
Week 7: Divide and Conquer

Agenda:

• Divide and Conquer technique

• Multiplication of large integers

• Exponentiation

• Matrix multiplication
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Week 7: Divide and Conquer

2- Divide and Conquer :

• To solve a problem we can break it into smaller subproblems,
solve each one recursively, and then merge the solutions

• Have already seen some examples: Mergesort, Quicksort,

• Here we see two examples that have applications in security
of communication (cryptography)

Example 1: Multiplication of large integers :

• Suppose we are dealing with integers that have hundreds of
bits (e.g. 256 or 512 bits).

• Such integers are too big to fit into one memory word. Need
to deisgn an algorithm for multiplication

• The naive algorithm for addition takes O(n) steps if the inte-
gers are n bits each.

• For multiplication, the elementary algorithm takes O(n2) steps.

• Goal: do it faster, i.e. o(n2).

• Suppose that I and J are the two n bit integers to be multi-
plied.

• Say I = w · 2n/2 + x and J = y · 2n/2 + z.

J =

I = w x

zy
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• Now it is easy to see that I ·J = w ·y ·2n+(w ·z+x ·y)2n/2+xz.

• To multiply by 2n only needs to shift-left n bits; each shiftleft
takes O(1) time.

• So to multiply by 2n, and 2n/2 (for the second term), and add
the results: O(n) time.

• We have 4 multiplications of integers of n
2

bits each: w · y,
w · z, x · y, and x · z.

• So, the time required for multiplying I and J is: T (n) =
4T (n

2
) + O(n).

• Using master theorem: T (n) ∈ Θ(n2).

• But this is not better than the naive algorithm!! What should
we do?

• The bottleneck here is: too many recursive calls; so try to
reduce the number of instances of size n

2
.

• Observation: Let r = (w+x)(y+z) = w·y+(w·z+x·y)+x·y.

• So r contains all the 4 terms we need to compute I · J, but
not individually.

• What if we compute p = w · y and q = x · y, too? Then we
have:

– (w · z + x · y) = r − p− q

– w · y = p

– x · y = q
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• So the recursive formula for the time is:

T (n) = 3T (
n

2
) + O(n)

• Using Master theorem: T (n) ∈ Θ(nlog2 3). Thus:

Theorem: We can multiply two n bit integers in O(n1.585)
time.

Example 2: Exponentiation

• Given integers A, g, p, want to compute gA mod p.

• We saw that this problem has application in cryptograph in
CMPUT 272.

• Assume that A is a huge integer with hundreds of bits (e.g.
200 bits).

• The naive algorithm to compute gA takes g and multiplies it
A times.

• If A has a few hundred bits (say 400) this is going to take
≈ 2400 steps.
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• But there is a faster way to compute gA;

• Observation:

g24 = (g12)2 = ((g6)2)2 = (((g3)2)2)2 = (((((g2 · g)2)2)2

• note that taking square of a number needs only one multipli-
cation; this way, to compute g24 we need only 5 multiplication
instead of 24.

Procedure Expon-mod (g, A, p)

if A = 0 then
return 1

else
if A is odd then

a←− Expon-mod (g, A− 1, p)
return a · g mod p

else
a←− Expon-mod (g, A/2, p)
return a · a mod p

• Let T (A) be the number of multiplications required to com-
pute gA modp. For simplicity, assume A = 2k for some k ≥ 1.

T (A) = T (
A

2
) + 1

= T (
A

4
) + 1 + 1

...

= T (
A

2k
) + k

• Therefore, T (A) ∈ O(logA).
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Example 3: Matrix multiplication:

• Assume we are given two n× n matrix X and Y to multiply.

• These are huge matrices, say n ≈ 50,000.

• The native algorithm will have to multiply one row of X by
one column of Z (i.e. O(n) multiplication) to find out only
one entry of the result Z

• Total time will be O(n3).

• Want to use divide and conquer to speed things up; for sim-
plicity assume n is a power of 2.

• Break each of X and Y into 4 submatrices of size n
2
× n

2
each:[

A B

C D

]
︸ ︷︷ ︸

X

[
E F

G H

]
︸ ︷︷ ︸

Y

=

[
I J

K L

]
︸ ︷︷ ︸

Z

• Therefore:

I = AE + BG
J = AF + BH
K = CE + DG
L = CF + DH

}
−→

need 8 multiplications of subproblems of size n
2

each

• We also need to spend O(n2) time to add up these results.
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Matrix multiplication (cont’d):

• If T (n) is the time to multiply two matrices of size n×n each,
then:

T (n) = 8T (
n

2
) + O(n2)

• Using master theorem: T (n) ∈ Θ(nlog2 8) = Θ(n3).

• So this is as bad as the naive algorithm. No improvement yet.

• We use an idea similar to the one for multiplication of large
integers: reduce the number of subproblems using a clever
trick.

• compute the following 7 multiplications (each consisting of
two subproblems of size n

2
each):

S1 = A(F −H)

S2 = (A + B)H

S3 = (C + D)E

S4 = D(G− E)

S5 = (A + D)(E + H)

S6 = (B −D)(G + H)

S7 = (A− C)(E + F )

• Then:

I = S5 + S6 + S4 − S2

= (A + D)(E + H) + (B −D)(G + H) + D(G− E)− (A + B)H

= AE + DE + AH + DH + BG−DG + BH −DH +

DG−DE −AH −BH

= AE + BG
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Matrix multiplication (cont’d):

• Similarly, it can be verified easily that:

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

• So to compute I, J, K, and L, we only need to compute S1, . . . , S7;
this requires solving seven subproblems of size n

2
, plus a con-

stant (at most 16) number of addition each taking O(n2)
time.

T (n) = 7T (
n

2
) + O(n2)

• Using master theorem and since log2 7 ≈ 2.808:

T (n) ∈ O(n2.808)

• For n = 50,000: n3 ≈ 1017 and n2.808 ≈ 1013; −→ this algo-
rithm is about 10,000 times faster than the naive algorithm.
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