Week 7: Divide and Conquer
Agenda:

e Divide and Conquer technique
e Multiplication of large integers
e EXponentiation

e Matrix multiplication

Week 7: Divide and Conquer

2- Divide and Conquer :

To solve a problem we can break it into smaller subproblems,
solve each one recursively, and then merge the solutions

Have already seen some examples: Mergesort, Quicksort,

Here we see two examples that have applications in security
of communication (cryptography)

Example 1: Multiplication of large integers

Suppose we are dealing with integers that have hundreds of
bits (e.g. 256 or 512 bits).

Such integers are too big to fit into one memory word. Need
to deisgn an algorithm for multiplication

The naive algorithm for addition takes O(n) steps if the inte-
gers are n bits each.

For multiplication, the elementary algorithm takes O(n?) steps.
Goal: do it faster, i.e. o(n?).

Suppose that I and J are the two n bit integers to be multi-
plied.

Say I = w-2"2 4+ z and J=y-2”/2—|—z.

Week 7: Divide and Conquer
Now it is easy to see that I-J = w-y- 2"+ (w-z+x-y)2"/ 2 + 2.

To multiply by 2™ only needs to shift-left n bits; each shiftleft
takes O(1) time.

So to multiply by 2", and 2™/2 (for the second term), and add
the results: O(n) time.

We have 4 multiplications of integers of g bits each: w -y,
w-z, x-y, and x - z.

So, the time required for multiplying I and J is: T(n) =
4T (5) + O(n).

Using master theorem: T(n) € ©(n?).

But this is not better than the naive algorithm!! What should
we do?

The bottleneck here is: too many recursive calls; so try to
reduce the number of instances of size g.

Observation: Letr = (w+xz)(y+2) = wy+(w-24+z-y)+z-y.

So r contains all the 4 terms we need to compute I -J, but
not individually.

What if we compute p =w -y and ¢ = x -y, too? Then we
have:

— (w-z4+z-y)=r—p—gq
— w-y=p

—zTy=gq

Week 7: Divide and Conquer
e SO the recursive formula for the time is:

T(n) = 3T(g> + O(n)

e Using Master theorem: T'(n) € ©(n'°923). Thus:

Theorem: We can multiply two n bit integers in O(n!-58%)
time.

Example 2: Exponentiation
e Given integers A, g,p, want to compute ¢4 mod p.

e We saw that this problem has application in cryptograph in
CMPUT 272.

e Assume that A is a huge integer with hundreds of bits (e.g.
200 bits).

e The naive algorithm to compute ¢4 takes g and multiplies it
A times.

e If A has a few hundred bits (say 400) this is going to take
~ 2400 steps.

Week 7: Divide and Conquer
e But there is a faster way to compute g4;

e Observation:
9°* = (9")? = ((4°)*)* = (((1®)))* = (g7 - 9)?)?

e note that taking square of a number needs only one multipli-
cation; this way, to compute g?* we need only 5 multiplication
instead of 24.

Procedure Expon-mod (g, A,p)

if A =0 then
return 1
else
if A is odd then
a +—— Expon-mod (g, A—1,p)
return a-g mod p
else
a «—— Expon-mod (g, A/2,p)
return a - a mod p

e Let T(A) be the number of multiplications required to com-
pute g4 modp. For simplicity, assume A = 2% for some k > 1.

r() = T +1

A

= T(—-)+1+1
4
A

= fr(ﬁ;)'+'k

e Therefore, T(A) € O(log A).

Week 7: Divide and Conquer

Example 3: Matrix multiplication:
e Assume we are given two n x n matrix X and Y to multiply.
e These are huge matrices, say n ~ 50, 000.

e The native algorithm will have to multiply one row of X by
one column of Z (i.e. O(n) multiplication) to find out only
one entry of the result Z

e Total time will be O(n3).

e \Want to use divide and conquer to speed things up; for sim-
plicity assume n is a power of 2.

e Break each of X and Y into 4 submatrices of size g X g each:
I J
cC D ¢ H| | K L

TV TV TV

X Y Z

e

e [herefore:

I = AE + BG
J=AF + BH
K=CE+ DG (
L =CF+ DH

need 8 multiplications of subproblems of size g each

e We also need to spend O(n?) time to add up these results.

6

Week 7: Divide and Conquer

Matrix multiplication (cont'd):

e If T'(n) is the time to multiply two matrices of size n x n each,
then:

T(n) = 8T(g> + 0(n?)

Using master theorem: T(n) € ©(n'°%28) = ©(n3).

So this is as bad as the naive algorithm. No improvement yet.

We use an idea similar to the one for multiplication of large
integers: reduce the number of subproblems using a clever
trick.

compute the following 7 multiplications (each consisting of
two subproblems of size g each):
S1 = A(F — H)
S>=(A+4+ B)H
S3=(C+ D)E
Sy = D(G — F)
Ss = (A+ D)(E+ H)
S¢e = (B — D)(G+ H)
St=A-C)E+TF)

e T hen:

~
|

Ss + Se + Sa — S>
(A+D)E+H)+(B-D)(G+H)+D(G—-E)—-(A+B)H
AF+ DE+ AH+ DH + BG - DG+ BH — DH +

DG - DFE — AH — BH
= AF + BG

Week 7: Divide and Conquer

Matrix multiplication (cont'd):

e Similarly, it can be verified easily that:

J = S1+ 5
K = 53+ 54
L = S51-5-53+4+S55
e Sotocomputel, J, K, and L, we only need to compute S4,...,57;

this requires solving seven subproblems of size % plus a con-

stant (at most 16) number of addition each taking O(n?)
time.

T(n) = 7T(3) + O(n)

e Using master theorem and since log, 7 =~ 2.808:

T(TL) c O(n2'808)

e For n = 50,000: n3 ~ 10! and n?8%8 ~ 10'3; — this algo-
rithm is about 10,000 times faster than the naive algorithm.

