
Week 8: Dynamic programming

Agenda:

• 0/1 Knapscak

• Chain Matrix Multiplication

Reading:

• Textbook pages 331-349

1



Week 8: Dynamic Programming

Dynamic programming introduction:

• An algorithm design technique

• Usually for optimization problems

• Typically like divide-and-conquer uses solutions to subprob-
lems to solve the problem, BUT

• Key idea:

– Avoids re-computation

– of repeated subproblems by storing subproblem answers
in tables/arrays

• 1st example problem — Fibonacci numbers

f(n) =
{

n, when n = 0,1
f(n− 1) + f(n− 2), when n ≥ 2

n 0 1 2 3 4 5 6 7 8 9

f(n) 0 1 1 2 3 5 8 13 21 34

Question: how do we compute f(n)?

2



Week 8: Dynamic Programming

1st Naive Fibonacci implementation – recursion

• Pseudocode:

procedure f(n)

if n < 2 then
return n

else
return f(n− 1) + f(n− 2)

• Recursion tree:

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0)

f(3) f(2) f(2) f(1)f(3)

f(4) f(3)

f(5)

• Notice that there are a lot of repeated function calls

• Running time recurrence

T (n) =
{

c1, when n = 0,1
c2 + T (n− 1) + T (n− 2), when n ≥ 2

• Conclusion: T (n) > f(n) −→ T (n) ∈ Ω
((

1+
√

5
2

)n)
3



Week 8: Dynamic Programming

• Problem with the 1st implementation — repeated function
calls

• Key idea:

Do the computation in a bottom up manner, and
Store the compute values for future use.

– Define array F [0..n] where F [i] is going to store f(i).

– Fill in the values of F [0] and F [1] from the definition
(initialization)

– Start computing F [i], from i = 2 onward, using the re-
currence F [i]←− F [i− 1] + F [i− 2].

– Each time, we want to compute F [i], F [i−1] and F [i−2]
are already computed! (bottom up).

2nd Fibonacci implementation — dynamic programming

• Pseudocode:

procedure Dynfib(n)

F [0]← 0
F [1]← 1
for j ← 2 to n do

F [j]← F [j − 1] + F [j − 2]
return F [n]

• Running time

T (n) ∈ Θ(n)

4



Week 8: Dynamic Programming

General steps in designing a dynamic programming so-
lution:

• Step 1: Describe an array of values that you want to compute.

Do not say how you compute the array, but define what you
store in the array. (e.g. array F [0..n] and F [i] is going to hold
f(i)).

• Step 2: Give a recurrence relating some values in the array to
other values in the array.

The basis of your recurrence should specify how to initialize
the array (e.g. F [0] = 0, F [1] = 1, and F [i] = F [i−1]+F [i−
2]).

• Step 3: Give a high level program to compute the entries of
the array using the recurrence above.

• Step 4: State how to extract the solution from the array (e.g.
return F [n]).

5



Week 8: Dynamic Programming

2nd example problem — Knapsack

• We have a knapsack with capacity W

• n items with weights w1, . . . , wn ∈ N and values v1, . . . , vn ∈ N.

• Want to fill the knapsack with items to maximize the value
without exceeding its capacity.

• Formally, for each S ⊆ {1, . . . , n} let K(S) =
∑

i∈S
wi.

• Find M = maxS⊆{1,...,n}{K(S)|K(S) ≤W}.

• Example: w1 = 10, w2 = 10, w3 = 15, v1 = 10, v2 = 10,
v3 = 16, W = 20.
Greedy picks item 3 whereas the optimal is to pick 1 and 2.

1st (naive) solution: try all possible subsets of items and
select the best.

• Consider each set S of all 2n possible subsets of {1, . . . , n}.

• Compute the weight and value of set S.

• Find the set with maximum value among those that have
K(S) ≤W .

• Running time: at least Ω(2n) subsets to consider!!

6



Week 8: Dynamic Programming

2nd solution: use Dynamic programming.

• Step 1: Define array A[i, D], 0 ≤ i ≤ n and 0 ≤ D ≤ W where
A[i, D] is the value of best possible knapsack of weight at most
D using only items from 1 to i. Final sol. value: A[n, W ].

• Step 2: How to compute A[i, D]?

– If i = 0 or D = 0 then trivially A[i, D] = 0.

– Else, consider item i:

∗ If we do not choose item i: knapsack must be packed
optimally with items from 1 . . . (i− 1).

∗ If we choose item i (assuming D ≥ wi): rest of D − wi

remaing cap. must be packed with items 1 . . . (i− 1).

∗ So A[i, D] = max
{

A[i− 1, D]
(if D ≥ wi) vi + A[i− 1, D − wi]

• Step 3:

procedure Knapsack

for i← 1 to n do
A[i,0]← 0

for D ← 0 to W do
A[0, D]← 0

for i← 1 to n do
for D ← 1 to W do

A[i, D]← A[i− 1, D]
if D ≥ wi and A[i, D] < A[i− 1, D − wi] + vi then

A[i, D]← A[i− 1, D − wi] + vi

return A[n, W ]

• The running time is O(nW ) since the are only a constant
number of opertion per each iteration of the inner loop.

7



Week 8: Dynamic Programming

• Step 4: How to find the set of items of the optimal packing?

• Consider item n. It can be seen that if A[n, W ] = A[n− 1, W ]
then item n is not in the optimal solution. Else it is in the
solution and A[n, W ] is obtained from A[n − 1, W − wn] by
adding item n.

• We can so go to this new entry to find out if item n− 1 is in
the solution or not.

• This suggests the following algorithm to find the optimal so-
lution itself:

procedure Print-Opt-Knapsack (i, D)

If i = 0 or D = 0 then
return

Else
If A[i, D] 6= A[i− 1, D] then

Print (i)
Print-Opt-Knapsack (i− 1, D − wi)

else if A[i, D] = A[i− 1, D] then
Print-Opt-Knapsack (i− 1, D)

8



Week 8: Dynamic Programming

Matrix-chain multiplication:

• Input: matrices A1, A2, . . ., An with dimensions d0×d1, d1×d2,
. . ., dn−1 × dn, respectively.

• Output: an order in which matrices should be multiplied such
that the product A1 × A2 × . . . × An is computed using the
minimum number of scalar multiplications.

• Fact: suppose A1 is a d1 × d2 matrix, A2 is a d2 × d3 matrix.

Then A1 and A2 is multipliable, and B = A1 × A2 can be
computed using d1 × d2 × d3 scalar multiplications.

• Example: n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3)

Possible orders with different number of scalar multiplications:

((A1 ×A2)×A3)×A4 5× 2× 6 + 5× 6× 4 + 5× 4× 3 = 240
(A1 × (A2 ×A3))×A4 5× 2× 4 + 2× 6× 4 + 5× 4× 3 = 148
(A1 ×A2)× (A3 ×A4) 5× 2× 6 + 5× 6× 3 + 6× 4× 3 = 222
A1 × ((A2 ×A3)×A4) 5× 2× 3 + 2× 6× 4 + 2× 4× 3 = 102
A1 × (A2 × (A3 ×A4)) 5× 2× 3 + 2× 6× 3 + 6× 4× 3 = 138

9



Week 8: Dynamic Programming

1st Matrix-chain multiplication — Recursion:

• Let T (n) be the number of multiplication orders for n matri-
ces.

How big is T (n) ???

n 1 2 3 4 5 6 . . .

T (n) 1 1 2 5 14 42 . . .

• Consider the highest level parenthesis: (A1 . . . Ai)(Ai+1 . . . An).

• There are n − 1 possiblities: i can be anyware between 1 to
n− 1 (e.g A1(A2 . . . An) to (A1 . . . An−1)An.

• The number of ways to put parentheses for each of (A1 . . . Ai)
and (Ai+1 . . . An) is T (i) and T (n− i), respectively.

• Therefore:

T (n) =

{
1, when n = 0,1∑n−1

i=1
T (i)× T (n− i), when n ≥ 2

• Solving this recurrence (not easy) shows: T (n) =

(
2n
n

)
n+1

≈
4n

n
√

πn

• Recursive program will have similar running time: Ω(3n).

• Cannot afford this!!

10



Week 8: Dynamic Programming

Use dynamic programming:

• Step 1: Define M [i, j] (1 ≤ i ≤ j): the minimum number of
scalar multiplications needed to compute product Ai×Ai+1×
. . .×Aj (i ≤ j)

• Step 2: The recurrence to fill in the entries of the array:

M [i, j] =
{

0, if i = j
mini≤k<j{M [i, k] + M [k + 1, j] + di−1dkdj}, if i < j

• for example,

M [1,4] = min

{
M [1,1] + M [2,4] + d0 × d1 × d4
M [1,2] + M [3,4] + d0 × d2 × d4
M [1,3] + M [4,4] + d0 × d3 × d4

}
• Step 3: Pseudocode (to obtain the optimal cost):

procedure dpM(1, n)

for i← 1 to n do
M [i, i]← 0

for shift← 1 to n do
for i← 1 to n− shift do

j ← i + shift
M [i, j]←∞
for k ← i to j − 1 do

new ←M [i, k] + M [k + 1, j] + di−1 × dk × dj

if new < M [i, j] then
M [i, j]← new

return M [1, n]

11



Week 8: Dynamic Programming

• To obtain the actual ordering:

procedure dpM(1, n)

for i← 1 to n do
M [i, i]← 0

for shift← 1 to n do
for i← 1 to n− shift do

j ← i + shift
M [i, j]←∞
for k ← i to j − 1 do

new ←M [i, k] + M [k + 1, j] + di−1 × dk × dj

if new < M [i, j] then
M [i, j]← new
S[i, j]← k

return M [1, n]

• We call Print-Opt-Order (S,1, n):

procedure Print-Opt-Order(S, i, j)

If i = j then
Print (“A′′i )

Else
Print ‘‘(‘‘

Print-Opt-Order (S, i, S[i, j])
Print-Opt-Order (S, S[i, j] + 1, j)
Print ‘‘)’’

12



Week 8: Dynamic Programming

• Trace the example n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3):

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

0 0 0 0

60 48 72

88 72

102

m-matrix

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

− − − −
1 2 3

1 3

1

s-matrix

• The innermost for loopbody takes constant time ...

So dpM(n) worst case running time ∈ Θ(n3).

• Some final observations:

– Suppose we have computed the order of multiplications

– And the last multiplication is between (A1× . . .×Aj) and
(Aj+1 × . . .×An)

– Then the suborders (A1 × . . .× Aj) and (Aj+1 × . . .× An)
are optimal orders for the subproblems, respectively.

– We call this ... optimal substructures

– Equivalently, we need to compute optimal orders for

∗ multiplying matrices A1, A2, . . . , Aj

∗ multiplying Aj+1, Aj+2, . . . , An,

– for every 1 ≤ j ≤ n− 1, and combine them into an order
to multiplying A1, A2, . . . , An

– choose the best order out of the (n− 1) possibilities

13



Week 8: Dynamic Programming

Dynamic programming key characteristics:

• Recurrence relation exists

• Recursive calls overlap

• Small number of subproblems

• Huge number of calls

• Avoid re-computation

• Bottom-up computation

• Top-down trace

Other problems suited to Dynamic programming:

• String matching: Longest Common Subsequence (next lec-
ture)

• Optimal binary search tree construction (textbook page 356)

• All pair shortest paths in (di)graphs (CMPUT 304)

• Optimal layout in VLSI (could be a thesis topic :-))

14


