Week 5: Quicksort, Lower bound, Greedy Agenda:

- Quicksort: Average case
- Lower bound for sorting
- Greedy method

Week 5: Quicksort

Recall Quicksort:

- The ideas:
 - Pick one key
 - Compare to others: partition into 'smaller' and 'greater' sublists
 - Recursively sort two sublists
- Pseudocode:

```
procedure Quicksort(A, p, r)
```

 $\begin{array}{ll} \text{if } p < r \text{ then} \\ q \leftarrow \texttt{Partition}(A,p,r) \\ \texttt{Quicksort}(A,p,q-1) \\ \texttt{Quicksort}(A,q+1,r) \end{array}$

```
procedure Partition(A, p, r)
** A[r] is the key picked to do the partition
```

```
\begin{array}{l} x \leftarrow A[r] \ i \leftarrow p-1 \ {
m for } j \leftarrow p \ {
m to } r-1 \ {
m do} \ {
m if } A[j] \leq x \ {
m then} \ i \leftarrow i+1 \ {
m exchange } A[i] \leftrightarrow A[j] \ {
m exchange } A[i+1] \leftrightarrow A[r] \ {
m return } i+1 \end{array}
```

Partition(A, p, r):

- The invariant:
 - A[p..i] contains keys $\leq A[r]$
 - A[(i+1)..(j-1)] contains keys > A[r]
- Ideas:
 - A[j] is the current key under examination $j \geq i$
 - If $A[j] \leq A[r]$, exchange $A[j] \leftrightarrow A[i+1]$ and increment i to maintain the invariant
 - At the end, exchange $A[r] \leftrightarrow A[i+1]$ such that:
 - * A[p..i] contains keys $\leq A[i+1]$
 - * A[(i+2)..r] contains keys > A[i+1]
 - * After A[p..i] and A[(i + 2)..r] been sorted, A[p..r] is sorted.

• An example: $A[1..8] = \{3, 1, 7, 6, 4, 8, 2, 5\}, p = 1, r = 8$

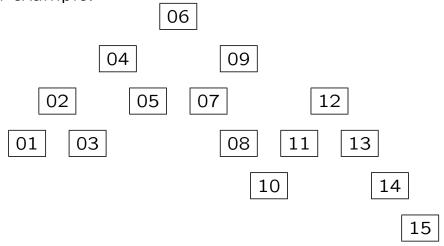
3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1	7 7 7 4 4 4 4	6 6 6 6 6 6 2	4 4 7 7 7 7	8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 6	5555555	i = 0, j = 1 i = 1, j = 2 i = 2, j = 3 i = 2, j = 4 i = 3, j = 5 i = 3, j = 6 i = 3, j = 7 i = 4, j = 7
		4						i = 4, j = 7 i = 4, j = 7

Quicksort correctness:

- It follows from the correctness of Partition.
- Partition correctness:
 - Loop invariant:
 At the start of for loop:
 - 1. $A[p..i] \leq A[r] A[s] \leq A[r], p \leq s \leq i$
 - 2. A[(i+1)..(j-1)] > A[r]
 - 3. x = A[r]
 - Proof of LI: (pages 147 148)
 - 1. Initialization
 - 2. Maintenance
 - 3. Termination
 - LI correctness implies Partition correctness
- Why we study QuickSort and its analysis:
 - very efficient, in use
 - divide-and-conquer, randomization
 - huge literature
 - a model for analysis of algorithms

Quicksort recursion tree:

- Observations:
 - (Again) key comparison is the dominant operation
 - Counting KC
 only need to know (at each call) the rank of the split key
- An example:



- More observations:
 - In the resulting recursion tree, at each node (all keys in left subtree) \leq (key in this node) < (all keys in right subtree)
 - 1-1 correspondence: quicksort recursion tree \longleftrightarrow binary search tree

Quicksort WC running time:

- The split key is compared with every other key: (n-1) KC
- Recurrence:

$$T(n) = T(n_1) + T(n - 1 - n_1) + (n - 1),$$

where $0 \leq n_1 \leq n-1$

Base case: T(0) = 0, T(1) = 0

 Notice that when both subarrays are non-empty, we will be having

 $(n_1 - 1) + (n - 1 - n_1 - 1) = (n - 3)$ KC next level ...

- Worst case: one of the subarray is empty !!! needs (n-2) KC next level
- WC recurrence:

$$T(n) = T(0) + T(n-1) + (n-1) = T(n-1) + (n-1),$$

• Solving the recurrence — Master Theorem does NOT apply

$$T(n) = T(n-1) + (n-1) = T(n-2) + (n-2) + (n-1)$$

= ...
= T(1) + 1 + 2 + ... + (n-1)
= $\frac{(n-1)n}{2}$

So, $T(n) \in \Theta(n^2)$

• Therefore, quicksort is bad in terms of WC running time !

Quicksort BC running time:

- Notice that when both subarrays are non-empty, we will be saving 1 KC ...
- Best case: each partition is a bipartition !!!
 Saving as many KC as possible every level ...
 The recursion tree is as short as possible ...
- Recurrence:

$$T(n) = 2 \times T(\frac{n-1}{2}) + (n-1),$$

- Solving the recurrence apply Master Theorem? not exactly $T(n) \in \Theta(n \log n)$
- Question:
 - What is the best case array? for n = 7?
- Conclusion:

. . .

- In order to save time, A[n] better **BI**-partitions the array

— usually it might not bipartition ... we will push it by a technique called *randomization* (future lectures)

```
Quicksort BC running time (cont'd):
```

- In the recursion tree, what is the number of KC at each level? Answer:
 - n-1 at the top level
 - at most 2 nodes at the 2nd level, at least $(n_1 1) + (n 1 n_1 1) = n 3$ KC
 - at most 4 nodes at the 3rd level, at least $(n_1 3) + (n 1 n_1 3) = n 7$ KC
 - ...
 - at kth level, at most 2^{k-1} nodes, at least $n-2^k+1~{
 m KC}$
- How many levels are there?

Answer:

- At least lg n levels binary tree
- So, at least we need

$$\sum_{i=1}^{\lg n-1} (n-2^i+1) \text{ KC, and}$$

$$\sum_{i=1}^{\lg n-1} (n-2^i+1) = (n+1)(\lg n-1) - (n-2) \in \Theta(n\log n)$$

• Try $n = 2^k - 1$ to get the closed form for the following recurrence

$$T(n) = \begin{cases} 0, & \text{if } n = 1\\ (n-1) + T(\lfloor \frac{n-1}{2} \rfloor) + T(\lceil \frac{n-1}{2} \rceil), & \text{if } n \ge 2 \end{cases}$$

Quicksort AC running time:

 Recall the Quicksort algorithm Pseudocode:

```
procedure Quicksort(A, p, r) **p 146

if p < r then

q \leftarrow Partition(A, p, r)

Quicksort(A, p, q - 1)

Quicksort(A, q + 1, r)
```

• The recurrence for running time is:

$$T(n) = \begin{cases} 0, & \text{when } n = 0, 1\\ T(n_1) + T(n - 1 - n_1) + (n - 1), & \text{when } n \ge 2 \end{cases}$$

• Average case: "What is the probability for the left subarray to have size n_1 ?"

Average case: always ask "average over what input distribution?"

- Unless stated otherwise, assume each possible input equiprobable
 Uniform distribution
- Here, each of the possible inputs equiprobable
- Key observation: equiprobable inputs imply for each key, rank among keys so far is equiprobable So, n_1 can be $0, 1, 2, \ldots, n-2, n-1$, with the same probability $\frac{1}{n}$

Solving T(n):

• Therefore,

$$-n \times T(n) = 2 \sum_{i=0}^{n-1} T(i) + n(n-1)$$
$$-(n-1) \times T(n-1) = 2 \sum_{i=0}^{n-2} T(i) + (n-1)(n-2)$$

• Subtract the two terms:

$$n \times T(n) - (n-1) \times T(n-1) = 2T(n-1) + 2(n-1)$$

Rearrange it:

$$nT(n) = (n+1)T(n-1) + 2(n-1)$$

Solving T(n) (cont'd):

• Or we can say:

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$
$$= \frac{T(n-1)}{n} + \frac{2}{n+1} - 2(\frac{1}{n} - \frac{1}{n+1})$$
$$= \frac{T(n-1)}{n} + \frac{4}{n+1} - \frac{2}{n}$$

which gives you (iterated substitution)

$$\frac{T(n)}{n+1} = \sum_{i=1}^{n} \frac{2}{i+1} + \left(\frac{2}{n+1} - 2\right)$$

Recall that $\sum_{i=1}^{n} \frac{1}{i} = H_n = \ln n + \gamma$ — the Harmonic number where $\gamma \approx 0.577 \cdots$

• So, from

$$\frac{T(n)}{n+1} = \sum_{i=1}^{n} \frac{2}{i+1} + \left(\frac{2}{n+1} - 2\right)$$

we have

$$T(n) = 2(n+1)H_{n+1} - (4n+2)$$

$$\approx 2(n+1)(\ln(n+1) + \gamma) - (4n+2)$$

$$\in \Theta(n \log n)$$

• Conclusion:

Quicksort AC running time in $\Theta(n \log n)$.

Quicksort Improvement and space requirement:

- Quicksort is considered an in-place sorting algorithm:
 - extra space required at each recursive call is only constant.
 - whereas in Mergesort, at each recursive call up to $\Theta(n)$ extra space is required.
- To improve the algorithm, it's better to pick the median as the pivot (but this is difficult)
- Other solution: use a random element as the pivot at every iteration! Pick one $1 \le i \le n$ randomly and then exchange $A[i] \leftrightarrow A[n]$ before calling the Partition method.
- This way, no single input is always bad.

Sorting Algorithms So Far: Running Time Comparison

Alg.	BC	WC	AC
InsertionSort	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$
MergeSort	$\Theta(n \log n)$	$\Theta(n \log n)$?
HeapSort	$\Theta(n \log n)$	$\Theta(n \log n)$?
QuickSort	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n \log n)$

Week 5: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
 - node \longleftrightarrow recursive call
 - describes algorithm execution for <u>one particular input</u> by showing all calls made
 - one algorithm execution \leftrightarrow all nodes (a tree)
 - useful in analysis:
 sum the numbers of operations over all nodes

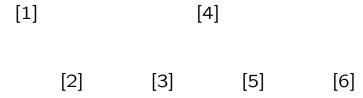
Week 5: Lower Bounds for Comparison-Based Sorting

Recursion tree example:

• Mergesort pseudocode

```
MergeSort(A; lo, hi)
```

if lo < hi then $mid \leftarrow \lfloor (lo + hi)/2 \rfloor$ MergeSort(A; lo, mid) MergeSort(A; mid + 1, hi) Merge(A; lo, mid, hi)



• For different input instance, the number of operations at each node could be different.

Week 5: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
 - node \longleftrightarrow recursion call
 - describes algorithm execution for <u>one particular input</u> by showing all calls made
 - one algorithm execution \leftrightarrow all nodes (a tree)
 - useful in analysis:
 sum the numbers of operations over all nodes
- Decision tree
 - node \longleftrightarrow algorithm decision
 - describes algorithm execution for <u>all possible inputs</u> by showing all possible algorithm decisions
 - one algorithm execution \longleftrightarrow one root-to-leaf path
 - useful in analysis:
 sum the numbers of operations over nodes on one path

Week 5: Lower Bounds for Comparison-Based Sorting Selectionsort decision tree:

- Assume input keys in array $A[1..3] = \{a, b, c\}$
- Tree node: if A[k] > A[j] 2-way key comparison
- Node label A[j]

SelectionSort(A; n)

```
\begin{array}{ll} \text{if } n \geq 1 \text{ then} \\ \text{for } j \leftarrow n \text{ downto } 2 \text{ do} \\ psn \leftarrow j \\ \text{for } k \leftarrow j-1 \text{ downto } 1 \text{ do} \\ \text{ if } A[k] > A[psn] \text{ then} \\ psn \leftarrow k \\ \text{exchange } A[j] \leftrightarrow A[psn] \\ \text{return} \end{array}
```

```
No. Yes.
```

abc bac bca acb cab cba	abc	bac		bca	ac	b	cab	cba	
-----------------------------------	-----	-----	--	-----	----	---	-----	-----	--

• In every case — whatever input instance is, 3 KC !!!

Week 5: Lower Bounds for Comparison-Based Sorting Sorting lower bound:

- Comparison-based sort: keys can be (2-way) compared only !
- This lower bound argument considers only the comparisonbased sorting algorithms. For example,
 - Insertionsort, Mergesort, Heapsort, Quicksort,
- Binary tree facts:
 - Suppose there are t leaves and k levels. Then,
 - $t \le 2^{k-1}$
 - So, $\lg t \le (k-1)$
 - Equivalently, $k \ge 1 + \lg t$ — binary tree with t leaves has at least $(1 + \lg t)$ levels
- Comparison-based sorting algorithm facts:
 - Look at its *Decision Tree*. We have,
 - It's a binary tree.
 - It should contain every possible permutation of the positions $\{1, 2, \ldots, n\}$.
 - So, it contains at least n! leaves ...
 - Equivalently, it has at least $1 + \lg(n!)$ levels.
 - A longest root-to-leaf path of length at least lg(n!).
 - The worst case number of KC is at least lg(n!).
 - $\lg(n!) \in \Theta(n \log n)$
- Therefore, Mergesort and Heapsort are asymptotically optimal (comparison-based) sorting algorithms.

Week 5: Algorithm Design Techniques

Algorithm Design Techniques:

- Three major design techniques are:
 - 1. Greedy method
 - 2. Divide and Conquer
 - 3. Dynamic Programming
- 1- Greedy Method:
 - This is usually good for optimization problems.
 - In an optimization problem we are looking for a solution while we maximize or minimize an objective function. For example, maximizing the profit or minimizing the cost.
 - Usually, coming up with a greedy solution is easy; But often it is more difficult to prove that the algorithm is correct.
 - General scheme: always make choices that look best at the current step; these choices are final and are not changed later.
 - Hope that with every step taken, we are getting closer and closer to an optimal solution.

Week 5: Greedy method

Example 1: Fractional Knapsack

- Suppose we have a set S of n items, each with a profit/value b_i and weight w_i .
- We also have a knapsack of capacity W,
- Assume that each item can be picked at any fraction, that is we can pick 0 ≤ x_i ≤ w_i amount of item i.
- Our goal is to fill the knapsack (without exceeding its capacity) with a combination of the items with maximum profit.
- Formally, find $0 \le x_i \le w_i$ for $1 \le i \le n$ such that $\sum_{i=1}^n x_i \le W$ and $\sum_{i=1}^n \frac{x_i}{w_i} \times b_i$ is maximized.
- Greedy idea: start picking the items with more "value":

value
$$\equiv \frac{b_i}{w_i}$$

So let $v_i = \frac{b_i}{w_i}$. The algorithm will be as follows:

• The pseudocode is:

```
Procedure Frac-Knapsack (S, W)

for i \leftarrow 1 to n do

x_i \leftarrow 0

v_i \leftarrow \frac{b_i}{w_i}

CurrentW \leftarrow 0

While CurrentW < W do

let a_i be the next item in S with highest value

x_i \leftarrow \min\{w_i, W - CurrentW\}

add x_i amount of i to knapsack

CurrentW \leftarrow CurrentW + x_i
```

- How to find next highest value in each step?
- One way is to sort S at the begining based on $v_i{\rm 's}$ in non-increasing order.
- Another way is to keep a PQ (max-heap) based on values.
- Since we check at most n items, the total time is $O(n \log n)$.

Correctness of the algorithm:

- We prove, for all $i \ge 0$, that if we have picked x_1, \ldots, x_i from items $1, \ldots, i$ in the first *i* iterations (respectively), then this partial solution can be extended to an optimal solution.
- In other words, there is some optimal solution call it OPT which has x_j amount from item j for $1 \le j \le i$.

Fractional Knapsack (cont'd)

- We prove by induction on i. Base case i = 0 we have an empty solution and clearly can be extended to an optimal one.
- Induction Step: Assume the statement is true for < i, with $i \ge 1$, prove it for iteration i.
- That is, we have picked x₁,..., x_{i−1} of items 1,..., (i − 1), so does the OPT.
- If OPT picks x_i from item *i* we are done. So assume OPT picks $x'_i \neq x_i$.
- Note that the algorithm picks maximum amount we can from item *i* (either $x_i = w_i$ or knapsack is full). Thus x'_i cannot be more than x_i , i.e. $x'_i < x_i$.
- Since $W \geq \sum_{k=1}^{i} x_k > \sum_{k=1}^{i-1} x_k + x'_i$, OPT must contain amounts from other items to match the deficiency of $x_i x'_i$, say amounts $x_{j_1}, x_{j_2}, \ldots, x_{j_\ell}$ of items j_1, \ldots, j_ℓ with $x_{j_1} + \ldots + x_{j_\ell} \geq x_i x'_i$.
- Since items are ranked based on value, all $v_{j_k} \leq v_i$ for $1 \leq k \leq \ell$.
- So if we replace a total of x_i amount from items j_1, \ldots, j_ℓ with x_i amount of i in the OPT, the total value does not decrease, \longrightarrow we sill have an optimal solution.
- Now OPT has x_i amount of i and so extends our greedy solution. This completes the induction.