
An efficient approach to scale up
k-medoid based algorithms in large databases

Maria Camila N. Barioni, Humberto L. Razente,
Agma J. M. Traina, Caetano Traina Jr.∗

1Computer Sciences Department – ICMC/USP
Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

{mcamila, hlr, agma, caetano}@icmc.usp.br

Abstract. Scalable data mining algorithms have become crucial to efficiently
support KDD processes on large databases. In this paper, we address the task
of scaling up k-medoids based algorithms through the utilization of metric ac-
cess methods, allowing clustering algorithms to be executed by database ma-
nagement systems in a fraction of the time usually required by the traditional
approaches. Experimental results based on several datasets, including synthe-
tic and real data, show that the proposed algorithm may reduce the number of
distance calculations by a factor of more than a thousand times when compared
to existing algorithms while producing clusters of comparable quality.

1. Introduction

Clustering is one of the key techniques in the KDD (Knowledge Discovery in Databases)
process. It is usually applied aiming at uncovering hidden structures underlying a col-
lection of objects. Briefly, clustering is the process of dividing the data into groups of
similar objects according to a similarity measure. The goal is that each group, or cluster,
be composed of objects that are similar to each other and dissimilar to objects of other
groups [Han and Kamber 2001].

In the last decades, several clustering algorithms have been developed for a
large spectrum of applications. They can be divided into two main groups: partitio-
ning and hierarchical clustering algorithms. Hierarchical algorithms produce a cluster
hierarchy consisting of several levels of nested partitions of the dataset. On the other
hand, partitioning algorithms try to find the best k partitions of a dataset, thus crea-
ting a single level partition that divides the data into k clusters. Examples of hierar-
chical algorithms are Single-Link methods [Sibson 1973], CURE (Clustering Using Re-
presentatives) [Guha et al. 1998] and BIRCH (Balanced Iterative Reducing and Clus-
tering using Hierarchies) [Zhang et al. 1996]. Partitioning algorithms include k-means
[Hartigan and Wong 1979] and k-medoids [Kaufman and Rousseeuw 2005]. A descrip-
tion of these and other clustering algorithms can be found at [Jain et al. 1999].

The k-means algorithm is the most popular among the algorithms mentioned
above due to its simplicity and efficiency. However, the k-medoids based algorithms have
been shown to be more robust since they are less sensitive to the existence of outliers,
do not present limitations on attribute types (k-means are restricted to multi-dimensional

∗This work has been supported by FAPESP, CNPq and CAPES.



continuous datasets), and also, because the clustering found does not depend on the input
order of the dataset. Moreover, they are invariant to translations and orthogonal transfor-
mations of objects [Kaufman and Rousseeuw 2005].

The drawback of the k-medoids based algorithms is that they are very time
consuming and therefore, they cannot be efficiently applied to large datasets. This
has motivated the development of several approaches aiming at reducing the compu-
tational effort needed to execute these algorithms [Ester et al. 1995, Chu et al. 2002,
Zhang and Couloigner 2005]. A common strategy is to extract a sample, or to apply a
selection of representative objects before applying the whole or part of the clustering al-
gorithm to the resulting subset of objects. The quality of the resulting clusters is usually
dependent on the selection of a relevant subset of objects.

In this paper, we investigate how to improve the efficiency of k-medoids based
algorithms using a Metric Access Method (MAM) in order to select the representative ob-
jects over which these algorithms will be applied. Particularly, we illustrate our technique
using the Slim-tree [Traina-Jr. et al. 2002]. However, any other dynamic MAM, based on
the use of representative objects to partition the data space, as the Slim-tree does, can be
equally used. To the best of our knowledge, no MAM has yet been applied to reduce the
time complexity of k-medoids based algorithms.

The remainder of the paper is organized as follows. Section 2 describes the exis-
ting k-medoid based algorithms and the Slim-tree. Section 3 presents our new efficient
approach developed to scale up k-medoid based algorithms thus allowing fast clustering
of large databases. An experimental evaluation of the approach is shown in Section 4.
Finally, Section 5 gives the conclusions of this paper and suggestions for future works.

2. Basic Concepts

This section presents the existing k-medoid based algorithms and a brief description of
the main aspects related to the MAM Slim-tree. The symbols and definitions presented in
Table 1 are used throughout this paper.

Table 1. Summary of Symbols and Definitions.
Symbols Definitions
k number of clusters
n number of objects in the dataset
S set of objects to be clustered
sj an object ∈ S
R set of objects ∈ S selected as medoids
rj , rc objects ∈ R
d() dissimilarity measure (distance function) between two objects

2.1. Clustering Algorithms

The objective of k-medoids based algorithms is to find a non-overlapping set of clusters,
so that each cluster has one representative object (the medoid), i.e., an object that is the
most centrally located in the cluster considering a dissimilarity or distance measure. In
order to do so, these algorithms perform two main steps:



• An initialization step, where an initial set of k objects are selected as medoids;
• An evaluation step, where they try to minimize an objective function usually ba-

sed on the sum of the total distance among non-selected objects and their medoids,
i.e., the evaluation step tries to minimize:

n∑
j=1

d(ri, sj) , (1)

where sj ∈ S and d(ri, sj) < d(rc, sj),∀ri, rc ∈ R, ri 6= rc. The smaller the
sum of distances among the medoids and all the other objects of their clusters, the
better the clustering.

The three best-known k-medoid based algorithms are PAM (Partitioning Around
Medoids), CLARA (Clustering LARge Applications) and CLARANS (Clustering Large Ap-
plications based upon RANdomized Search) [Kaufman and Rousseeuw 2005]. The main
aspects related to each one of these algorithms are described in the next subsections.

2.1.1. PAM Algorithm

PAM [Kaufman and Rousseeuw 1987] is one of the earliest k-medoids based algorithms.
It is based on an iterative process of optimization that evaluates the effect of a swap
between a medoid object and a non-medoid object relocating objects between perspective
clusters. It can be expressed in the following way [Kaufman and Rousseeuw 2005].

1. Build Phase: In this phase, an initial set R of k representative objects is selected.
The first selected object is the one for which the sum of the dissimilarities to all
other objects is as small as possible. Thus, the first selected object is the dataset
medoid. The other (k − 1) medoids are selected subsequently, one at a time,
considering the objects that most decrease the objective function.

2. Swap Phase: This phase computes the total cost Tih for all pairs of objects ri and
sh, where ri ∈ R is currently selected and sh ∈ S is not.

3. Selection Phase: This phase selects the pair (ri, sh) which minimizes Tih.
If the minimum Tih is negative, the swap is carried out and the algorithm re-
iterates Step (2). Otherwise, for each non-selected object, the most similar medoid
is found and the algorithm stops.

The guiding principle of the PAM clustering process resides in Step (2). As it can
be seen, it requires trying all objects that are currently not medoids and thus it presents
a very expensive computational cost, O(k(n − k)2) in each iteration [Ng and Han 1994].
The PAM algorithm results in high quality clusters, as it tries every possible combination,
working effectively for small datasets (e.g., 100 objects in 5 clusters). However, due to its
computational complexity, it is not practical for clustering large datasets.

2.1.2. CLARA Algorithm

The computational complexity of the PAM algorithm motivated Kaufman and
Rousseeuw to develop CLARA, a clustering algorithm based on sampling



[Kaufman and Rousseeuw 2005]. CLARA draws multiple samples of the dataset
and applies PAM on each sample. Then each object of the entire dataset is assigned to
the resulting medoids, the objective function is computed, and the best set of medoids
is returned as the output. Experiments described in [Kaufman and Rousseeuw 2005]
indicated that 5 samples of size 40 + 2k give satisfactory results. The computational
complexity of each iteration of CLARA is of O(ks2 + k(n − k)), where s is the size of
the sample.

2.1.3. CLARANS Algorithm

CLARANS was developed in the context of spatial data mining. It uses a randomized
search strategy in order to improve on both PAM and CLARA algorithms in terms of
efficiency (computation complexity or time) and effectiveness (average distortion over
the distances) respectively. When searching for a better medoid in the evaluation step,
CLARANS randomly chooses objects from the remaining (n− k) objects. The number of
objects tried in this step is restricted by a parameter provided by the user (maxNeighbor).
If no better solution is found after maxNeighbor attempts, the local optimal is assumed
to be reached. The procedure continues until numLocal local optimals have been found.
It was recommended that the parameters maxNeighbor and numLocal be set to 2 and
max(250, 1.25% of k ∗ (n− k)), respectively [Ng and Han 2002].

The computational complexity of CLARANS is O(n2) in terms of the number of
objects. Three focusing techniques was proposed in [Ester et al. 1995] employing R*-
trees [Beckmann et al. 1990] in order to make CLARANS more efficient for large spatial
databases.

2.2. The MAM Slim-tree

The basic structure of any metric tree, such as e.g. M-tree [Ciaccia et al. 1997], Slim-
tree [Traina-Jr. et al. 2002] and DBM-tree [Vieira et al. 2004], divides the data space into
regions using representatives to which the other objects in each region will be associated
with. The objects of each region are stored in a node that has a covering radius. Only
objects within this radius are associated with the representative. The Slim-tree stores the
data in the leaves and creates an appropriate hierarchy on top. An important factor that
affects the search performance of this kind of tree is related to the degree of overlapping
among the nodes. The Slim-tree is a dynamic structure that was developed to reduce
the overlapping among regions in each level, and to optimize disk accesses on nearest
neighbor and range queries.

Like many bottom-up structures (e.g. B-tree), its construction is as follows. The
objects are inserted in a node up to its capacity. When a new object must be inserted,
the node splits and the objects are distributed between the two nodes. One object of
each splited node is elected to go to an upper level, which is done recursively. These
objects are the nodes representatives, and they are associated with a radius that covers the
respective nodes. Figure 1 presents an example of a Slim-tree of 15 objects {s1, ..., s15}
with maximum node capacity of 3 objects.

The representative objects in a given level and their correspondent radius may be
overlapped. This leads to the problem of qualifying more than one node to host a new



s
1

s
1

s
1

s
1

s
1

s
1

s
1

s
1

s
2

s
2

s
2

s
2

s
2

s
2

s
7

s
7

s
7

s
7

s
7

s
7

s
5

s
5

s
5

s
5s

6
s

6
s

6
s

6

s
6

s
6

s
3

s
3

s
3

s
3

s
10

s
10

s
10

s
10

s
12

s
12

s
13

s
13

s
8

s
8

s
8

s
8

s
8

s
8

s
9

s
9

s
9

s
9

s
11

s
11

s
11

s
11

s
4

s
4

s
15

s
15

s
14

s
14

s
14

s
14

root

(b)

s
7

s
7

s
5

s
5

s
6

s
6

s
12

s
12

s
13

s
13

s
4

s
4

s
15

s
15

index

nodes

index

nodes

leaf

nodes

leaf

nodes

(a)

Figure 1. A Slim-tree representation with 15 objects (a) and its logic structure (b).
The white circles in (a) represent the leaf nodes, while the gray circles represent
the index nodes. The objects in black are representatives.

object. In order to build a Slim-tree, it is necessary to have a policy employed when a new
object is inserted and more than one node is qualified for the insertion of the new object
(ChooseSubtree algorithm) [Traina-Jr. et al. 2002]. The Slim-tree has three options for
the ChooseSubtree algorithm:

1. random: randomly choose one of the qualifying nodes;
2. minDist: choose the node that has the minimum distance from the new object and

the center of the node;
3. minOccup: choose the node that has the minimum occupancy among the qua-

lifying ones.

It is important to note that the choice of this policy affects the features of the
resultant tree regarding the degree of overlapping among nodes. For example, the minOc-
cup option generates shallow trees with higher node occupation rates leading to a smaller
number of disk accesses on queries. However, this option also leads to a higher overlap-
ping degree of the nodes. On the other hand, the minDist option generates higher trees
with lower node occupation rates and a lower overlapping degree among nodes.

By definition, a Slim-tree indirectly divides a metric space into a number of clus-
ters from the number of objects and the node capacity. Unfortunately, this number of
clusters is not a parameter given by the user, so it is not possible to let the Slim-tree do the
whole clustering. On the other hand, the representative objects stored in the index nodes
are, in a sense, approximate cluster centers on each level of the tree. And, although the
use of this information does not allow the selection of any number k of clusters directly,
it can be used as a convenient starting point to cluster the data.

3. The Proposed Algorithm
The computational complexity of the k-medoid based algorithms presented above depend
on n and k. In order to reduce this complexity, a common approach is to reduce the num-
ber of all objects that are submitted to these algorithms making a sample of the original
database. In this approach, the quality of the sampling is crucial for the quality of the
resulting clustering.

In this paper, we propose to speed up k-medoid based algorithms using a MAM.
Therefore, to improve the scalability of k-medoid based algorithms our strategy is to per-
form sampling operations based on features of a MAM, which hierarchically divides the



data space into regions, and assigns a representative to each region. As the Slim-tree me-
ets this requirement, we use it as the basis to describe our technique in this paper. This
strategy is based on the assumption that by construction, the node centers of the Slim-
tree are reasonably well distributed over the data domain, as well as they are the natural
centers of the regions that they represent. The center of a subtree can be considered as
the center of mass of the objects stored in that subtree. Therefore, instead of considering
all objects of a dataset to compute the clustering algorithm, only the objects of a chosen
tree-level are considered. This sampling strategy considers the distance of an object to the
center of a subtree as being approximately the average of the distances for every object
stored in that subtree.

By construction, each level of a Slim-tree represents a data space division with a
granularity that grows from the root to the leaves, eventually storing all the objects of a
dataset. One question we need to answer is: which level of the tree has enough informa-
tion about the data distribution that can lead to a clustering with a lower computational
cost while keeping a reasonable quality?

The upper levels of a tree (close to the root level) do not contain much information
about the data distribution because the data are grouped by a small number of representa-
tives. On the other hand, the lower levels (close to the leaf level) tend to have too much
information slowing down the algorithm. Intuitively, the middle levels of the tree may
contain enough information about the data distribution that can lead to suitable cluste-
ring. The experiments we have performed indicated that the middle level of the tree really
is a good choice.

Although the proposed approach may also be applied to other k-medoid based
algorithms, we will consider only the PAM algorithm in this paper as it is the one presen-
ting the better quality of the clusters identified. The proposed sampling algorithm using
the Slim-tree applied to PAM will be referred to as PAM-SLIM, and it can be depicted as
follows:

1. Pre-process phase. In this phase, the parameters for the construction of the Slim-
tree are set, and the tree is built.

(a) Choose the parameters for the tree construction: the page size and the
ChooseSubtree algorithm.

(b) Build the Slim-tree.
2. Initialization phase. In this phase, the objects that should be considered in the

clustering phase are selected.
(a) Find the middle level of the tree as hm. If level hm does not have at least k

objects, then select the next level.
(b) Let Shm be the set of objects in the hm level.

3. Clustering phase. In this phase, the objects Shm selected in Step (2) are submitted
to PAM.

(a) Apply the PAM algorithm over Shm .
(b) Assign each object of the entire dataset to the set of medoids returned by

PAM.

The PAM-SLIM algorithm is divided in three main phases. The first phase is res-
ponsible for the construction of the Slim-tree. This phase allows the specification of some



of the parameters needed for the construction of the tree, such as the ChooseSubtree al-
gorithm and the node page size. As mentioned in Section 2.2, the Slim-trees built with
the different options provided for the ChooseSubtree algorithm tend to present different
degrees of overlap among their nodes. Thus, the possibility of determining the Choo-
seSubtree option, in the pre-process phase, allows the evaluation of the results obtained
from the PAM-SLIM algorithms when considering different configurations of the Slim-
tree. Another parameter that deserves attention in the construction of a Slim-tree is the
node page size. As the PAM-SLIM algorithms choose their medoids based on the node
representatives, the node size affects the behavior of the algorithms. Thus, this parameter
must be set according to the dataset to be clustered.

Once the Slim-tree has been constructed, a subset of objects that must be submitted
to PAM are selected in the second phase. This subset of objects is composed of the node
representatives stored in the middle level of the tree. The last phase applies the PAM
algorithm over the objects selected in the previous step and assigns each object of the
entire dataset to the set of medoids returned by PAM.

4. Experimental Evaluation
In order to show the effectiveness and the efficiency of our approach, we will present three
representative sets of experiments chosen from the ones we have performed. To evalu-
ate the clustering obtained by the techniques under analysis (effectiveness), we compute
the average distance of the resulting clustering, i.e., the average distance of all objects
from their medoids (smaller values for average distance indicate better clustering). The
efficiency was measured by the number of distance calculations.

In the first set of experiments, we aimed at comparing the proposed approach
PAM-SLIM with the traditional k-medoid based algorithms PAM, CLARA and CLARANS.
As PAM is not suitable for large databases due to its computational complexity (see Sec-
tion 2.1.1), it was run only in the first set of experiments. The second series of experiments
aimed at measuring the scalability of our approach when the database increases. These
experiments compared our approach to CLARANS and CLARA. The third set of experi-
ments showed the performance of our approach using a large, real-world dataset. It is
important to note that, in all the experiments, the efficiency graphics are in log scale for
the number of distance calculation axis, due to the large difference of the results obtained
for the tested algorithms.

In every experiment, we have considered two configurations for the proposed ap-
proach PAM-SLIM: PAM-SLIM-MD which uses the minDist option of the Slim-tree and
PAM-SLIM-MO which uses the minOccup option. This was done mainly, because the
Slim-trees built with these two options present differences in the overlap degree among
their nodes (see Section 2.2). Thus, we have intended to find out which option was more
appropriated for the construction of the tree that is employed to sample the objects sub-
mitted to PAM.

In order to find the ideal page size, the experiments were run varying the page
size for the Slim-tree methods. The node page sizes were chosen based on the size of
the objects of each dataset. It is important to note that the algorithms PAM, CLARA and
CLARANS only run in main memory and thus, they are not influenced by the page size.

The five clustering algorithms experimented – PAM, CLARA, CLARANS, PAM-



SLIM-MD and PAM-SLIM-MO – were implemented within the same platform, using the
C++ language into the Arboretum MAM library [GBDI-ICMC-USP 2006], in order to
obtain a fair comparison. CLARA and CLARANS were configured using their best recom-
mended setup as described in Section 2.1. The experiments were performed in a PC with
an Intel P4 2.4 GHz CPU, 1 GB RAM and 60 GB of disk space.

Nine datasets were employed in the experiments. Eight were composed of synthe-
tic data and were built to enable a thoughtful evaluation of the algorithms. The ninth
dataset was composed of real adimensional data and was used aiming at analyzing the
behavior of our algorithm in real-world. The description of the datasets are presented in
Table 2 along with its name, the total number of objects (# Objs.), the object size in bytes,
the number of clusters (k) used to generate the dataset, the dimensionality of the dataset
(D), and the distance function used (d()).

Table 2. Description of the synthetic and real-world datasets used in the experi-
ments.

Name # Obj. Object k D d() Description
size (Bytes)

Synt10 5k 10,000 24 5 5 L2 Synthetic vector data with Gaussian distri-
Synt10 10k 10,000 24 10 5 L2 bution in a 5-d unit hypercube. The process
Synt10 15k 10,000 24 15 5 L2 to generate these datasets is described in
Synt10 20k 10,000 24 20 5 L2 [Ciaccia et al. 1997].
Synt30 10k 30,000 24 10 5 L2

Synt60 10k 60,000 24 10 5 L2

Synt90 10k 90,000 24 10 5 L2

Synt120 10k 120,000 24 10 5 L2

MedHisto 40,000 44 - 380 - - LM Metric histograms of medical gray-level
(avg. 280) images. This dataset is adimensional and

was generated at GBDI-ICMC-USP. For
more details on this dataset and the used
distance function see [Traina et al. 2002].

4.1. Evaluating PAM-SLIM vs k-medoid based algorithms

This first set of experiments were carried out in order to compare the two configurati-
ons of our method PAM-SLIM-MD and PAM-SLIM-MO with the existent k-medoid based
algorithms PAM, CLARA and CLARANS.

Figure 2 shows the efficiency ((a), (b), (c) and (d)) and effectiveness ((e), (f),
(g) and (h)) comparison of PAM, CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-
MO for the datasets Synt10 5k, Synt10 10k, Synt10 15k and Synt10 20k, where 5, 10,
15 and 20 medoids were selected, respectively. Notice that, as the traditional clustering
algorithms – PAM, CLARANS and CLARA – are executed in main memory, their results
are shown as the three first bars in the graphs without a page size label. PAM-SLIM-MD
and PAM-SLIM-MO were executed using disk, employing node page sizes of 1,024 and
2,048 bytes.

Considering the node page sizes employed in the tests for both PAM-SLIM algo-
rithms, the node page size of 2,048 bytes was the one that presented the best trade-off
between efficiency and effectiveness. In some cases, such as in Figure 2(e), the quality
of the clusters obtained from the PAM-SLIM algorithms, considering the node page size



of 1,024 bytes, was better than the ones considering the node page size of 2,048 bytes.
However, if we observe the correspondent graph of efficiency (Figure 2(a)), presented in
log scale for the vertical axis, the PAM-SLIM algorithms execution, with node page size
of 2,048 bytes, show an improvement of efficiency of 5.6 times for PAM-SLIM-MD, and
of 4.5 times for PAM-SLIM-MO when compared to the same algorithms executed with
node page size of 1,024 bytes. Therefore, node page sizes of 2,048 bytes presented a
better overall result.

For the PAM-SLIM-MD, we observed improvements of efficiency ranging from
14 to 23 times faster when compared to CLARANS, whereas the loss of effectiveness
varies only from 0.9% to 4.1%. Compared to PAM, the efficiency was improved by a
factor of 1,054 to 1,459 times (more than a thousand times faster), although we observed
a decrease of effectiveness ranging from only 7.1% to 10.1%. Compared to CLARA,
our improvement of effectiveness ranged from 10.8% to 27.8%, although the CLARA
algorithm had presented a smaller number of distance calculations.

Despite the fact that the loss of effectiveness, in terms of the average distance of
the resulting clustering, in our approach reaches 10% compared to PAM and 4.1% com-
pared to CLARANS, if we consider the percentage of objects that are really misgrouped,
this loss of effectiveness is smaller. This is due to the fact that the misgrouped objects
are near the border of the clusters, so their distances to their medoids are large. Table 3
shows the percentage of objects that were associated with different clusters for the algo-
rithms CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-MO when compared to PAM
clustering (the best and exhaustive algorithm). Notice that the PAM and PAM-SLIM algo-
rithms perform the sampling in a deterministic way, so that every execution always gives
the same result. The CLARANS and CLARA algorithms are based on random samples,
so we present the average of 10 executions of each algorithm. Notice that the values for
the PAM-SLIM algorithms are comparable to the execution of the CLARANS algorithm,
being better for the datasets Synt10 5k and Synt10 10k, and also that they run in a frac-
tion of the time needed by CLARANS (from 14 to 36 times less distance calculations in
this set of experiments). It is also important to note that the CLARA algorithm degene-
rated with the increase of the k number of clusters asked, reaching 13.5% of the objects
associated with different clusters when compared to PAM. The quality of the clusters ge-
nerated by the CLARA algorithm also degenerates as the number of objects increases, as
it is demonstrated in the next sets of experiments.

Table 3. Percentage of objects that were associated with different clusters when
compared to PAM clustering. Considering PAM-SLIM-MD and PAM-SLIM-MO run
with page size of 2,048 bytes.

Dataset CLARANS CLARA PAM-SLIM-MD PAM-SLIM-MO
Synt10 5k 0.4% 0.7% 0.2% 0.2%
Synt10 10k 1.2% 3.9% 1.3% 0.8%
Synt10 15k 1.7% 5.9% 1.8% 3.5%
Synt10 20k 2.7% 13.5% 3.7% 5.5%

Table 4 shows the time to execute a clustering on the datasets measured as
hours:minutes:seconds. The time comparison of PAM, CLARANS, PAM-SLIM-MD and
PAM-SLIM-MO considers the page size that presented the best trade-off for PAM-SLIM-



(a) Synt10 5k (e) Synt10 5k

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(b) Synt10 10k (f) Synt10 10k

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(c) Synt10 15k (g) Synt10 15k

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(d) Synt10 20k (h) Synt10 20k

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048

PAM
CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

Figure 2. Efficiency ((a), (b), (c) and (d)) and effectiveness ((e), (f), (g) and (h))
comparison of PAM, CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-MO for
Synt10 5k, Synt10 10k, Synt10 15k and Synt10 20k datasets.



MD and PAM-SLIM-MO (page size of 2,048 bytes). As the experiments show, PAM-SLIM
was more than a thousand times faster than PAM while producing clusterings of compa-
rable quality.

Table 4. Time comparison of PAM, CLARANS, PAM-SLIM-MD and PAM-SLIM-MO
for Synt10 5k, Synt10 10k, Synt10 15k and Synt10 20k datasets. Considering
PAM-SLIM-MD and PAM-SLIM-MO run with page size of 2,048 bytes. Time mea-
sured in hours:minutes:seconds.

Dataset PAM CLARANS PAM-SLIM- PAM-SLIM-
MD MO

Synt10 5k 01:31:04 00:01:21 00:00:21 00:00:14
Synt10 10k 11:28:31 00:08:22 00:01:52 00:01:10
Synt10 15k 32:28:18 00:22:37 00:07:29 00:03:35
Synt10 20k 57:26:11 00:44:27 00:14:46 00:06:50

Although the CLARA algorithm had presented the best efficiency (in terms of the
number of distance calculations) in all the tests showed herein, its clustering quality is
worse, not being comparable to that of PAM, considering its recommended configuration.
In order to improve its clustering quality, it is necessary to increase the number of sam-
plings and/or their sizes. However, this results in a large reduction of its efficiency. This
makes the algorithm PAM-SLIM-MD the one that presents the best trade-off between effi-
ciency and effectiveness for the datasets tested here. In the next experiments, we have not
compared the results with PAM algorithm, because of its prohibitive computational cost.

4.2. Evaluating the scalability of the PAM-SLIM algorithms

The datasets Synt30 10k, Synt60 10k, Synt90 10k and Synt120 10k were used in the se-
cond set of experiments aiming at measuring the scalability of our approach regarding the
increasing number of data items (see Table 2). In it, 10 medoids were asked for clustering
each dataset. Figure 3 shows the efficiency and effectiveness comparison of CLARANS,
CLARA, PAM-SLIM-MD and PAM-SLIM-MO. The node page sizes employed in these
experiments for the PAM-SLIM-MD and PAM-SLIM-MO algorithms varied from 1,024 to
8,192 bytes.

As it can be seen in Figure 3 ((e), (f), (g) and (h)), the node page size that resulted
in the best overall clustering quality for the PAM-SLIM algorithms was of 2,048 bytes.
Taking this page size into account, we have observed that the PAM-SLIM-MO obtained an
improvement of efficiency ranging from 7 to 26 times compared to CLARANS (the cluste-
ring algorithm that presented the best clustering quality) as can be seen from Figure 3 ((a),
(b), (c) and (d)), whereas the effectiveness varied from 0.7% of gain to 2.7% of loss. It is
important to note that, considering larger page sizes, the improvement of efficiency was
even higher while producing a small decrease of the effectiveness. Comparing the confi-
guration of the PAM-SLIM-MO with node page size of 2,048 bytes and the configurations
of 4,096 and 8,192 bytes, the improvement of efficiency obtained ranged from 4.1 to 7.7
times and from 20.4 to 22.9 times, respectively. In these cases, the loss of effectiveness
ranged from 1.6% to 3.0% for the configuration of 4,096 bytes and from 3.1% to 4.6%
for the configuration of 8,192 bytes.

In the second set of experiments, although the CLARA algorithm presented the best



(a) Synt30 10k (e) Synt30 10k

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(b) Synt60 10k (f) Synt60 10k

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(c) Synt90 10k (g) Synt90 10k

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(d) Synt120 10k (h) Synt120 10k

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

A
ve

ra
ge

 d
is

ta
nc

e

Page size
1024 2048 4096 8192

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

Figure 3. Efficiency ((a), (b), (c) and (d)) and effectiveness ((e), (f), (g) and
(h)) comparison of CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-MO for
Synt30 10k, Synt60 10k, Synt90 10k and Synt120 10k datasets.



efficiency among the tested algorithms, its loss of effectiveness was greater than 21.1%
when compared to CLARANS and greater than 19.1% when compared to PAM-SLIM-MO.

4.3. Exploring a real database

The last set of experiments used the real-world adimensional dataset, MedHisto, in order
to observe the behavior of our algorithms in a real situation. In these experiments, 5, 10
and 15 medoids were selected from 40,000 objects of the MedHisto dataset. The node
page sizes employed for the PAM-SLIM algorithms varied from 8,192 to 32,768 bytes.

Figure 4 shows the efficiency ((a), (b) and (c)) and effectiveness ((d), (e) and (f))
comparison of CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-MO for this dataset.
The best clustering quality obtained for the PAM-SLIM-MO employed the node page size
of 8,192 bytes, whereas for the PAM-SLIM-MD algorithm the best clustering quality was
achieved considering the page size configuration of 32,768 bytes. Observing the best
configuration for the PAM-SLIM-MO, the improvement of efficiency ranged from 8 to 26
times when compared to CLARANS, while the loss of effectiveness ranged from 2.0% to
8.0%. For the PAM-SLIM-MD, the improvement of efficiency ranged from 106 to 190
times compared to CLARANS, whereas the loss of effectiveness ranged from 3.1% to
8.6%.

(a) MedHisto - 5 k (b) MedHisto - 10 k (c) MedHisto - 15 k

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

(d) MedHisto - 5 k (e) MedHisto - 10 k (f) MedHisto - 15 k

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

A
ve

ra
ge

 d
is

ta
nc

e

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

A
ve

ra
ge

 d
is

ta
nc

e

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

A
ve

ra
ge

 d
is

ta
nc

e

Page size
8192 16384 32768

CLARANS
CLARA
PAM−SLIM−MD
PAM−SLIM−MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

 1e+014

N
um

be
r 

of
 d

is
ta

nc
e 

ca
lc

ul
at

io
n

Page size
256 512 1024 2048

PAM
CLARANS
CLARA
PAM-SLIM-MD
PAM-SLIM-MO

Figure 4. Efficiency ((a), (b) and (c)) and effectiveness ((d), (e) and (f)) compa-
rison of CLARANS, CLARA, PAM-SLIM-MD and PAM-SLIM-MO for the MedHisto
dataset.

It has been noted that, the loss of effectiveness presented by the PAM-SLIM algo-



rithms in this set of experiments, was much lower than the one presented by CLARA when
compared to CLARANS. The loss of effectiveness presented by CLARA was superior to
39% when compared to CLARANS and superior to 33% when compared to PAM-SLIM-
MD.

5. Conclusions

This paper presented a new algorithm, PAM-SLIM which employs metric access methods
to scale-up k-medoid based algorithms. The efficiency of k-medoid based algorithms
relies on the initial selection of the medoids. Our proposed algorithm assumes that a
metric tree tends to naturally choose suitable medoids to be its node representatives. The
experiments we performed confirmed that this assumption indeed holds. The strategy
employed by this algorithm can be efficiently applied to cluster multi-dimensional as well
as adimensional datasets.

Our experiments have shown that the proposed algorithm presented suitable re-
sults for several configurations of the Slim-tree using different node page sizes and Cho-
oseSubtree policies. When compared to PAM and CLARANS, the PAM-SLIM algorithms
presented impressive improvement of efficiency (being more than a thousand times fas-
ter), whereas maintaining a comparable clustering quality, thus offering a very good trade-
off between efficiency and effectiveness. The new algorithm also presented much better
clustering quality than CLARA for all the tested datasets. Moreover, notice that our pro-
posed algorithm runs on datasets stored on disk, whereas the other algorithms run only in
main memory. Even though, our algorithm remains much faster than the ones that presen-
ted comparable clustering quality (PAM and CLARANS). Hence, the efficiency presented
by the PAM-SLIM algorithm allows the execution of clustering algorithms in database
management systems.

There are a few issues that deserve further research. Although the two configurati-
ons employed by the PAM-SLIM algorithms (PAM-SLIM-MD and PAM-SLIM-MO) have
obtained suitable results, they presented different behaviors in each dataset tested. Future
works shall include the identification of parameters to be measured in a dataset to define
beforehand where each configuration is the best choice.

References

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: An
efficient and robust access method for points and rectangles. In ACM SIGMOD In-
ternational Conference on Management of Data, pages 322–331, Atlantic City, NJ.
ACM.

Chu, S.-C., Roddick, J. F., and Pan, J. S. (2002). An efficient k-medoids-based algo-
rithm using previous medoid index, triangular inequality elimination criteria, and par-
tial distance search. In International Conference on Data Warehousing and Knowledge
Discovery (DaWaK), pages 63–72, London, UK. Springer-Verlag.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for
similarity search in metric spaces. In International Conference on Very Large Data
Bases (VLDB), pages 426–435, Athens, Greece. Morgan Kaufmann.



Ester, M., Kriegel, H.-P., and Xu, X. (1995). Knowledge discovery in large spatial databa-
ses: focusing techniques for efficient class identification. In International Symposium
on Advances in Spatial Databases, volume 951, pages 67–82, Portland, ME. Springer.

GBDI-ICMC-USP (2006). GBDI Arboretum Library. http://gbdi.icmc.usp.br/arboretum/.

Guha, S., Rastogi, R., and Shim, K. (1998). Cure: an efficient clustering algorithm for
large databases. In ACM SIGMOD International Conference on the Management of
Data, pages 73–84, Seattle, WA, USA.

Han, J. and Kamber, M. (2001). Data mining: Concepts and techniques. Academic Press,
San Diego, CA.

Hartigan, J. and Wong, M. (1979). Algorithm as136: A k-means clustering algorithm.
Applied Statistics, 28:100–108.

Jain, A., Murty, M., and Flynn, P. (1999). Data clustering: A review. ACM Computing
Surveys, 31(3):264–323.

Kaufman, L. and Rousseeuw, P. J. (1987). Clustering by means of medoids. Statistical
Data Analysis based on the L1 Norm, Elsevier, pages 405–416.

Kaufman, L. and Rousseeuw, P. J. (2005). Finding groups in data: An introduction to
cluster analysis. John Wiley and Sons.

Ng, R. T. and Han, J. (1994). Efficient and effective clustering methods for spatial data
mining. In International Conference on Very Large Data Bases (VLDB), pages 144–
155, Santiago, Chile. Morgan Kaufmann.

Ng, R. T. and Han, J. (2002). Clarans: A method for clustering objects for spatial data mi-
ning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(5):1003–
1016.

Sibson, R. (1973). Slink: An optimally efficient algorithm for the single link cluster
method. Computer Journal, 16:30–34.

Traina, A. J. M., Jr., C. T., Bueno, J. M., and de A. Marques, P. M. (2002). The metric
histogram: A new and efficient approach for content-based image retrieval. In IFIP
Working Conference on Visual Database Systems (VDB), pages 297–311, Australia.

Traina-Jr., C., Traina, A. J. M., Faloutsos, C., and Seeger, B. (2002). Fast indexing and
visualization of metric datasets using Slim-trees. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 14(2):244–260.

Vieira, M. R., Chino, C. T.-J. F., and Traina, A. J. M. (2004). Dbm-tree: A metric access
method sensitive to local density data. In Brazilian Symposium on Databases (SBBD),
pages 163–177, Brası́lia, DF. SBC.

Zhang, Q. and Couloigner, I. (2005). A new and efficient k-medoid algorithm for spatial
clustering. In International Conference on Computational Science and Its Applicati-
ons, volume 3482 of LNCS, pages 181–189, Singapore. Springer-Verlag.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: An efficient data cluste-
ring method for very large databases. In ACM SIGMOD International Conference on
Management of Data, pages 103–114, Montreal, Quebec, Canada. ACM.


