
Week 6: Greedy

Agenda:

• Job Scheduling on Multi-processors

• Activity Selection

Reading: 371-384

1



Week 6: Greedy method

Example 2: Job Scheduling on multi-processors

• Suppose we have a set T of n jobs

• Job i has start time si and finish time fi

• each job can be performed on a machine, but each machine
can do one job at a time

• Jobs i and j are said to conflict if their periods overlap, i.e.
si < fj ≤ fi or sj < fi ≤ fj.

• Goal: schedule the jobs on minimum number of machines
so that no two conflicting jobs are scheduled on the same
machine.

• Greedy idea: Consider the jobs as arriving by their start time.
Each jobs that arrives is supposed to be assigned to a ma-
chine.

If you can assign it to a previously used machine, do so. Else
allocate a new machine.

• This implicitly suggests the order in which we should consider
the jobs: order in non-decreasing order of start time. So

s1 ≤ s2 ≤ . . . ≤ sn

2



Week 6: Greedy method

Job Scheduling on multi-processors (cont’d)

• Here is the pseudocode:

Procedure Multi-Job-Schedule (T )

m← 1
While T 6= ∅ do

extract job i with smallest si from T
If i has no conflict with the last job on machine j for

some 1 ≤ j ≤ m then

schedule i on machine j

else

m← m + 1
Schedule i on machine m

• Time:

– O(n logn) to sort the jobs or build a heap and n calls to
extract-max (again total of O(n logn)).

– How to find a free machine?

– Just need to keep the finish time of the last job on each
machine.

– Build a PQ (min-heap) with this key; if the smallest value
is ≤ si then schedule job i on that machine. Else take a
new machine.

– Each time a new job is added update the PQ (with
increase-key method)

– So each iteration takes O(logn) −→

– total will be O(n logn)

3



Week 6: Greedy method

Correctness of the algorithm:

• All jobs on a machine are non-conflicting by the way we sched-
ule them

• Need to prove that we use minimum number of machines to
complete the proof of correctness.

• By way of contradiction, suppose the optimal solution uses k

machines and the greedy uses k′ > k machines

• Consider the first time that the greedy algorithm schedules
some job i on machine k + 1.

• So at this point of time job i is conflicting with all the jobs
currently on machines 1, . . . , k.

• That is, all these jobs start before si (because we ordered
them based on si) and they all finish after si.

• Thus, all these k jobs, plus job i, are conflicting −→ no two
of them can be scheduled on one machine

• So optimal needs at least k+1 machines too, a contradiction.

4



Week 6: Greedy method

Example 3: Activity Selection

• Again, suppose that we have n jobs, each with a start time si

and finish time fi; 0 ≤ si < fi.

• We have only one machine to use

• Two jobs i and j are said to conflict (or are incompatible) if
the two intervals [si, fi) and [sj, fj) overlap.

• Goal: schedule a largest subset of non-conflicting jobs on this
machine

• 1st attempt: as in the previous example sort the jobs based
on start time, i.e. s1 ≤ s2 ≤ . . . ≤ sn. Schedule a job if we
can.

– Bad example: s1 = 1, s2 = 2, s3 = 3
f1 = 4, f2 = 3, f3 = 4
The greedy can only schedule job 1 but the optimal is to
schedule 2 and 3.

• 2nd attempt: Try to schedule shorter jobs first, i.e. sort jobs
based on fi − si in non-decreasing order and then Schedule a
job if we can.

– Bad example: s1 = 3, s2 = 1, s4 = 4
f1 = 5, f2 = 4, f3 = 8
The greedy can only schedule job 1 but the optimal is to
schedule 2 and 3.

• 3rd attempt: Sort the jobs based in non-decreasing order of
finish time, i.e. f1 ≤ f2 ≤ . . . ≤ fn and then Schedule a job if
we can.

5



Week 6: Greedy method

Correctness:

procedure Activity-Selection (S)

Sort activities in S s.t. f1 ≤ f2 ≤ . . . ≤ fn

A← ∅; e← 0;
for i← 1 to n do

if si ≥ e then

A← A ∪ {i}
e← fi

return A

• In this algorithm A is the set of jobs scheduled by our algo-
rithm and e at any given time is the time at which the last
scheduled job finishes (i.e. the earliest time we can schedule
the next job).

• We prove that this 3rd attempt is correct.

• First note that, since we always schedule a new job if its start
time si is larger than the finish time of the last scheduled job
we get a set of compatible jobs at the end.

• To complete correctness, we have to show our algorithm ob-
tains an optimum solution.

• Promising: we say a schedule after step i is promising if it can
be extended to an optimal schedule using a subset of jobs in
{i + 1, . . . , n}.

• We prove that after every step i, the partial solution we have
is promising.

6



Week 6: Greedy method

• Formally, let Ai and ei denote the values of A and e after
iteration i of the for-loop, respectively.

• Note that A0 = ∅ and e = 0.

• We show that after each iteration i, the decisions we have
made so far are all correct in the sense that there is an opti-
mum solution which contains everything we have selected so
far and everything that we have decided not to include (so
far) does not belong to that optimum either:

Lemma: For every 0 ≤ i ≤ n, there is an optimal solution
Aopt such that Ai ⊆ Aopt ⊆ Ai ∪ {i + 1, . . . , n}.

• Note that if we prove this for all 0 ≤ i ≤ n, and in particular
for i = n we have: An ⊆ Aopt ⊆ An ∪∅ which implies An = Aopt,
i.e. our solution is the same as some optimum solution; this
is what we wanted.

• We use induction on i to prove the above lemma.

• Base: i = 0, clearly empty schedule can be extended to an op-
timal one from {1, . . . , n}; Thus ∅ = A0 ⊆ Aopt ⊆ ∅∪ {1, . . . , n}.

• Induction Step: Suppose we have a promising schedule after
step i ≥, i.e. there is an optimum solution Aopt such that:
Ai ⊆ Aopt ⊆ Ai ∪ {i + 1, . . . , n}.

• We consider three cases

• Case 1: if si+1 < ei so we cannot schedule job i + 1 because
it overlaps with one of the previously scheduled ones; i.e.
Ai+1 = Ai.

7



Since Ai ⊆ Aopt, Aopt has the job from Ai that is overlapping
with i + 1 as well, so Aopt cannot have i + 1 either. Thus:
Ai+1 = Ai ⊆ Aopt ⊆ Ai+1 ∪ {i + 2, . . . , n}.

• Case 2: si+1 ≥ ei; so Ai+1 = Ai ∪ {i + 1}.

Case 2A: i + 1 ∈ Aopt then Ai+1 ⊆ Aopt ⊆ Ai+1 ∪ {i + 2, . . . , n}
and we are done.

Case 2B: i + 1 6∈ Aopt;

– Note that si+1 ≥ ei and so i +1 does not conflict with
anything in Ai;

– On the other hand we cannot add i + 1 to Aopt (oth-
erwise it would have not been an optimum solution);
so there must be a job j ∈ Aopt conflicting with i + 1.
Since Aopt ⊆ Ai ∪{i+1, . . . , n} and since i+1 does not
conflict with anything in Ai: j ≥ i + 2.

– Let j ≥ i + 2 be a job of Aopt with the earliest finish
time that is conflicting with i + 1.

– All activities in Aopt − Ai − {j} have start-time after fj

(or they will overlap with job j); so they do not overlap
with job i + 1 because i + 1 finishes before fj.

– So A′opt = (Aopt − {j}) ∪ {i + 1} is feasible and has the
same size as Aopt; i.e. it is another optimum solution
and Ai+1 ⊆ A′opt ⊆ Ai+1 ∪ {i + 2, . . . , n}.


