
An Automatic Construction and Organization Strategy
for Ensemble Learning on Data Streams

Yi Zhang Xiaoming Jin

School of Software

Tsinghua University, Beijing, 100084 China

zhang-yi@mails.tsinghua.edu.cn

School of Software

Tsinghua University, Beijing, 100084 China

 xmjin@tsinghua.edu.cn

ABSTRACT

As data streams are gaining prominence in a growing

number of emerging application domains, classification on

data streams is becoming an active research area. Currently,

the typical approach to this problem is based on ensemble

learning, which learns basic classifiers from training data

stream and forms the global predictor by organizing these

basic ones. While this approach seems successful to some

extent, its performance usually suffers from two

contradictory elements existing naturally within many

application scenarios: firstly, the need for gathering

sufficient training data for basic classifiers and engaging

enough basic learners in voting for bias-variance reduction;

and secondly, the requirement for significant sensitivity to

concept-drifts, which places emphasis on using recent

training data and up-to-date individual classifiers. It results

in such a dilemma that some algorithms are not sensitive

enough to concept-drifts while others, although sensitive

enough, suffer from unsatisfactory classification accuracy.

In this paper, we propose an ensemble learning algorithm,

which: (1) furnishes training data for basic classifiers,

starting from the up-to-date data chunk and searching for

complement from past chunks while ruling out the data

inconsistent with current concept; (2) provides effective

voting by adaptively distinguishing sensible classifiers

from the else and engaging sensible ones as voters.

Experimental results justify the superiority of this strategy

in terms of both accuracy and sensitivity, especially in

severe circumstances where training data is extremely

insufficient or concepts are evolving frequently and

significantly.

1. INTRODUCTION

 In many emerging applications such as network

monitoring, sensor networks, etc., data are produced

continually in the form of high-speed streams, which are

required to be analyzed on-line. Thus, the applications

which aim to classifying data streams rather than static

relations are needed. Given the fact that data streams

always have the properties such as high-velocity, extremely

large volume, and frequently evolving concepts, today’s

classification techniques meet unprecedented challenges:

bounded memory usage, high processing speed, one-pass

scanning, any-time available, and so on [4]. Especially,

underlying concept of steaming data often alters (termed

concept drift), which requests that algorithms must be

sensitive enough to the up-to-date concept under the data

stream [4, 13].

Many strategies have been proposed in order to deal

with concept-drifts. For instance, adapting existent models

to data streams scenarios [7]; using novel data structure to

maintain training data stream and to classify on demand [1];

exhaustively selecting training data by comparing all the

sensible choices [5]; or building concept history and

combining proactive and reactive modes in prediction [15].

Besides these technologies, the ensemble learning approach

[2] appears as a promising solution: it seems reasonable to

train individuals to deal with different parts of stream and

organize these individual classifiers to make the final

decision. This motivates more than a few attempts to

develop novel ensemble learning mechanisms for data

streams [9, 11, 12, 16]. However, all these models,

although effective to some extent, do not provide satisfying

solution to some open problems, due to the difficulties of:

(1) seeking enough training data for individual classifiers

with the guarantee that not importing old concepts; (2)

finding adequate voters in global-prediction, while

ensuring that experts (i.e. basic classifiers) built upon old

concepts are excluded. We discuss these aspects as follows:

Firstly, when building each basic classifier, we want to

collect enough data while guarantee that concept-drifts are

not imported into training data. To handle this problem,

some works split the training data stream into data chunks,

and build basic learner from each chunk [11, 12, 16]; while

other works use incremental learner as the basic expert, i.e.

each expert, after being built, keeps on updating itself until

discarded [9]. In fact, both of these two methods can not

furnish ideal solution. On the one hand, fixing the amount

of training data for basic classifier by size of chunk is

questionable. Given the fact that the velocity of training

data stream is often limited by the manual labeling process,

the size of data chunk can not be very large because large

chunk needs relatively long period to be accumulated, thus

leads to high possibility that concept-drift happens in this

period. Nonetheless, if basic classifiers can not obtain

sufficient training data, the ensemble will not work

effectively. On the other hand, using incremental classifier

28 SIGMOD Record, Vol. 35, No. 3, Sep. 2006

also suffers from some flaws. It is true that allowing each

individual expert to adjust itself according to future

training data is beneficial to this individual [9]. But this

approach has negative effects on the whole ensemble:

when an old learner is incompatible with the latest concept,

the most optimal policy is discarding it and allowing the

“right ones” to make decision, rather than adjusting (if

possible) the elder, which actually postpones its retirement.

Moreover, though incremental learning gives the individual

the chance for improving itself, the bias can not be

completely corrected in that the learner is built from old

data and merely “update” itself based on newcome data.

Secondly, when using basic classifiers to form global

predictor, we want to engage adequate voters in final

decision for the sake of bias-variance reduction [2], while

ensure that outmoded classifiers are obviated. Although

recent works place much stress on this point, none of them

can make good balance. In [11], the global prediction is

made by majority voting among N “high quality”

individuals. The drawback of this method is clear-cut: Only

after more than N/2 members in ensemble mastery the new

concept (which needs at least N/2 new data chunks after

concept-drift occurs), the majority voting will make correct

prediction. Thereafter, some works focus on improving

voting’s sensitivity to concept-drift [9, 12]. For example in

[9]: (1) the ensemble is composed of classifiers whose

“quality” larger than an threshold q0 rather than uses fixed

amount of basic classifiers; (2) The global prediction is

based on weighted voting rather than majority voting.

Although this approach improves ensemble‘s sensitivity to

concept-drift, it still has problems. First of all, q0 is difficult

to choose: we want good voters, but we also need enough

voters. Second of all, weight-based voting can not

eliminate the negative effect of out-of-date experts ---- they

still can overwhelm the sensible ones by larger total weight.

Since neither of majority voting and weight-based voting

can produce sensitive ensemble, the “apparently”

substituted way is “trusting in” the best rather than voting

by the masses [16]. Whereas, simply engaging the best

classifier will lose important advantage of voting-based

ensemble: bias and variance reduction [2]. In fact, when

using some unstable learners such as C4.5 [10], voting-

based ensemble such as bagging can improve the accuracy

by dramatically reducing variance [2, 3]. Even for stable

classifiers such as naïve Bayes [8], voting strategy as

boosting [6] has positive effect by decreasing bias [2].

In this paper, we propose a dynamic ensemble learning

algorithm, termed Dynamic Construction and Organization

(DCO), which concentrates on these two difficulties. The

contributions and key ideas of this work are: (1) the

individual-construction strategy which provides training

data for basic classifiers, starting from the latest data chunk

and searching complement from history while excluding

the data inconsistent with current concept; (2) the global-

prediction policy which offers effective voting by

adaptively differentiating between sensible experts and the

else and engaging sensible ones as voters. Experimental

results show that our ensemble approach achieves high

accuracy and remains sensitivity to concept-drifts.

This paper is organized as follows. Section 2 describes

our approach, section 3 provides the experimental results,

and section 4 concludes the paper.

2. Dynamic Construction and Organization

Strategy for Ensemble Learning

In this section, we put forward our DCO (Dynamic

Construction and Organization) approach. After

introducing the problem definition and framework of the

algorithm, we mainly focus on the individual-construction

and global-prediction strategies. It is assumed that training

data and testing data are given as data streams, termed S

and T in our paper, respectively. Data items in S are

divided into data chunks, with size of chunkSize. As a rule,

we set the latest chunk from S as evaluation dataset. When

future chunk is available, current evaluation dataset can be

used as training chunk and the coming chunk is set as new

evaluation dataset. The algorithm framework is: (1) when a

new training chunk is available, we use individual-

construction strategy to create a new basic classifier from

this chunk plus the old chunks; (2) we set the most recent N

basic classifiers as the ensemble; (3) for each test point, we

use the ensemble to classify the data based on global-

prediction strategy.

2.1 Individual-Construction Strategy

Table 2 shows our Individual-Construction Strategy

which pursues a balance between data sufficiency and

sensitivity, especially when single chunk is not enough for

training basic learner. Function create is depend on the

basic learner. In this paper, we have tested both C4.5 [10]

and naïve Bayes [8], see section 3 for details. What is more,

there are two additional functions, dataSelect and

outperform, discussed in following subsections.

Table 2. Individual-construction strategy

Input:

Dn, Dn-1, …D1: data chunks available

Output:

Cn : resulting new expert

Variable:

D: training data for new basic learner

△ :selected data from old chunk

Cn’ : alternative expert

D Dn

Cn create (D)

for i = n -1 to 1

△ dataSelect (Di)

Cn’ create (D+△)

SIGMOD Record, Vol. 35, No. 3, Sep. 2006 29

if outperform(Cn’, Cn)

Cn Cn’

 D D+△
else

 return Cn

end-if

end-for

return Cn

2.1.1 Data Selection Function

This function aims at selecting complementary data

for D. Here we assume no concept-drift in Di

(outperform will deal with concept-drift). But even

under stationary concept, unselectively importing old

data is harmful because (1) it makes the learner over-fit

the old part; (2) unnecessarily large amount of training

data slows down the learning. In this sense, we define

the dataSelect as choosing: (1) data in Di that are

misclassified by Cn, plus (2) data that are misclassified

by previous learner Cn-1. Choosing data misclassified by

Cn is based on the hypothesis that Cn has not mastered

this part of data and thus needs further learning. The

idea of importing data misclassified by Cn-1 is inspired

by Boosting [2, 6]: each learner puts emphasis on the

“difficult” part for its predecessor. From this perspective,

dataSelect may bring additive benefits in two aspects [2,

6]: (1) reducing bias; (2) augmenting the diversity

among individuals. Both of these will improve the

performance of ensemble.

2.1.2 Evaluation Function

Outperform evaluates Cn and Cn’, and makes decision

that whether importing △ to D is sensible. Since △ is

made up of misclassified data, we must be wary of two

possibilities: (1) Misclassification caused by concept-drift;

(2) Misclassification caused by noise. In these two cases,

introducing such misclassified data will do harm to training.

Furthermore, when improvement is insignificant, importing

should also be stopped for the sake of efficiency.

The process for evaluating Cn and Cn’ is as follows:

Firstly, compute the prediction accuracy of Cn and Cn’

(termed p and p’, respectively) based upon evaluation

dataset. Secondly, calculate lower-bound (termed low and

low’) for p and p’ under confidence conf, according to

equation (1). Thirdly, if and only if ε>−lowlow' holds

for thresholdε , we judge that Cn’ outperform Cn.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−+=

V

z

V

z

V

p

V

p
z

V

z
plow

2

2

222

1
42

 (1)

In equation (1), z satisfies confzXP =≥)(under normal

distribution and chunkSizeV = . The intuition of this

equation is: given a prediction accuracy p based on a test

set of size V, we assume p is a random variable that has

mean m and standard deviation Vmm /)1(− . Then (2) holds,

which naturally leads to (1) where low is one solution of m.

confz
Vmm

mp
zP =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<

−
−<−

/)1(

)((2)

2.2 Global-Prediction Strategy

In section 1, we have reviewed different policies to

organize global predictor, such as majority voting, weight-

based voting and select-best. In fact, the ideal strategy

should strike a balance between these choices. On one hand,

it should retain the benefits of voting by masses rather than

simply select the best individual. On the other hand, we

want the sensible experts to dominate the voting, thus

render the global predictor sensitive to concept-drift.

2.2.1 Dynamic Voting

Our strategy is based upon the fact that we only want

to divide the ensemble into two categories: the “good

enough” experts and the else. Since we assume merely two

categories in basic learners, it is reasonable to expect

certain simple method to “judge good and evil in such a

melodrama”. Here we put forward an efficient procedure to

choose voters from ensemble.

(1) Sort N basic classifiers in ensemble according to their

accuracies on evaluation dataset.

(2) Among N-1 distances between sorted classifiers, find

the maximal one.

(3) The maximal distance naturally divides the learners into

two groups.

(4) Engage the “better” group as voting group.

The time complexity of this procedure depends on

sorting step, which is trivial when N only refers to the

capacity of ensemble. Furthermore, this procedure is

executed only when the evaluation dataset is replaced by

new chunk (the ensemble will be updated at the same time).

Based on this voting policy, choosing ensemble capacity N

is easy ---- we can choose a larger quantity than other

voting-based algorithms, for the reason that outmoded

experts in ensemble will be excluded from voting group by

our dynamic voting. It will benefit in two aspects: (1)

Under stationary concept, large ensemble furnishes

sufficient voters; (2) In concept-drift scenario, large

ensemble offers more opportunities for finding sensible

experts, especially when concept switches in a repeated

way.

2.2.2 Discussion: Other Choices?

Now we discuss that whether some other simper

strategies can be used instead of our dynamic voting: (1)

“select best-k”: For N experts in ensemble, select k best

experts as voters. (2) “Performance threshold”: according

to a threshold p0, define experts in ensemble whose

30 SIGMOD Record, Vol. 35, No. 3, Sep. 2006

accuracies higher than p0 as voters. Firstly, the “select best-

k” policy aims at retaining the sensitivity of “select-best”

policy and gaining the benefits of voting. Nonetheless, this

strategy is obviously incompetent in that it is actually the

similar with “majority voting” where N = k, whose flaws

have been discussed in Section 1. Secondly, the

“performance threshold” is not an ideal approach, either. In

fact, we can not decide this threshold in order to divide the

ensemble into “sensible” ones and the else: (1)

Performance of basic classifier changes dramatically on

different classification problems. (2) It is unknown that to

what extent the concept-drift will degrade the performance

of outmoded experts and where should we set this

threshold.

3. Empirical Study and Results

This section presents the results of our experimental

evaluation of the proposed method. The goal of our

experiments is to demonstrate the ability of our algorithm

to: (1) handle data insufficiency when training basic

classifiers; (2) form effective voting; (3) keep sensitive to

concept-drifts.

3.1 Dataset and System Implementation

To determine the performance of our algorithm on

problems involving concept-drifts, we design the problem

in which each data points has three attributes x, y, z ∈R,

randomly sampled from range [0, 10]. The data point that

satisfies the target concept 2222
rzyx <++ is labeled by 1.

Otherwise the item will be labeled as 0. Radius r is used to

control the concept-drifts. Experiments are implemented on

Weka toolkit [14].

3.2 Concept-drift Tests and Results

Four algorithms are tested: (1) SEA: algorithm in [11];

(2) DWM: algorithm in [9]; (3) DCS: algorithm in [16]; (4)

DCO: our algorithm. DWM does not take part in Test1 and

Test2 since it must use incremental basic classifier. All

results are averaged from 30 independent runs.

(1) Test1: Testing SEA, DCS, and DCO based on C4.5,

chunkSize = 50.

(2) Test2: Testing SEA, DCS, and DCO based on C4.5,

chunkSize = 100.

(3) Test3: Testing SEA, DCS, DCO and DWM based

on Naïve Bayes, chunkSize = 50.

(4) Test4: Testing SEA, DCS, DCO and DWM based

on Naïve Bayes, chunkSize = 100.

The procedure of experiment is: There are entirely 50

chunkSize training data points. For the first fourth the

radius r in target concept is 9; for the second r = 11.5; for

the third r = 8.5; for the last r = 11. For each fourth, we

randomly generate a testing dataset of 2500 data points on

corresponding radius. Each time after chunkSize training

data points are offered, we test all the algorithms using

appropriate testing dataset. For our algorithm, conf = 0.9

and ε = 1% in outperform function. For all algorithms with

fixed-size ensemble, we set N = 50. Other parameters are

set according to original papers. See Fig.1~Fig.4 for results,

the analysis of these results is as follows:

(1) Prediction accuracy: DCO has the best classification

accuracy, and this advantage appears more evident when

the size of data chunk is limited (chunkSize = 50). Such

superiority dues great part to our novel strategies for

individual-construction and global-prediction. In one sense,

the former policy guarantees the sufficiency of training

data for basic learners, augments the diversity among

individuals, and reduces the bias of basic learners. In

another sense, the latter strategy strikes a balance between

the quantity of voters and the quality of voters, and thus

renders the voting process much more effective in terms of

variance-reduction.

(2) Sensitivity for concept-drift: DCO and DCS are quite

sensitive to concept-drift: they recover from

misclassification very fast; DWM is not as sensitive as

DCO and DCS, but still much better than SEA. DCS’s

sensitivity obviously dues to its “select-best” policy; DCO

relies on dynamic voting to exclude outmoded experts, thus

remains as sensitive as DCS; DWM uses weighted-based

Figure 2: Results of test 2.

Figure 1: Results of test 1.

SIGMOD Record, Vol. 35, No. 3, Sep. 2006 31

voting, and does not fix the capacity of ensemble, therefore

has better alertness than SEA, which engages majority

voting on fixed amount of voters in ensemble.

(3) DCS and basic learner: DCS algorithm performed

much better under naïve Bayes than using C4.5, because

the former is a stable basic learner which is not in dire need

of voting to reduce its variance. However, using unstable

classifiers such as C4.5, DCS will appear ineffective.

Furthermore, DCO beats DCS even based on naïve Bayes,

since DCO enhances data sufficiency, individual diversity,

and further reduces the bias-variance by dynamic voting.

(4) Efficiency of algorithms: We test the efficiency of the

four algorithms, represented by the time consumed in their

30 independent runs and shown in Table 1. SEA is time-

consuming, especially when using Naïve Bayes. DCO is as

efficient as DCS based on C4.5, and retains a reasonable

speed on Naïve Bayes. In fact, the most complex part of

DCO, the individual construction process mentioned in

section 2.1, always stops after combining a few old blocks.

Note that DWM used more time in test3 than in test4 since

small data blocks lead to frequent creation of new classifers.

3.3 Performance in Severe Circumstance

What is more interesting is the performance of these

algorithms in severe conditions: data insufficiency plus

frequent and sudden concept-drifts, where data

insufficiency calls for the ability to seek enough data for

training basic classifiers; and frequent abrupt concept-drifts

require excluding old concepts from training data. We set

chunkSize as 25. For totally 40 chunkSize training data

points, concept-drift happens after each 4 chunks. The

radius starts with r=8, switches between 8 and 12 (i.e. r = 8,

12, 8, 12 …). For each concept, we randomly generate

2500 data points by corresponding radius. Each time after a

chunk of training data is offered, we test all the algorithms

using appropriate testing points. Other settings are similar

with section 3.2. Test5 concerns SEA, DCS, and DCO

based on C4.5; test6 measures SEA, DCS, DCO and DWM

on naïve Bayes. The results are shown in Fig. 5 and Fig. 6.

We can observe that: (1) the individual-construction policy

effectively handles the data insufficiency; (2) the dynamic

voting strategy furnishes successful voting, while retains

the sensitivity to sudden and frequent concept-drifts.

Table 1. Efficiency of Algorithms

 SEA DCS DCO DWM

Test1 6min 11sec 1min 4sec 1min 39sec ---

Test2 8min 1sec 1min 46sec 1min 51sec ---

Test3 51min 9sec 3min 7sec 14min 9sec 11min 5sec

Test4 78min 4sec 5min 21sec 15min 3sec 6min 1sec

Figure 6: Results of test 6.

Figure 5: Results of test 5.
Figure 3: Results of test 3.

Figure 4: Results of test 4.

32 SIGMOD Record, Vol. 35, No. 3, Sep. 2006

3.4 Real-world Dataset

In this section, we proposed our empirical results on

“adult” dataset [17]. We test SEA, DCS and DCO upon

C4.5. The training and testing dataset contain 32561 and

16281 instances, respectively. Data has 14 attributes such

as the age, occupation and sex of a person. The label

indicates whether this person has an income larger than 50k

dollar. The preprocessing step aims to produce sufficient

concept drifts: partition the dataset by “occupation”

attribute, then collect instances in three occupations –

“Adm-clerical”, “Exec-managerial” and “Other-service”;

finally we get three training subsets with 3770, 4066 and

3295 instances and three test subsets with 1841, 2020 and

1628 instances, respectively. We set blockSize as 100.

Totally 90 data blocks are engaged for training: 15 blocks

from subset1, 15 blocks from subset2, 15 blocks from

subset3, and then repeat. After each block, we test all the

algorithms using corresponding test dataset. For all

algorithms, ensemble size is 30. The results are shown in

Table 2, which justifies the superiority of DCO.

Table 2. Empirical Results on “Adult” Dataset

SEA DCS DCO

0.7773 0.8401 0.8510

4. Conclusions

Current algorithms for mining data streams are

confronted with two contradictory elements: Firstly is the

need for seeking adequate training data for each basic

classifier and gathering sufficient voters for final-decision;

and secondly, is the requirement for sensitivity to concept-

drift, which calls for using recent training data and up-to-

date basic classifier. In this work, we initially point out the

essential reasons for the incompetence of several recent

algorithms in solving these conflicting elements. Then, we

propose a dynamic ensemble learning algorithm, termed

DCO (Dynamic Construction and Organization), which

aims at reconciling these contradictions. Experimental

results justify the superiority of our approach over the

state-of-the-art algorithms in that individual-construction

strategy provides solution to data insufficiency under

concept-drift scenario; and the dynamic voting strategy

strikes a balance between the quantity and quality of voters.

5. Acknowledgement

This work is supported by the National Science

Foundation of China (60403021) and the 973 Program

(2004CB719400).

6. References

[1] CC Aggarwal, J Han, J Wang, PS Yu. On Demand

Classification of Data Streams. In Proceedings of the 10th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2004.

[2] E. Bauer, R. Kohavi. An Empirical Comparison of Voting

Classification Algorithms: Bagging, Boosting, and Variants.

Machine Learning, vol 36, pp 105-139, 1999.

[3] L. Breiman. Bagging Predictors. Machine Learning, vol 24,

pp 123-140, 1996.

[4] GZ Dong, JW Han, Laks V.s. Lakshmanan, J Pei, HX Wang,

Philip S. Yu. Online Mining of Changes from Data Streams:

Research Problems and Preliminary Results. ACM SIGMOD

MPDS`03 San Diego, CA, USA.

[5] W Fan. Systematic Data Selection to Mine Concept-Drifting

Data Streams. In Proceedings of the 10th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, 2004.

[6] Y Freund, RE Schapire. Experiments with a New Boosting

Algorithm. Machine Learning: Proceedings of the 13th

International Conference, 1996.

[7] G. Hulten, L. Spencer, and P. Domingos. Mining time-

changing data streams. In Proceedings of the 7th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2001.

[8] G. H. John and P. Langley. Estimating Continuous

Distributions in Bayesian Classifiers. In Proc. of the

Eleventh Conference on Uncertainty in Artificial Intelligence.

Morgan Kaufmann, San Mateo, 1995, 338-345.

[9] JZ Kolter, MA Maloof. Dynamic Weighted Majority: A New

Ensemble Method for Tracking Concept Drift. Proceedings

of the Third IEEE International Conference on Data Mining,

2003.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufmann, San Mateo, CA, 1993.

[11] W. N. Street, YS Kim. A streaming ensemble algorithm

(SEA) for large-scale classification. In: Proc. of the 7th

ACM SIGKDD Int’l Conf. on Knowledge Discovery and

Data Mining, San Francisco, CA, ACM Press, 2001, 377-382.

[12] H Wang, W Fan, PS Yu, J Han. Mining concept-drifting data

streams using ensemble classifiers. In Proceedings of the 9th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2003.

[13] G. Widmer and M. Kubat. Learning in the Presence of

Concept Drift and Hidden Contexts. Machine Learning,

vol23, issue1, 1996, 69-101.

[14] I. H. Witten and E. Frank. 1999. Data Mining: Practical

Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann, San Mateo, CA.

[15] Y Yang, X Wu, X Zhu. Combining Proactive and Reactive

Predictions for Data Streams. In Proceedings of the 11th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2005.

[16] XQ Zhu, XD Wu and Y Yang. Dynamic Classifier Selection

for Effective Mining from Noisy Data Streams. In: Proc. 4th

IEEE Int’l Conf. on Data Mining, 2004, 305-312.

[17] http://www.ics.uci.edu/~mlearn/MLRepository.html

SIGMOD Record, Vol. 35, No. 3, Sep. 2006 33

