Week 8: Dynamic programming

Agenda:

e 0/1 Knapscak

e Chain Matrix Multiplication
Reading:

e Textbook pages 331-349

Week 8: Dynamic Programming

Dynamic programming introduction:
e An algorithm design technique
e Usually for optimization problems

e Typically like divide-and-conquer uses solutions to subprob-
lems to solve the problem, BUT

e Key idea:
— Avoids re-computation
— of repeated subproblems by storing subproblem answers
in tables/arrays
e 15t example problem — Fibonacci numbers

, hen n=0,1
f(n)={ ?(n_1)+f(n—2), when 222

n‘0123456789

f(n)‘0112358132134

Question: how do we compute f(n)?

Week 8: Dynamic Programming

15t Naive Fibonacci implementation — recursion

e Pseudocode:

procedure f(n)

if n <2 then
return n
else

return f(n—1) 4+ f(n —2)
e Recursion tree:
f(5)
f(4) f(3)

f(3) f(2) f(2) F(1)
f2) (1) @) r0) f(@) f(0)
@) f(Q0)

e Notice that there are a lot of repeated function calls

e Running time recurrence

W= co+Tn-1)+T(n—-2), whenn>2

e Conclusion: T(n) > f(n) — T(n) € Q <<1+2£) ”)

Week 8: Dynamic Programming

e Problem with the 1St implementation — repeated function

calls

o Key idea:

Do the computation in a bottom up manner, and
Store the compute values for future use.

Define array F[0..n] where F[i] is going to store f(7).

Fill in the values of F[0] and F[1] from the definition
(initialization)

Start computing F[i], from ¢ = 2 onward, using the re-
currence F[i] «—— F[i— 1] 4+ F[i — 2].

Each time, we want to compute F[i], F[i— 1] and F[i— 2]
are already computed! (bottom up).

2"d Fibonacci implementation — dynamic programming

e Pseudocode:

procedure Dynfib(n)

F[0] «— O
F[1] «— 1
for j«— 2 to n do

Fjl = Flj - 1]+ F[j - 2]

return F[n]

e Running time

T(n) € ©(n)

Week 8: Dynamic Programming

General steps in designing a dynamic programming So-
lution:

e Step 1: Describe an array of values that you want to compute.

Do not say how you compute the array, but define what you
store in the array. (e.g. array F'[0..n] and F'[:] is going to hold

f(@).

e Step 2: Give a recurrence relating some values in the array to
other values in the array.

The basis of your recurrence should specify how to initialize
the array (e.g. F[0] =0, F[1] =1, and F[i] =F[i—1]4 F[i—
2]).

e Step 3: Give a high level program to compute the entries of
the array using the recurrence above.

e Step 4: State how to extract the solution from the array (e.g.
return F[n]).

Week 8: Dynamic Programming

2nd example problem — Knapsack
e We have a knapsack with capacity W
e n items with weights wi,...,w, € N and values vi1,...,v, € N.

e Want to fill the knapsack with items to maximize the value
without exceeding its capacity.

e Formally, for each S C {1,...,n} let K(S) = ZiES wj .

e Find M = maXSg{l”n}{K(S)lK(S) S W}

e Example: w; = 10, wo = 10, w3z = 15, v1 = 10, vo = 10,
v3 = 16, W = 20.
Greedy picks item 3 whereas the optimal is to pick 1 and 2.

15t (naive) solution: try all possible subsets of items and
select the best.

e Consider each set S of all 2" possible subsets of {1,...,n}.
e Compute the weight and value of set S.

e Find the set with maximum value among those that have
K(S) <W.

e Running time: at least ©2(2") subsets to consider!!

Week 8: Dynamic Programming
2"d solution: use Dynamic programming.

e Step 1: Define array A[i, D], 0<i<mn and 0 < D < W where
Ali, D] is the value of best possible knapsack of weight at most
D using only items from 1 to i. Final sol. value: A[n, W].

e Step 2: How to compute A[z, D]?
— If : =0 or D = 0 then trivially A[i, D] = 0.

— Else, consider item «:

* If we do not choose item 7: knapsack must be packed
optimally with items from 1...(i — 1).

+x If we choose item ¢ (assuming D > w;): rest of D — w;
remaing cap. must be packed with items 1...(7—1).

o Ali — 1, D]
* SO A[%D]—max{ (if D> w;) vi+ Ali — 1,D — wi]

e Step 3:
procedure Knapsack

for 1+ 1 to n do
Ali,0] < 0
for D+ 0 to W do
A[0,D] <0
for 1< 1 to n do
for D+« 1 to W do
Ali, D] +— Ali — 1, D]
if D> w; and A[i,D] < Ali — 1,D — w;] + v; then
Ali, D] «— Ali — 1, D — w;] + v;
return A[n, W]

e The running time is O(nW) since the are only a constant
number of opertion per each iteration of the inner loop.

7

Week 8: Dynamic Programming
Step 4: How to find the set of items of the optimal packing?

Consider item n. It can be seen that if A[n, W] = A[n — 1, W]
then item n is not in the optimal solution. Else it is in the
solution and A[n,W] is obtained from A[n — 1,W — w,] by
adding item n.

We can so go to this new entry to find out if item n—1 is in
the solution or not.

This suggests the following algorithm to find the optimal so-
lution itself:

procedure Print-Opt-Knapsack (i, D)

If =0 or D=0 then
return
Else
If A[i, D] #= A[i — 1, D] then
Print (2)
Print-Opt-Knapsack (¢ —1,D — w;)
else if A[i, D] = A[i — 1, D] then
Print-Opt-Knapsack (¢ — 1,D)

Week 8: Dynamic Programming

Matrix-chain multiplication:

e Input: matrices A1, As, ..., A, with dimensions dg xd1, d1 Xd>,
.., dn—1 X dy, respectively.

e Output: an order in which matrices should be multiplied such
that the product A1 x A> x ... x A, is computed using the
minimum number of scalar multiplications.

e Fact: suppose A; is a di X dp» matrix, Az is a d> X d3 matrix.

Then A; and A> is multipliable, and B = A; x A> can be
computed using di X d» X d3 scalar multiplications.

e Example: n =4 and (do,d1,...,d,) = (5,2,6,4,3)
Possible orders with different number of scalar multiplications:

((A1 x A2) x A3) x Aa 5 x2x64+5x6x44+5x%x4x3=240
(A1 X (Ao X A3)) x Aa 5x2x442x6x4+5x%x4x3=148
(A1 X A2) x (A3 x Az) B5x2x64+5x6x34+6x4x3=222
A1 X ((A2 x A3) Xx Ay) 5x2x342x6x44+2x4x3=102
A1 X (A2 x (A3 x Az)) B5x2x342x6x34+6x4x3=138

Week 8: Dynamic Programming

15t Matrix-chain multiplication — Recursion:

e Let T'(n) be the number of multiplication orders for n matri-

ces.
How big is T'(n) 777
n |1 2 3 4 5 6

T(n) |1 1 2 5 14 42
e Consider the highest level parenthesis: (A1...A;))(Aiq1...An).

e There are n — 1 possiblities: ¢ can be anyware between 1 to
n—1 (e.g Al(AQ .. An) to (Al . An_l)An.

e The number of ways to put parentheses for each of (A;...A;)
and (A;41...4,) is T(i) and T(n — i), respectively.

e T herefore:

Ty = 4 b when n =0,1
() = Z::ll T(i) x T(n—1), whenn>2

)
e Solving this recurrence (not easy) shows: T'(n) = % ~
4n
n~\/mn

e Recursive program will have similar running time: Q(3").

e Cannot afford this!!

10

Week 8: Dynamic Programming

Use dynamic programming:

e Step 1: Define MJi,j] (1 < i < j): the minimum number of
scalar multiplications needed to compute product A; x A;41 X

e Step 2: The recurrence to fill in the entries of the array:
Mlij1=4 9 . . iti=j
’ Min<p<j {M[i, k] + M[k + 1,j] + di—1dpd;}, if i<}y

e for example,

MI[1,1] + M[2,4] + do X d1 X da
MJ1,4] = min{ MI[1,2] + M[3,4] + do X do X da }
M[l 3]+M[4,4]—|—d0 X d3 X da

Y

e Step 3: Pseudocode (to obtain the optimal cost):
procedure dpM(1,n)

for 1< 1 to n do
Mli,i] < O
for shift+ 1 to n do
for 1 — 1 to n — shift do
] «— 1+ shift
M{i, j] — oo
for k<1 to j—1 do
new «— Mi, k] + Mk + 1,5] + di—1 X di, X d;
if new < M]Ji,j] then
M]{i, j] < new
return M[1,n]

11

Week 8: Dynamic Programming

e To obtain the actual ordering:
procedure dpM(1,n)

for 1+ 1 to n do
Mli,i] < O
for shift «— 1 to n do
for i+ 1 to n — shift do
g «— 1+ shift
M{z, j] <= oo
for k<1 to j—1 do
n€w<—M[i,k]—|—M[k‘—|—1,j]—|—di_1 ><d/.C de
if new < M]Ji,j] then
M]i, j] < new
Sli, jl < k
return M[1,n]

e We call Print-Opt-Order (S,1,n):
procedure Print-Opt-Order(S,i,7)

If + = 35 then
Print ("AY)
Else
Print (‘¢
Print-Opt-Order (S,1,S[¢,7])
Print-Opt-Order (S, S[:,7] + 1,7%)
Print “¢)??

12

Week 8: Dynamic Programming

e Trace the example n = 4 and (do,d1,...,d,) = (5,2,6,4,3):

m-matrix s-matrix
4 1 . 4 1
T3 102 5 T3 1 o
> 388 72 3 > 1 3 3
1 60 48 72 A 1 1 2 3 4
0 0] 0] — — — —
Aq Ao A3 Ag Al Ao As Ag

e The innermost for loopbody takes constant time ...

So dpM(n) worst case running time € ©(n3).

e Some final observations:

Suppose we have computed the order of multiplications

And the last multiplication is between (A1 x ... x A;) and
(Aj_|_1 X ... X An)

Then the suborders (A x ... x A;) and (441 X ... x Ap)
are optimal orders for the subproblems, respectively.

We call this ... optimal substructures

Equivalently, we need to compute optimal orders for
* multiplying matrices Ay, As,..., A;

* multiplying A1, Aj40,...,Ax,

for every 1 <53 <n—1, and combine them into an order
to multiplying Aj, As, ..., A,

choose the best order out of the (n — 1) possibilities

13

Week 8: Dynamic Programming

Dynamic programming key characteristics:
e Recurrence relation exists
e Recursive calls overlap
e Small number of subproblems
e Huge number of calls
e Avoid re-computation
e Bottom-up computation

e Top-down trace

Other problems suited to Dynamic programming:

e String matching: Longest Common Subsequence (next lec-
ture)

e Optimal binary search tree construction (textbook page 356)
e All pair shortest paths in (di)graphs (CMPUT 304)

e Optimal layout in VLSI (could be a thesis topic :-))

14

