
Week 5: Quicksort, Lower bound, Greedy

Agenda:

• Quicksort: Average case

• Lower bound for sorting

• Greedy method

1

Week 5: Quicksort

Recall Quicksort:

• The ideas:

– Pick one key

– Compare to others: partition into ‘smaller’ and ‘greater’
sublists

– Recursively sort two sublists

• Pseudocode:

procedure Quicksort(A, p, r)

if p < r then
q ← Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)

procedure Partition(A, p, r)
** A[r] is the key picked to do the partition

x← A[r]
i← p− 1
for j ← p to r − 1 do

if A[j] ≤ x then
i← i + 1
exchange A[i]↔ A[j]

exchange A[i + 1]↔ A[r]
return i + 1

2

Week 5: Quicksort

Partition(A, p, r):

• The invariant:

– A[p..i] contains keys ≤ A[r]

– A[(i + 1)..(j − 1)] contains keys > A[r]

• Ideas:

– A[j] is the current key under examination — j ≥ i

– If A[j] ≤ A[r], exchange A[j]↔ A[i + 1] and increment i

to maintain the invariant

– At the end, exchange A[r]↔ A[i + 1] such that:

∗ A[p..i] contains keys ≤ A[i + 1]

∗ A[(i + 2)..r] contains keys > A[i + 1]

∗ After A[p..i] and A[(i + 2)..r] been sorted, A[p..r] is
sorted.

• An example: A[1..8] = {3,1,7,6,4,8,2,5}, p = 1, r = 8

3 1 7 6 4 8 2 5 i = 0, j = 1
3 1 7 6 4 8 2 5 i = 1, j = 2
3 1 7 6 4 8 2 5 i = 2, j = 3
3 1 7 6 4 8 2 5 i = 2, j = 4
3 1 4 6 7 8 2 5 i = 3, j = 5
3 1 4 6 7 8 2 5 i = 3, j = 6
3 1 4 6 7 8 2 5 i = 3, j = 7
3 1 4 2 7 8 6 5 i = 4, j = 7
3 1 4 2 5 8 6 7 i = 4, j = 7

3

Week 5: Quicksort

Quicksort correctness:

• It follows from the correctness of Partition.

• Partition correctness:

– Loop invariant:

At the start of for loop:

1. A[p..i] ≤ A[r] — A[s] ≤ A[r], p ≤ s ≤ i

2. A[(i + 1)..(j − 1)] > A[r]

3. x = A[r]

– Proof of LI: (pages 147 – 148)

1. Initialization

2. Maintenance

3. Termination

– LI correctness implies Partition correctness

• Why we study QuickSort and its analysis:

– very efficient, in use

– divide-and-conquer, randomization

– huge literature

– a model for analysis of algorithms

4

Week 5: Quicksort analysis

Quicksort recursion tree:

• Observations:

– (Again) key comparison is the dominant operation

– Counting KC

— only need to know (at each call) the rank of the split
key

• An example:
06

04 09

02 05 07 12

01 03 08 11 13

10 14

15

• More observations:

– In the resulting recursion tree, at each node

(all keys in left subtree) ≤ (key in this node) < (all keys
in right subtree)

– 1-1 correspondence:

quicksort recursion tree ←→ binary search tree

5

Week 5: Quicksort analysis

Quicksort WC running time:

• The split key is compared with every other key: (n− 1) KC

• Recurrence:

T (n) = T (n1) + T (n− 1− n1) + (n− 1),

where 0 ≤ n1 ≤ n− 1

Base case: T (0) = 0, T (1) = 0

• Notice that when both subarrays are non-empty, we will be
having

(n1 − 1) + (n− 1− n1 − 1) = (n− 3)
KC next level ...

• Worst case: one of the subarray is empty !!! needs (n − 2)
KC next level

• WC recurrence:

T (n) = T (0) + T (n− 1) + (n− 1) = T (n− 1) + (n− 1),

• Solving the recurrence — Master Theorem does NOT apply

T (n) = T (n− 1) + (n− 1) = T (n− 2) + (n− 2) + (n− 1)
= . . .
= T (1) + 1 + 2 + . . . + (n− 1)
= (n−1)n

2

So, T (n) ∈ Θ(n2)

• Therefore, quicksort is bad in terms of WC running time !

6

Week 5: Quicksort analysis

Quicksort BC running time:

• Notice that when both subarrays are non-empty, we will be
saving 1 KC ...

• Best case: each partition is a bipartition !!!

Saving as many KC as possible every level ...

The recursion tree is as short as possible ...

• Recurrence:

T (n) = 2× T (
n− 1

2
) + (n− 1),

• Solving the recurrence — apply Master Theorem? not exactly

T (n) ∈ Θ(n logn)

• Question:

– What is the best case array? for n = 7?

• Conclusion:

– In order to save time, A[n] better BI-partitions the array
...

— usually it might not bipartition ... we will push it by a
technique called randomization (future lectures)

7

Week 5: Quicksort

Quicksort BC running time (cont’d):

• In the recursion tree, what is the number of KC at each level?

Answer:

– n− 1 at the top level

– at most 2 nodes at the 2nd level, at least

(n1 − 1) + (n− 1− n1 − 1) = n− 3 KC

– at most 4 nodes at the 3rd level, at least

(n1 − 3) + (n− 1− n1 − 3) = n− 7 KC

– . . .

– at kth level, at most 2k−1 nodes, at least

n− 2k + 1 KC

• How many levels are there?

Answer:

– At least lgn levels — binary tree

• So, at least we need∑lgn−1

i=1
(n− 2i + 1) KC, and

lgn−1∑
i=1

(n− 2i + 1) = (n + 1)(lgn− 1)− (n− 2) ∈ Θ(n logn)

• Try n = 2k − 1 to get the closed form for the following recur-
rence

T (n) =
{

0, if n = 1
(n− 1) + T (bn−1

2
c) + T (dn−1

2
e), if n ≥ 2

8

Week 5: Quicksort

Quicksort AC running time:

• Recall the Quicksort algorithm

Pseudocode:

procedure Quicksort(A, p, r) **p 146

if p < r then
q ← Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)

• The recurrence for running time is:

T (n) =
{

0, when n = 0,1
T (n1) + T (n− 1− n1) + (n− 1), when n ≥ 2

• Average case: “What is the probability for the left subarray
to have size n1?”

Average case: always ask “average over what input distribu-
tion?”

– Unless stated otherwise, assume each possible input equiprob-
able

Uniform distribution

– Here, each of the possible inputs equiprobable

– Key observation: equiprobable inputs imply for each key,
rank among keys so far is equiprobable

So, n1 can be 0,1,2, . . . , n− 2, n− 1, with the same prob-
ability 1

n

9

Week 5: Quicksort

Solving T (n):

•
T (n) = 1

n
(T (0) + T (n− 1))

+ 1
n
(T (1) + T (n− 2))

+ . . .

+ 1
n
(T (n− 2) + T (1))

+ 1
n
(T (n− 1) + T (0))

+ (n− 1)

= 2
n

∑n−1

i=0
T (i) + (n− 1)

• Therefore,

– n× T (n) = 2
∑n−1

i=0
T (i) + n(n− 1)

– (n− 1)× T (n− 1) = 2
∑n−2

i=0
T (i) + (n− 1)(n− 2)

• Subtract the two terms:

n× T (n)− (n− 1)× T (n− 1) = 2T (n− 1) + 2(n− 1)

Rearrange it:

nT (n) = (n + 1)T (n− 1) + 2(n− 1)

10

Week 5: Quicksort

Solving T (n) (cont’d):

• Or we can say:

T (n)
n+1

= T (n−1)
n

+ 2(n−1)
n(n+1)

= T (n−1)
n

+ 2
n+1
− 2(1

n
− 1

n+1
)

= T (n−1)
n

+ 4
n+1
− 2

n

which gives you (iterated substitution)

T (n)

n + 1
=

n∑
i=1

2

i + 1
+

(
2

n + 1
− 2

)
Recall that

∑n

i=1
1
i
= Hn = lnn + γ — the Harmonic number

where γ ≈ 0.577 · · ·

• So, from

T (n)

n + 1
=

n∑
i=1

2

i + 1
+

(
2

n + 1
− 2

)
we have

T (n) = 2(n + 1)Hn+1 − (4n + 2)

≈ 2(n + 1)(ln(n + 1) + γ)− (4n + 2)

∈ Θ(n logn)

• Conclusion:

Quicksort AC running time in Θ(n logn).

11

Week 5: Quicksort

Quicksort Improvement and space requirement:

• Quicksort is considered an in-place sorting algorithm:

– extra space required at each recursive call is only con-
stant.

– whereas in Mergesort, at each recursive call up to Θ(n)
extra space is required.

• To improve the algorithm, it’s better to pick the median as
the pivot (but this is difficult)

• Other solution: use a random element as the pivot at every
iteration! Pick one 1 ≤ i ≤ n randomly and then exchange
A[i]↔ A[n] before calling the Partition method.

• This way, no single input is always bad.

Sorting Algorithms So Far: Running Time Comparison

Alg. BC WC AC

InsertionSort Θ(n) Θ(n2) Θ(n2)

MergeSort Θ(n logn) Θ(n logn) ?

HeapSort Θ(n logn) Θ(n logn) ?

QuickSort Θ(n logn) Θ(n2) Θ(n logn)

12

Week 5: Lower Bounds for Comparison-Based Sorting

Two useful trees in algorithm analysis:

• Recursion tree

– node ←→ recursive call

– describes algorithm execution for one particular input by
showing all calls made

– one algorithm execution ←→ all nodes (a tree)

– useful in analysis:

sum the numbers of operations over all nodes

13

Week 5: Lower Bounds for Comparison-Based Sorting

Recursion tree example:

• Mergesort pseudocode

Merge(A; lo, mid, hi)
**pre-condition: lo ≤ mid ≤ hi
**pre-condition: A[lo, mid] and A[mid + 1, hi] sorted
**post-condition: A[lo, hi] sorted

MergeSort(A; lo, hi)

if lo < hi then
mid← b(lo + hi)/2c
MergeSort(A; lo, mid)
MergeSort(A;mid + 1, hi)
Merge(A; lo, mid, hi)

[1]

[2] [3]

[4]

[5] [6]

•• For different input instance, the number of operations at each
node could be different.

14

Week 5: Lower Bounds for Comparison-Based Sorting

Two useful trees in algorithm analysis:

• Recursion tree

– node ←→ recursion call

– describes algorithm execution for one particular input by
showing all calls made

– one algorithm execution ←→ all nodes (a tree)

– useful in analysis:

sum the numbers of operations over all nodes

• Decision tree

– node ←→ algorithm decision

– describes algorithm execution for all possible inputs by
showing all possible algorithm decisions

– one algorithm execution ←→ one root-to-leaf path

– useful in analysis:

sum the numbers of operations over nodes on one path

15

Week 5: Lower Bounds for Comparison-Based Sorting

Selectionsort decision tree:

• Assume input keys in array A[1..3] = {a, b, c}

• Tree node: if A[k] > A[j] — 2-way key comparison

• Node label A[j]

SelectionSort(A;n)

if n ≥ 1 then
for j ← n downto 2 do

psn← j
for k ← j − 1 downto 1 do

if A[k] > A[psn] then
psn← k

exchange A[j]↔ A[psn]
return

A[2] > A[3]?

No. Yes.

abc bac bca acb cab cba

• In every case — whatever input instance is, 3 KC !!!

16

Week 5: Lower Bounds for Comparison-Based Sorting

Sorting lower bound:

• Comparison-based sort: keys can be (2-way) compared only !

• This lower bound argument considers only the comparison-
based sorting algorithms. For example,

– Insertionsort, Mergesort, Heapsort, Quicksort,

• Binary tree facts:

– Suppose there are t leaves and k levels. Then,

– t ≤ 2k−1

– So, lg t ≤ (k − 1)

– Equivalently, k ≥ 1 + lg t
— binary tree with t leaves has at least (1 + lg t) levels

• Comparison-based sorting algorithm facts:

– Look at its Decision Tree. We have,

– It’s a binary tree.

– It should contain every possible permutation of the posi-
tions {1,2, . . . , n}.

– So, it contains at least n! leaves ...

– Equivalently, it has at least 1 + lg(n!) levels.

– A longest root-to-leaf path of length at least lg(n!).

– The worst case number of KC is at least lg(n!).

– lg(n!) ∈ Θ(n logn)

• Therefore, Mergesort and Heapsort are asymptotically optimal
(comparison-based) sorting algorithms.

17

Week 5: Algorithm Design Techniques

Algorithm Design Techniques:

• Three major design techniques are:

1. Greedy method

2. Divide and Conquer

3. Dynamic Programming

1- Greedy Method:

• This is usually good for optimization problems.

• In an optimization problem we are looking for a solution while
we maximize or minimize an objective function. For example,
maximizing the profit or minimizing the cost.

• Usually, coming up with a greedy solution is easy; But often
it is more difficult to prove that the algorithm is correct.

• General scheme: always make choices that look best at the
current step; these choices are final and are not changed later.

• Hope that with every step taken, we are getting closer and
closer to an optimal solution.

18

Week 5: Greedy method

Example 1: Fractional Knapsack

• Suppose we have a set S of n items, each with a profit/value
bi and weight wi.

• We also have a knapsack of capacity W ,

• Assume that each item can be picked at any fraction, that is
we can pick 0 ≤ xi ≤ wi amount of item i.

• Our goal is to fill the knapsack (without exceeding its capac-
ity) with a combination of the items with maximum profit.

• Formally, find 0 ≤ xi ≤ wi for 1 ≤ i ≤ n such that
∑n

i=1
xi ≤W

and
∑n

i=1
xi

wi
× bi is maximized.

• Greedy idea: start picking the items with more “value”:

value ≡
bi

wi

So let vi = bi

wi
. The algorithm will be as follows:

19

Week 5: Greedy method

• The pseudocode is:

Procedure Frac-Knapsack (S, W)

for i← 1 to n do
xi ← 0
vi ← bi

wi

CurrentW ← 0
While CurrentW < W do

let ai be the next item in S with highest value
xi ← min{wi, W − CurrentW}
add xi amount of i to knapsack
CurrentW ← CurrentW + xi

• How to find next highest value in each step?

• One way is to sort S at the begining based on vi’s in non-
increasing order.

• Another way is to keep a PQ (max-heap) based on values.

• Since we check at most n items, the total time is O(n logn).

Correctness of the algorithm:

• We prove, for all i ≥ 0, that if we have picked x1, . . . , xi from
items 1, . . . , i in the first i iterations (respectively), then this
partial solution can be extended to an optimal solution.

• In other words, there is some optimal solution call it OPT
which has xj amount from item j for 1 ≤ j ≤ i.

20

Week 5: Greedy method

Fractional Knapsack (cont’d)

• We prove by induction on i. Base case i = 0 we have an empty
solution and clearly can be extended to an optimal one.

• Induction Step: Assume the statement is true for < i, with
i ≥ 1, prove it for iteration i.

• That is, we have picked x1, . . . , xi−1 of items 1, . . . , (i− 1), so
does the OPT.

• If OPT picks xi from item i we are done. So assume OPT
picks x′i 6= xi.

• Note that the algorithm picks maximum amount we can from
item i (either xi = wi or knapsack is full). Thus x′i cannot be
more than xi, i.e. x′i < xi.

• Since W ≥
∑i

k=1
xk >

∑i−1

k=1
xk + x′i, OPT must contain

amounts from other items to match the deficiency of xi − x′i,
say amounts xj1, xj2, . . . , xj` of items j1, . . . , j` with xj1 + . . . +
xj` ≥ xi − x′i.

• Since items are ranked based on value, all vjk ≤ vi for 1 ≤ k ≤ `.

• So if we replace a total of xi amount from items j1, . . . , j` with
xi amount of i in the OPT, the total value does not decrease,
−→ we sill have an optimal solution.

• Now OPT has xi amount of i and so extends our greedy
solution. This completes the induction.

21

