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ABSTRACT 

As data streams are gaining prominence in a growing 

number of emerging application domains, classification on 

data streams is becoming an active research area. Currently, 

the typical approach to this problem is based on ensemble 

learning, which learns basic classifiers from training data 

stream and forms the global predictor by organizing these 

basic ones. While this approach seems successful to some 

extent, its performance usually suffers from two 

contradictory elements existing naturally within many 

application scenarios: firstly, the need for gathering 

sufficient training data for basic classifiers and engaging 

enough basic learners in voting for bias-variance reduction; 

and secondly, the requirement for significant sensitivity to 

concept-drifts, which places emphasis on using recent 

training data and up-to-date individual classifiers. It results 

in such a dilemma that some algorithms are not sensitive 

enough to concept-drifts while others, although sensitive 

enough, suffer from unsatisfactory classification accuracy. 

In this paper, we propose an ensemble learning algorithm, 

which: (1) furnishes training data for basic classifiers, 

starting from the up-to-date data chunk and searching for 

complement from past chunks while ruling out the data 

inconsistent with current concept; (2) provides effective 

voting by adaptively distinguishing sensible classifiers 

from the else and engaging sensible ones as voters. 

Experimental results justify the superiority of this strategy 

in terms of both accuracy and sensitivity, especially in 

severe circumstances where training data is extremely 

insufficient or concepts are evolving frequently and 

significantly.  

1. INTRODUCTION 

 In many emerging applications such as network 

monitoring, sensor networks, etc., data are produced 

continually in the form of high-speed streams, which are 

required to be analyzed on-line. Thus, the applications 

which aim to classifying data streams rather than static 

relations are needed. Given the fact that data streams 

always have the properties such as high-velocity, extremely 

large volume, and frequently evolving concepts, today’s 

classification techniques meet unprecedented challenges: 

bounded memory usage, high processing speed, one-pass 

scanning, any-time available, and so on [4]. Especially, 

underlying concept of steaming data often alters (termed 

concept drift), which requests that algorithms must be 

sensitive enough to the up-to-date concept under the data 

stream [4, 13].  

Many strategies have been proposed in order to deal 

with concept-drifts. For instance, adapting existent models 

to data streams scenarios [7]; using novel data structure to 

maintain training data stream and to classify on demand [1]; 

exhaustively selecting training data by comparing all the 

sensible choices [5]; or building concept history and 

combining proactive and reactive modes in prediction [15]. 

Besides these technologies, the ensemble learning approach 

[2] appears as a promising solution: it seems reasonable to 

train individuals to deal with different parts of stream and 

organize these individual classifiers to make the final 

decision. This motivates more than a few attempts to 

develop novel ensemble learning mechanisms for data 

streams [9, 11, 12, 16]. However, all these models, 

although effective to some extent, do not provide satisfying 

solution to some open problems, due to the difficulties of: 

(1) seeking enough training data for individual classifiers 

with the guarantee that not importing old concepts; (2) 

finding adequate voters in global-prediction, while 

ensuring that experts (i.e. basic classifiers) built upon old 

concepts are excluded. We discuss these aspects as follows:  

Firstly, when building each basic classifier, we want to 

collect enough data while guarantee that concept-drifts are 

not imported into training data. To handle this problem, 

some works split the training data stream into data chunks, 

and build basic learner from each chunk [11, 12, 16]; while 

other works use incremental learner as the basic expert, i.e. 

each expert, after being built, keeps on updating itself until 

discarded [9]. In fact, both of these two methods can not 

furnish ideal solution. On the one hand, fixing the amount 

of training data for basic classifier by size of chunk is 

questionable. Given the fact that the velocity of training 

data stream is often limited by the manual labeling process, 

the size of data chunk can not be very large because large 

chunk needs relatively long period to be accumulated, thus 

leads to high possibility that concept-drift happens in this 

period. Nonetheless, if basic classifiers can not obtain 

sufficient training data, the ensemble will not work 

effectively. On the other hand, using incremental classifier 
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also suffers from some flaws. It is true that allowing each 

individual expert to adjust itself according to future 

training data is beneficial to this individual [9]. But this 

approach has negative effects on the whole ensemble: 

when an old learner is incompatible with the latest concept, 

the most optimal policy is discarding it and allowing the 

“right ones” to make decision, rather than adjusting (if 

possible) the elder, which actually postpones its retirement. 

Moreover, though incremental learning gives the individual 

the chance for improving itself, the bias can not be 

completely corrected in that the learner is built from old 

data and merely “update” itself based on newcome data.  

Secondly, when using basic classifiers to form global 

predictor, we want to engage adequate voters in final 

decision for the sake of bias-variance reduction [2], while 

ensure that outmoded classifiers are obviated. Although 

recent works place much stress on this point, none of them 

can make good balance. In [11], the global prediction is 

made by majority voting among N “high quality” 

individuals. The drawback of this method is clear-cut: Only 

after more than N/2 members in ensemble mastery the new 

concept (which needs at least N/2 new data chunks after 

concept-drift occurs), the majority voting will make correct 

prediction. Thereafter, some works focus on improving 

voting’s sensitivity to concept-drift [9, 12]. For example in 

[9]: (1) the ensemble is composed of classifiers whose 

“quality” larger than an threshold q0 rather than uses fixed 

amount of basic classifiers; (2) The global prediction is 

based on weighted voting rather than majority voting. 

Although this approach improves ensemble‘s sensitivity to 

concept-drift, it still has problems. First of all, q0 is difficult 

to choose: we want good voters, but we also need enough 

voters. Second of all, weight-based voting can not 

eliminate the negative effect of out-of-date experts ---- they 

still can overwhelm the sensible ones by larger total weight. 

Since neither of majority voting and weight-based voting 

can produce sensitive ensemble, the “apparently” 

substituted way is “trusting in” the best rather than voting 

by the masses [16]. Whereas, simply engaging the best 

classifier will lose important advantage of voting-based 

ensemble: bias and variance reduction [2]. In fact, when 

using some unstable learners such as C4.5 [10], voting-

based ensemble such as bagging can improve the accuracy 

by dramatically reducing variance [2, 3]. Even for stable 

classifiers such as naïve Bayes [8], voting strategy as 

boosting [6] has positive effect by decreasing bias [2]. 

In this paper, we propose a dynamic ensemble learning 

algorithm, termed Dynamic Construction and Organization 

(DCO), which concentrates on these two difficulties. The 

contributions and key ideas of this work are: (1) the 

individual-construction strategy which provides training 

data for basic classifiers, starting from the latest data chunk 

and searching complement from history while excluding 

the data inconsistent with current concept; (2) the global-

prediction policy which offers effective voting by 

adaptively differentiating between sensible experts and the 

else and engaging sensible ones as voters. Experimental 

results show that our ensemble approach achieves high 

accuracy and remains sensitivity to concept-drifts.  

This paper is organized as follows. Section 2 describes 

our approach, section 3 provides the experimental results, 

and section 4 concludes the paper. 

2. Dynamic Construction and Organization 

Strategy for Ensemble Learning 

In this section, we put forward our DCO (Dynamic 

Construction and Organization) approach. After 

introducing the problem definition and framework of the 

algorithm, we mainly focus on the individual-construction 

and global-prediction strategies. It is assumed that training 

data and testing data are given as data streams, termed S 

and T in our paper, respectively. Data items in S are 

divided into data chunks, with size of chunkSize. As a rule, 

we set the latest chunk from S as evaluation dataset. When 

future chunk is available, current evaluation dataset can be 

used as training chunk and the coming chunk is set as new 

evaluation dataset. The algorithm framework is: (1) when a 

new training chunk is available, we use individual-

construction strategy to create a new basic classifier from 

this chunk plus the old chunks; (2) we set the most recent N 

basic classifiers as the ensemble; (3) for each test point, we 

use the ensemble to classify the data based on global-

prediction strategy. 

2.1 Individual-Construction Strategy 

Table 2 shows our Individual-Construction Strategy 

which pursues a balance between data sufficiency and 

sensitivity, especially when single chunk is not enough for 

training basic learner. Function create is depend on the 

basic learner. In this paper, we have tested both C4.5 [10] 

and naïve Bayes [8], see section 3 for details. What is more, 

there are two additional functions, dataSelect and 

outperform, discussed in following subsections. 

Table 2. Individual-construction strategy 

Input: 

Dn, Dn-1, …D1: data chunks available 

Output: 

Cn : resulting new expert 

Variable: 

D:  training data for new basic learner 

△ :selected data from old chunk 

Cn’ : alternative expert 

 

D  Dn 

Cn  create (D) 

for i = n -1 to 1 

△  dataSelect (Di) 

Cn’  create (D+△) 
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if outperform(Cn’, Cn ) 

Cn  Cn’ 

        D  D+△ 
else  

        return Cn 

end-if 

end-for 

return Cn 

2.1.1 Data Selection Function 

This function aims at selecting complementary data 

for D. Here we assume no concept-drift in Di 

(outperform will deal with concept-drift). But even 

under stationary concept, unselectively importing old 

data is harmful because (1) it makes the learner over-fit 

the old part; (2) unnecessarily large amount of training 

data slows down the learning. In this sense, we define 

the dataSelect as choosing: (1) data in Di that are 

misclassified by Cn, plus (2) data that are misclassified 

by previous learner Cn-1. Choosing data misclassified by 

Cn is based on the hypothesis that Cn has not mastered 

this part of data and thus needs further learning. The 

idea of importing data misclassified by Cn-1 is inspired 

by Boosting [2, 6]: each learner puts emphasis on the 

“difficult” part for its predecessor. From this perspective, 

dataSelect may bring additive benefits in two aspects [2, 

6]: (1) reducing bias; (2) augmenting the diversity 

among individuals. Both of these will improve the 

performance of ensemble. 

2.1.2 Evaluation Function 

Outperform evaluates Cn and Cn’, and makes decision 

that whether importing △ to D is sensible. Since △ is 

made up of misclassified data, we must be wary of two 

possibilities: (1) Misclassification caused by concept-drift; 

(2) Misclassification caused by noise. In these two cases, 

introducing such misclassified data will do harm to training. 

Furthermore, when improvement is insignificant, importing 

should also be stopped for the sake of efficiency. 

The process for evaluating Cn and Cn’ is as follows: 

Firstly, compute the prediction accuracy of Cn and Cn’ 

(termed p and p’, respectively) based upon evaluation 

dataset. Secondly, calculate lower-bound (termed low and 

low’) for p and p’ under confidence conf, according to 

equation (1). Thirdly, if and only if ε>−lowlow'  holds 

for thresholdε , we judge that Cn’ outperform Cn. 
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In equation (1), z satisfies confzXP =≥ )( under normal 

distribution and chunkSizeV = . The intuition of this 

equation is: given a prediction accuracy p based on a test 

set of size V, we assume p is a random variable that has 

mean m and standard deviation Vmm /)1( − . Then (2) holds, 

which naturally leads to (1) where low is one solution of m. 
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2.2 Global-Prediction Strategy 

In section 1, we have reviewed different policies to 

organize global predictor, such as majority voting, weight-

based voting and select-best. In fact, the ideal strategy 

should strike a balance between these choices. On one hand, 

it should retain the benefits of voting by masses rather than 

simply select the best individual. On the other hand, we 

want the sensible experts to dominate the voting, thus 

render the global predictor sensitive to concept-drift. 

2.2.1 Dynamic Voting 

Our strategy is based upon the fact that we only want 

to divide the ensemble into two categories: the “good 

enough” experts and the else. Since we assume merely two 

categories in basic learners, it is reasonable to expect 

certain simple method to “judge good and evil in such a 

melodrama”. Here we put forward an efficient procedure to 

choose voters from ensemble. 

(1) Sort N basic classifiers in ensemble according to their 

accuracies on evaluation dataset. 

(2) Among N-1 distances between sorted classifiers, find 

the maximal one. 

(3) The maximal distance naturally divides the learners into 

two groups. 

(4) Engage the “better” group as voting group. 

The time complexity of this procedure depends on 

sorting step, which is trivial when N only refers to the 

capacity of ensemble. Furthermore, this procedure is 

executed only when the evaluation dataset is replaced by 

new chunk (the ensemble will be updated at the same time). 

Based on this voting policy, choosing ensemble capacity N 

is easy ---- we can choose a larger quantity than other 

voting-based algorithms, for the reason that outmoded 

experts in ensemble will be excluded from voting group by 

our dynamic voting. It will benefit in two aspects: (1) 

Under stationary concept, large ensemble furnishes 

sufficient voters; (2) In concept-drift scenario, large 

ensemble offers more opportunities for finding sensible 

experts, especially when concept switches in a repeated 

way. 

2.2.2 Discussion: Other Choices? 

Now we discuss that whether some other simper 

strategies can be used instead of our dynamic voting: (1) 

“select best-k”: For N experts in ensemble, select k best 

experts as voters. (2) “Performance threshold”: according 

to a threshold p0, define experts in ensemble whose 
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accuracies higher than p0 as voters. Firstly, the “select best-

k” policy aims at retaining the sensitivity of “select-best” 

policy and gaining the benefits of voting. Nonetheless, this 

strategy is obviously incompetent in that it is actually the 

similar with “majority voting” where N = k, whose flaws 

have been discussed in Section 1. Secondly, the 

“performance threshold” is not an ideal approach, either. In 

fact, we can not decide this threshold in order to divide the 

ensemble into “sensible” ones and the else: (1) 

Performance of basic classifier changes dramatically on 

different classification problems. (2) It is unknown that to 

what extent the concept-drift will degrade the performance 

of outmoded experts and where should we set this 

threshold. 

3. Empirical Study and Results 

This section presents the results of our experimental 

evaluation of the proposed method. The goal of our 

experiments is to demonstrate the ability of our algorithm 

to: (1) handle data insufficiency when training basic 

classifiers; (2) form effective voting; (3) keep sensitive to 

concept-drifts. 

3.1 Dataset and System Implementation 

To determine the performance of our algorithm on 

problems involving concept-drifts, we design the problem 

in which each data points has three attributes x, y, z ∈R, 

randomly sampled from range [0, 10]. The data point that 

satisfies the target concept 2222
rzyx <++  is labeled by 1. 

Otherwise the item will be labeled as 0. Radius r is used to 

control the concept-drifts. Experiments are implemented on 

Weka toolkit [14]. 

3.2 Concept-drift Tests and Results 

Four algorithms are tested: (1) SEA: algorithm in [11]; 

(2) DWM: algorithm in [9]; (3) DCS: algorithm in [16]; (4) 

DCO: our algorithm. DWM does not take part in Test1 and 

Test2 since it must use incremental basic classifier. All 

results are averaged from 30 independent runs. 

(1) Test1: Testing SEA, DCS, and DCO based on C4.5, 

chunkSize = 50. 

(2) Test2: Testing SEA, DCS, and DCO based on C4.5, 

chunkSize = 100. 

(3) Test3: Testing SEA, DCS, DCO and DWM based 

on Naïve Bayes, chunkSize = 50. 

(4) Test4: Testing SEA, DCS, DCO and DWM based 

on Naïve Bayes, chunkSize = 100. 

The procedure of experiment is: There are entirely 50 

chunkSize training data points. For the first fourth the 

radius r in target concept is 9; for the second r = 11.5; for 

the third r = 8.5; for the last r = 11. For each fourth, we 

randomly generate a testing dataset of 2500 data points on 

corresponding radius. Each time after chunkSize training 

data points are offered, we test all the algorithms using 

appropriate testing dataset. For our algorithm, conf = 0.9 

and ε = 1% in outperform function. For all algorithms with 

fixed-size ensemble, we set N = 50. Other parameters are 

set according to original papers. See Fig.1~Fig.4 for results, 

the analysis of these results is as follows: 

(1) Prediction accuracy: DCO has the best classification 

accuracy, and this advantage appears more evident when 

the size of data chunk is limited (chunkSize = 50). Such 

superiority dues great part to our novel strategies for 

individual-construction and global-prediction. In one sense, 

the former policy guarantees the sufficiency of training 

data for basic learners, augments the diversity among 

individuals, and reduces the bias of basic learners. In 

another sense, the latter strategy strikes a balance between 

the quantity of voters and the quality of voters, and thus 

renders the voting process much more effective in terms of 

variance-reduction. 

(2) Sensitivity for concept-drift: DCO and DCS are quite 

sensitive to concept-drift: they recover from 

misclassification very fast; DWM is not as sensitive as 

DCO and DCS, but still much better than SEA. DCS’s 

sensitivity obviously dues to its “select-best” policy; DCO 

relies on dynamic voting to exclude outmoded experts, thus 

remains as sensitive as DCS; DWM uses weighted-based 

Figure 2: Results of test 2. 

Figure 1: Results of test 1. 
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voting, and does not fix the capacity of ensemble, therefore 

has better alertness than SEA, which engages majority 

voting on fixed amount of voters in ensemble. 

(3) DCS and basic learner: DCS algorithm performed 

much better under naïve Bayes than using C4.5, because 

the former is a stable basic learner which is not in dire need 

of voting to reduce its variance. However, using unstable 

classifiers such as C4.5, DCS will appear ineffective. 

Furthermore, DCO beats DCS even based on naïve Bayes, 

since DCO enhances data sufficiency, individual diversity, 

and further reduces the bias-variance by dynamic voting. 

(4) Efficiency of algorithms: We test the efficiency of the 

four algorithms, represented by the time consumed in their 

30 independent runs and shown in Table 1. SEA is time-

consuming, especially when using Naïve Bayes. DCO is as 

efficient as DCS based on C4.5, and retains a reasonable 

speed on Naïve Bayes. In fact, the most complex part of 

DCO, the individual construction process mentioned in 

section 2.1, always stops after combining a few old blocks. 

Note that DWM used more time in test3 than in test4 since 

small data blocks lead to frequent creation of new classifers. 

3.3 Performance in Severe Circumstance 

What is more interesting is the performance of these 

algorithms in severe conditions: data insufficiency plus 

frequent and sudden concept-drifts, where data 

insufficiency calls for the ability to seek enough data for 

training basic classifiers; and frequent abrupt concept-drifts 

require excluding old concepts from training data. We set 

chunkSize as 25. For totally 40 chunkSize training data 

points, concept-drift happens after each 4 chunks. The 

radius starts with r=8, switches between 8 and 12 (i.e. r = 8, 

12, 8, 12 …). For each concept, we randomly generate 

2500 data points by corresponding radius. Each time after a 

chunk of training data is offered, we test all the algorithms 

using appropriate testing points. Other settings are similar 

with section 3.2. Test5 concerns SEA, DCS, and DCO 

based on C4.5; test6 measures SEA, DCS, DCO and DWM 

on naïve Bayes. The results are shown in Fig. 5 and Fig. 6. 

We can observe that: (1) the individual-construction policy 

effectively handles the data insufficiency; (2) the dynamic 

voting strategy furnishes successful voting, while retains 

the sensitivity to sudden and frequent concept-drifts. 

Table 1. Efficiency of Algorithms 

 SEA DCS DCO DWM 

Test1 6min 11sec 1min 4sec 1min 39sec --- 

Test2 8min 1sec 1min 46sec 1min 51sec --- 

Test3 51min 9sec 3min 7sec 14min 9sec 11min 5sec

Test4 78min 4sec 5min 21sec 15min 3sec 6min 1sec

Figure 6: Results of test 6. 

Figure 5: Results of test 5. 
Figure 3: Results of test 3. 

Figure 4: Results of test 4. 
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3.4 Real-world Dataset 

In this section, we proposed our empirical results on 

“adult” dataset [17]. We test SEA, DCS and DCO upon 

C4.5. The training and testing dataset contain 32561 and 

16281 instances, respectively. Data has 14 attributes such 

as the age, occupation and sex of a person. The label 

indicates whether this person has an income larger than 50k 

dollar. The preprocessing step aims to produce sufficient 

concept drifts: partition the dataset by “occupation” 

attribute, then collect instances in three occupations – 

“Adm-clerical”, “Exec-managerial” and “Other-service”; 

finally we get three training subsets with 3770, 4066 and 

3295 instances and three test subsets with 1841, 2020 and 

1628 instances, respectively. We set blockSize as 100. 

Totally 90 data blocks are engaged for training: 15 blocks 

from subset1, 15 blocks from subset2, 15 blocks from 

subset3, and then repeat. After each block, we test all the 

algorithms using corresponding test dataset. For all 

algorithms, ensemble size is 30. The results are shown in 

Table 2, which justifies the superiority of DCO. 

Table 2. Empirical Results on “Adult” Dataset 

SEA DCS DCO 

0.7773 0.8401 0.8510 

4. Conclusions 

Current algorithms for mining data streams are 

confronted with two contradictory elements: Firstly is the 

need for seeking adequate training data for each basic 

classifier and gathering sufficient voters for final-decision; 

and secondly, is the requirement for sensitivity to concept-

drift, which calls for using recent training data and up-to-

date basic classifier. In this work, we initially point out the 

essential reasons for the incompetence of several recent 

algorithms in solving these conflicting elements. Then, we 

propose a dynamic ensemble learning algorithm, termed 

DCO (Dynamic Construction and Organization), which 

aims at reconciling these contradictions. Experimental 

results justify the superiority of our approach over the 

state-of-the-art algorithms in that individual-construction 

strategy provides solution to data insufficiency under 

concept-drift scenario; and the dynamic voting strategy 

strikes a balance between the quantity and quality of voters.  
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