-disjoint if share no common internal vertex (other than v_1 and v_2).
- Biconnected graph: $|V| \ge 2$, connected, and every pair of vertices are connected via two vertex-disjoint (simple) paths
- Notes:
 - connectivity does NOT implies biconnectivity
 - articulation vertex cut vertex: its removal disconnects G
 - bridge cut edge : its removal disconnects G
- Biconnected component maximal biconnected subgraph
 - a partition of E (not necessarily a partition of V)

More notions:

- Notions on simple, undirected graphs:
 - cycle a path with two ending vertices collapsed
 - simple cycle
 - acyclic graph a graph containing no cycles also called *forest*
 - tree connected forest
 - complete graph ($|E| = \frac{|V| \times (|V| 1)}{2}$) every pair of vertices are adjacent
 - induced subgraph on a subset of vertices, say $U \subset V$ (U, E[U]), where $E[U] = \{(v_1, v_2) : (v_1, v_2) \in E \&\& v_1, v_2 \in U\}$
 - clique (subset of vertices) the induced subgraph is complete
 - independent set (of vertices) the induced subgraph contains no edge
- Graph variants:
 - multigraph (remove "simple"), may have loops or parallel edges.
 - digraph (remove "undirected"), every edge is an ordered pair of vertices.
 - edge-weighted graph (every edge has a weight or cost)

More notions:

- The following properies can be proved for a tree:
 - Every tree on n nodes has n-1 edges.
 - Every node of degree 1 in a tree is called a leaf; Each tree of size at least 2 has at least two leaves.
 - Adding any edge uv to a tree creates exactly one cycle which consists of the edge uv and the unique path between u and v in the tree.
 - A spanning subgraph is a subgraph containing all the vertices; A spanning tree is a spanning subgraph that is a tree
 - A graph is connected if and only if it has a spanning tree.
- Graph traversal:

The most elementary graph algorithm:

- goal: visit all vertices, by following all edges in some order
- e.g., maze traversal
- the most common graph traversal with a list storing "waiting" vertices
 - 1. FIFO list (queue) breadth first search
 - 2. LIFO list (stack) depth first search
 - 3. recursive depth first search

Two representations:

• Adjacency lists: for example,

• Adjacency matrix: for example,

1	1	2	3 *	4	5	6 *	7	8	9
2					*	*			
3	*				*	*			
4									*
5		*	*					*	
6	*	*	*						
7									
8					*				
9				*					

They both describe the following graph (graphical view):

14

Breadth First Search (BFS):

- Input: simple undirected graph G = (V, E) and start vertex s
- Output: distance (smallest number of edges) from s to each reachable vertex (in a same connected component, if G is not connected)
- Pseudocode:

```
**G = (V, E), s \in V start vertex
   procedure BFS(G,s)
   for each v \in V - s do
        c[v] \leftarrow \text{WHITE}
                                       **unknown yet
        d[v] \leftarrow \infty
                                       **distance from s
        p[v] \leftarrow \text{NIL}
                                       **predecessor
   Q \leftarrow \emptyset
                                       **waiting vertex queue
   enqueue(Q, s)
   c[s] \leftarrow \text{GRAY}
                                       **in queue Q
   d[s] \leftarrow 0
   while Q \neq \emptyset do
        u \leftarrow \text{dequeue}(Q)
        for each v \in Adj[u] do
             if c[v] = WHITE then
                  c[v] \leftarrow \text{GRAY}
                   d[v] \leftarrow d[u] + 1
                   p[v] \leftarrow u
                  enqueue(Q, v)
        c[u] \leftarrow \mathsf{BLACK}
                                       **visited
• An example:
   V = \{1, 2, 3, 4, 5, 6\}
```

$$E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$$

$$s = 2$$

BFS example:

• $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$ s = 2

Adjacency lists:

1:	3	5	
2:	4	5	
3:	1	4	5
4:	2	3	6
5:	1	2	3
6:	4		

	1	2	3	4	5	6	$\mid Q$
color	W	G	W	W	W	W	{2}
distance	∞	0	∞	∞	∞	∞	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
color	W	В	W	G	G	W	{4, 5}
distance	∞	0	∞	1	1	∞	
parent	NIL	NIL	NIL	2	2	NIL	
color	W	В	G	В	G	G	{5, 3, 6}
distance	∞	0	2	1	1	2	
parent	NIL	NIL	4	2	2	4	
color	G	В	G	В	В	G	{3, 6, 1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	В	В	В	В	G	{6, 1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	В	В	В	В	В	{1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	В	В	В	В	В	В	Ø
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	

BFS example:

BFS example:

- Adjacency lists:
- BFS tree:

Notes:

- root is the start vertex s
- parent of x is predecessor p[x]
- left-to-right child order $\underline{depends}$ on neighbor ordering (in Adj[u])

Week 9: Graph Algorithms

BFS analysis:

- n = |V|, m = |E|
- Handshaking Lemma: $\sum_{v \in V} \text{degree}(v) = 2m$
- Analysis:
 - each vertex enqueued exactly once: WHITE \rightarrow GRAY
 - each vertex dequeued exactly once: GRAY \rightarrow BLACK
 - running time:
 - 1. adjacency list representation: $\Theta(n + \sum_{v \in V} \text{degree}(v)) = n + 2m) = \Theta(n + m)$
 - 2. adjacency matrix representation: $\Theta(n + \sum_{v \in V} n = n + n^2) = \Theta(n^2)$
 - space complexity:
 - 1. adjacency list representation: $\Theta(n + \sum_{v \in V} \text{degree}(v)) = n + 2m) = \Theta(n + m)$
 - 2. adjacency matrix representation: $\Theta(\sum_{v \in V} n = n^2) = \Theta(n^2)$
- BFS product:
 - 1. every s-to-v shortest path (tracing the parents)
 - 2. putting these paths together forms the BFS tree
- Warning: vertices in other connected components wouldn't be discovered !!!

EXERCISE: modify the pseudocode to discover ALL vertices