
A Distributed Algorithm for Joins in Sensor Networks

Alexandru Coman Mario A. Nascimento
Department of Computing Science

University of Alberta, Canada
{acoman | mn }@cs.ualberta.ca

Abstract

Given their autonomy, flexibility and large range of func-
tionality, wireless sensor networks can be used as an effec-
tive and discrete means for monitoring data in many do-
mains. Typical sensor nodes are very constrained, in par-
ticular regarding their energy and memory resources. Thus,
any query processing solution over these devices should
consider their limitations. We investigate the problem of
processing join queries within a sensor network. Due to
the limited memory at nodes, joins are typically processed
in a distributed manner over a set of nodes. Previous
approaches have either assumed that the join processing
nodes have sufficient memory to buffer the subset of the join
relations assigned to them, or that the amount of available
memory at nodes is known in advance. These assumptions
are not realistic for most scenarios. In this context we pro-
pose and investigate DIJ, a distributed algorithm for join
processing that considers the memory limitations at nodes
and does not make a priori assumptions on the available
memory at the processing nodes. At the same time, our al-
gorithm still aims at minimizing the energy cost of query
processing.

1. Introduction

Recent technological advances, decreasing production
costs and increasing capabilities have made sensor net-
works suitable for many applications, including environ-
mental monitoring, warehouse management and battlefield
surveillance. Despite the relative novelty and small num-
ber of real-life deployments, sensor networks are consid-
ered a highly promising technology that will change the
way we interact with our environment [13]. Typical sen-
sor networks will be typically be formed by a large number
of small, radio-enabled, sensing nodes. Each node is ca-
pable of observing the environment, storing the observed
values, processing them and exchanging them with other
nodes over the wireless network. While these capabilities

are expected to rapidly grow in the near future, the energy
source, be it either a battery or some sort of energy har-
vesting [8], is likely to remain the main limitation of these
devices. Hence, energy efficient data processing and net-
working protocols must be developed in order to make the
long-term use of such devices practical. Our focus is on en-
ergy efficient processing of queries, joins in particular, over
sensor networks. We study this problem in an environment
where each sensor node is only aware of the existence of the
other sensor nodes located within its wireless communica-
tion range, and the query can be introduced in the network
at any node.

Users query the sensor network to retrieve the collected
data on the monitored environment. The most popular form
for expressing queries in a sensor network is using an SQL-
like declarative language [6]. The data collected in the sen-
sor network can be seen as one relation distributed over the
sensor nodes, called the sensor relation in the following.
The queries typically accept one or more of the following
operators [6, 9]: selection, projection, union, grouping and
aggregations. We note that the join operation in sensor net-
works has been mostly neglected in the literature.

A scenario where join queries are important is as fol-
lows. National Parks administration is interested in long-
term monitoring of the animals in the managed park. A
sensor network is deployed over the park, with the task of
monitoring the animals (e.g., using RFID sensing). Park
rangers patrol the park and, upon observing certain patterns,
query the sensor network through mobile devices to find in-
formation of interest. For instance, upon finding two ani-
mals killed in region A, respectively B, the rangers need to
find what animals, possibly ill of rabies, have killed them.
The ranger would issue the query “What animals have been
in both region A and B between times T1 and T2?”. If joins
cannot be processed in-network, then two, possibly long,
lists of animals IDs appearing in each region will be re-
trieved and joined at the user’s device. On the other hand,
if the join is processed in-network, only possibly very few
animal IDs are retrieved, substantially reducing the commu-
nication cost.

1

In this paper we focus on the processing of the join op-
erator in sensor networks. Since the energy required for
communication is three to four orders of magnitude higher
than the energy required by sensing and computation [9],
it is important to minimize the energy cost of communica-
tion during query processing. Recently, a few works ad-
dressed in-network processing of join queries. Bonfils and
Bonnet [3] investigate placing a correlation operator at a
node in the network. Pandit and Gupta [11] propose two
algorithms for processing a range-join operator in the net-
work and Yu at al. [16] propose an algorithm for processing
equi-joins. These works study the self-join problem where
subsets of the sensor relation are joined. Abadi et al. [1] pro-
pose several solutions for the join with an external relation,
where the sensor relation is joined with a relation stored at
the user’s device. Coman et al. [5] study the cost of several
join processing solutions with respect to the location of the
network region where the join is performed. Most previous
solutions either assume that nodes have sufficient memory
to buffer the partition of the join relations assigned to them
for processing, or that the amount of memory available at
each node is known in advance and the assigned data par-
titions can be set accordingly. These assumptions are un-
realistic for most scenarios. It is well known that sensor
networks are very constrained on main memory and the en-
ergy cost of using their flash storage (for those devices that
have it) is rather prohibitive to be used for data buffering
during query processing. In addition, in large scale sensor
networks, it is not feasible for the sensor nodes or the user
station to be aware of up-to-date information on memory
availability of all network nodes.

In this paper our contributions are three-fold. First we
analyze the requirements of a distributed in-network join
processing algorithm. Second, to our knowledge, this is the
first work to develop and discuss in details a distributed al-
gorithm for in-network join processing. Third, based on the
present algorithm, we develop a cost model that can be used
to select the most efficient join plan during the execution of
the query. Our join algorithm is general in the sense that
it can be used with different types of joins, including semi-
joins, with minor modifications to the presented algorithm
and cost model. As well, our algorithm can be used within
the core of other previously proposed join solutions for re-
laxing their assumptions on memory availability.

2. Background

In our work we consider a sensor network formed by
thousands of fixed nodes. Each node has several sensing
units (e.g., temperature, RFID reader), a processor, a few
kilobytes of main memory for buffer and data processing, a
few megabytes of flash storage for long-term storage of sen-
sor observations, fixed-range wireless radio and it is battery

operated. These characteristics encompass a wide range of
sensor node hardware, making our work independent of a
particular sensor platform. Further on, we consider that
each node is aware of its location, which is periodically
refreshed through GPS or a localization algorithm [14] to
account for any variation in a node’s position due to envi-
ronmental hazards. Each node is aware of the nodes located
within its wireless range, which form its 1-hop neighbour-
hood. A node communicates with nodes other than its 1-
hop neighbours using multi-hop routing over the wireless
network. As sensor nodes are not designed for user inter-
action, users query the sensor network through personal de-
vices, which introduce the query in the network through one
of the nodes in their vicinity.

We consider a sensor network deployment where nodes
acquire observations periodically and the observations are
stored locally for future querying. The data stored at the
sensor nodes forms a virtual relation over all nodes, denoted
R∗. As nodes store the acquired data locally, each node
holds the values of the observations recorded by its sensing
units and the time when each recording was performed.

We analyze the self-join processing problem in sensor
networks, i.e., the joined relations are spatially and tempo-
rally constrained subsets of the sensor relation R∗. We im-
pose no restrictions on the join condition, that is, any tuple
from a relation could match any tuple of the other relation.
For instance, the query “What animals have been in both
regions RA and RB between times T1 and T2?” (from our
example in Section 1) can be expressed in pseudo-SQL as:

SELECT S.animalID
FROM R∗ as S, R∗ as T
WHERE S.location IN Region RA

AND T.location IN Region RB

AND S.time IN TimeRange [T1, T2]
AND T.time IN TimeRange [T1, T2]
AND S.animalID = T.animalID

Let us denote by A the subset of R∗ restricted to Region
RA and by B the subset of R∗ restricted to Region RB .
The query may also contain other operators ops (selection,
projection, etc.) on each tuple of R∗ or on the result of the
join. As our focus is on join processing, we consider the
relations A and B as the resulting relations after the query
operators that can be applied individually on each node’s
relation have been applied. We assume operators that can be
processed locally by each sensor node on its stored relation
and thus they do not involve any communication. We denote
with J the result of the join of relations A and B, including
any operators on the join result required by the query: J =
opsJ (A �� B). We assume operators on the join result can
be processed in a pipelined fashion immediately following
the join of two tuples. A general query tree and the notations
we use are shown in Figure 1.

A

U
U

ops
J

opsA ops
opsA

Ri

Rj

kR Rm
Ro

Rn

Rp

opsB

opsBopsB

opsB

J

BA

Figure 1. Query tree and notations

3. DIJ: A Distributed Join Processing Algo-
rithm for Sensor Networks

Join processing in sensor networks is a highly complex
operation due to the distributed nature of the processing and
the limited memory available at nodes. We discuss some
of the requirements of an effective and efficient join pro-
cessing algorithm for sensor networks, namely: distributed
processing, memory management and synchronized com-
munication.

• Distributed processing. In large scale sensor net-
works the join operation must be processed in a dis-
tributed manner using localized knowledge. For most
queries no single node can buffer all the data required
for the join. In addition, no node (or user station)
has global network knowledge to find the optimal join
strategy. As nodes have information only about their
neighbourhood, the challenge is to take correct and
consistent decisions among nodes with respect to pro-
cessing the join. For instance, when the join operation
is evaluated over a group of nodes, each node in the
group must route and buffer tuples such that each pair
of join tuples is evaluated exactly once in the join.

• Memory management. Each node participating in
the join must have sufficient memory to buffer the tu-
ples that it joins and the resulting tuples. For some
join queries the join relations are larger than the avail-
able memory of a single node. Typically, several nodes
must collaborate to process the join operator, pooling
their memory and processing resources together. A
join processing algorithm should pool these resources
together and allocate tasks and data among the partici-
pating nodes such that the efficiency of the processing
is maximized.

• Synchronized data flow. Inter-node communication
must be synchronized such that a node does not re-
ceive new tuples to process when its memory is full.
Otherwise, the node would have to drop some of the
buffered or new tuples, which is unacceptable as it may
invalidate the result of the join. Thus, each node must

fully process the join tuples it holds before receiving
any new tuples. A similar problem occurs also for the
nodes routing the data. A parent node routing data for
multiple children may not be able to buffer all received
data before it can forward it. Thus, a join processing
algorithm should carefully consider the flow of data
during its execution.

In this work we propose a distributed join processing al-
gorithm which considers the above requirements. In our
presentation we focus on the join between two restrictions
(A and B) of the R∗ relation, where the join condition is
general (theta-join). Thus, every pair of tuples from re-
lations A and B must be verified against the join condi-
tion. Relations A and B are located within regions RA and
RB and they are joined in-network in a join region RJ .
Technique for finding the location of the join region have
been presented elsewhere [4, 5, 16] and are orthogonal to
our problem. In fact, our algorithm is general with respect
to the join relations and their locations and could be used
within the core of other previously proposed join solutions
(e.g. [5]), including solutions using semi-joins (e.g. [16]).
For clarity of presentation we describe our join algorithm in
the context of the Mediated Join [5] solution.

The Mediated Join solution works as follows: relations
A and B are sent to the join region (RJ) where they are
joined and the resulting relation J is transmitted to the
query originator node. (Recall that a query can be posed
at any node of the network.) Figure 2 shows in overview
the query processing steps and the data flow. The Mediated
Join seems straightforward based on this description, but
there are several issues that must be carefully addressed in
the low-level sensor implementation to ensure the correct-
ness of the query result, e.g.:

• How to ensure that both relation A and B are transmit-
ted to the same region RJ?

• How large should region RJ be to have sufficient re-
sources, i.e., memory at nodes, to process the join?

• How should A and B be transmitted such that the join
is processed correctly at the nodes in RJ?

• How to process the join in RJ such that the join is
processed correctly using minimum resources?

We now describe in details DIJ, our join processing al-
gorithm addressing these questions. The steps of DIJ are:

1. Multi-cast the query from originator node O to nodes
inRA andRB . Designate the nodes closest to the cen-
tres CA and CB of the regions RA, respectively RB ,
as regional coordinators. Designate the coordinator lo-
cation CJ for join region RJ . Disseminate the infor-
mation about the coordinators along with the query.

RR

O

RJ

Q
(1)

J
(1)

Q

A

A

(2)

(3)

B

B

(2)

Figure 2. Mediated Join - data flow

2. Construct routing trees in regions RA and RB rooted
at their respective coordinators CA and CB .

3. Collect information on the number of query relevant
tuples for each region at the corresponding coordina-
tors. Each coordinator sends this information to coor-
dinator CJ of the join region RJ .

4. Construct the join region. CJ constructs RJ so that it
has sufficient memory space at its nodes to buffer A.

5. Distribute A over RJ .

(a) CJ asks CA to start sending packets with tuples.
Once CJ receives A’s tuples, it forwards them to
a node in RJ with available memory.

(b) Upon receiving a request for data from CJ , CA

asks for relevant tuples from its children in the
routing tree. The process is repeated by all inter-
nal tree nodes until all relevant tuples have been
forwarded up in the tree.

6. Broadcast B over RJ

(a) Once CJ receives a signal from CA that it has
no more packets (i.e., tuples) to send, CJ asks
for one packet with tuples from CB . When the
packet is received, it is broadcast to nodes in RJ .

(b) Each node in RJ joins the tuples in the packet re-
ceived from B with its local partition of A, send-
ing the resulting tuples to O. Once the join is
complete, each node asks for another packet of
B’s tuples from CJ .

(c) Upon receiving a request for tuples from CJ , CB

asks for a number of join tuples from its children
in the routing tree. The process is repeated by
all internal tree nodes if they cannot satisfy the
request alone.

(d) Once CJ receives requests for B’s tuples from all
nodes in RJ , Step 6 is repeated unless CB signals
that it has no more packets (i.e., tuples) to send.

In the steps above we chose, only for the sake of presen-
tation, that relation A is distributed over the nodes in RJ

and relation B is broadcast over the nodes in RJ . The steps

above are symmetrical if the roles of A and B are switched,
however the actual order does matter in terms of query cost.
In Section 4 we explore this issue and show how to deter-
mine which relation should be distributed and which should
be broadcast in order to minimize the cost of the processing
the join operator.

Steps 1-3 of DIJ are typical to in-network query pro-
cessing and do not present particular challenges. In Step 4,
the join coordinator CJ must request and pool together the
memory of other nodes in its vicinity for allocating relation
A to these nodes (in Step 5a). This is a non-trivial task as
CJ does not have information about the nodes in its vicin-
ity (except its 1-hop neighbours). Steps 5 and 6 also pose
a challenge, that is, how to control the flow of tuples effi-
ciently without buffer overflows, ensuring correct execution
of the join. We detail these steps in the following.

3.1. Constructing the join region (Step 4)

Once node CJ receives the size of the join relations A
and B from CA and CB (in Step 1), it must find the nodes
in its vicinity where to buffer relation A. DIJ uses the fol-
lowing heuristic for this task, called k-hop-pooling:

If CJ alone does not have sufficient memory to
buffer relation A, CJ asks its 1-hop neighbours to
report how much memory they have available for
processing the query. If relation A is smaller than
the total memory available at the 1-hop neigh-
bours, CJ stops the memory search. Otherwise,
CJ asks its 2-hop neighbours to report their avail-
able memory. This process is repeated for k-hops,
where k represents the number of hops such that
the total memory available at the nodes up to k
hops away from CJ plus the memory available at
CJ is sufficient to buffer relation A.

An interesting question is how much memory should a
node allocate for processing a particular query. If the sensor
network processes only one join query at a time (e.g., there
is a central point that controls the insertion of join queries in
the network), then nodes can allocate all the memory they
have available for processing the join. However, if nodes al-
locate all their memory for a query, but several join queries
are processed simultaneously in the network, it may happen
that a coordinator CJ will not find any nodes with available
memory in its immediate vicinity, forcing it to use farther
away nodes during processing, and, thus, consuming more
energy. For networks where multiple queries may coexist in
the network, nodes should allocate only a part of their avail-
able memory for a certain query, reserving the rest for other
queries. How to actually best allocate the memory of an
individual node is orthogonal to our problem. In this work
we assume that nodes report as available only the memory

they are willing to use for processing the requested query.
Figure 3 shows a possible memory allocation scheme at a
node.

3.2 Distributing A over RJ (Step 5)

In this step two tasks are carried out concurrently: CA

requests and gathers relevant tuples (grouped in data pack-
ets) from RA, and CJ distributes the packets received from
CA over RJ .

Once the set of k-hop neighbours that will buffer A has
been constructed, CJ asks for relation A from CA, packet
by packet, and distributes each packet of A’s tuples in a
round-robin fashion to its neighbours, ordered by their hop
distance to CJ . When deciding to which node to send a new
packet with A’s tuples, a straightforward packet allocation
strategy would be for CJ to pick a node from its list and
send to it all new packets with A’s tuples until its allocated
memory is full. This strategy has two disadvantages. As all
packets use the same route (for most routing algorithms) to
get to their destination node, their delivery will be delayed if
there is a delay on one of the links in the route. Also, con-
secutive packets may contain tuples with values such that
they all (or many of them) will join with the same tuple in
B. In this case, the node holding all these tuples will gener-
ate many result tuples that have to be transmitted, delaying
the processing of the join. The hop-based round-robin al-
location also ensures that all k-hop neighbours have a fair
chance of having some free memory at the end of the allo-
cation process, memory that can be used for other queries.

Once node CA receives a request for tuples from CJ , it
has to gather relevant tuples from RA. If CA would simply
broadcast the tuple request in the routing tree constructed
over RA, nodes in RA will start sending these tuples to-
ward CA. As each internal tree node has (likely) several
children, it should receive and buffer many packages before
being able to send these packages out. Some nodes may
not be able to handle such a data flow due to lack of buffer
space, possibly dropping some of the packets. To ensure
that no packages are lost due to lack of buffer space, we
propose a flow synchronization scheme where each node
will only buffer one package. In this scheme, the request
for A’s tuples is transmitted one link at a time. Each node
in the routing tree is in one of the following states during
the synchronized tuple flow (Figure 4):

• Wait for a tuple request from the parent node (or CJ

in the case of CA) in the routing tree constructed in
Step 2.

• Send local tuples (from the local storage or receive
buffer) to the parent node.

• If buffer space has been freed and there are relevant tu-
ples available at the children nodes in the routing tree,

Flash

Observations / Events

Query 2 − Join

State Info

(B’s partition)

(query, originator, parent, etc)

(A’s partition)
Join Tuples

Join Tuples Result Tuples

(J’s partition)

Memory

Transmit / Receive Buffer

State Buffer
(ID, Location, neighbors, etc.)

Query Manager

Query 2

Query Processing Buffer

Events Cache

Other buffers

Query N

Query 1

Figure 3. Memory allocation scheme

tuple
Wait for

request

Send local
tuples

Request tuples

from a child

Receive and
buffer tuples,
update tuple
info for child

Figure 4. A node’s states during tuple routing

request tuples from a child node that still has tuples to
send. Figure 5 shows the routing tree for a region and
the information maintained in each node of the tree as
tuples are routed from either RA or RB to RJ . Note
that the number of tuples that each child node will pro-
vide has been collected as part of Step 3.

• Receive tuples from child, buffer the tuples and update
the number of tuples that the child still has available.

Once a node has forwarded to its parent all of A’s tuples
from its routing sub-tree, it can free all buffers used for pro-
cessing the query.

{local: 2 tuples}

{local: 2 tuples

{local: 0 tuples} {local: 3 tuples}{local: 3 tuples}

{local: 2 tuples
{local: 3 tuples

N5: 8 tuples
N6: 5 tuples}

N3: 0 tuples
N1: 2 tuples
N2: 3 tuples}

N4: 3 tuples}

N7

N5

N1 N2 N3

N6

N4

Figure 5. Join tuples information at nodes

3.3. Broadcasting B over RJ (Step 6)

The collection of B’s tuples proceeds much like the
collection of A’s tuples, with one important difference.
Whereas CA gathers and sends all of the relevant tuples
of A as a a result of a single tuple request from CJ , CB

only sends one packet with tuples for each request it re-
ceives from CJ . This way, CJ can broadcast such a packet
of tuples to all nodes in RJ , wait until all nodes fully pro-
cess the local joins and send the results, and then request a
new packet of tuples from RB when each node in the join
region RJ is ready to receive and join a new set of tuples.

4. Selecting the relation to be distributed

In the previous discussions we have assumed for clarity
of presentation that relation A is distributed over the nodes
in region RJ and B is broadcast over the nodes in the re-
gion. An interesting question is which of the two join rela-
tion should be distributed and whether the choice makes a
major difference in cost.

Let us focus first on which of the two join relation should
be distributed and, subsequently, which should be incre-
mentally broadcast. To decide on this matter, the query
optimizer has to estimate the cost of the two options (i.e.,
distribute A or B) and compare their costs to decide which
alternative is more energy efficient. For generality, we de-
rive in the following a cost model for processing the join by
distributing relation Rd and broadcasting relation Rb. The
actual relations A and B can then be substituted into Rd and
Rb (or vice-versa) to estimate the processing costs.

Considering the steps of DIJ, the cost of query process-
ing can be decomposed into a sum of components, with one
component associated to each step. Several of these com-
ponents are independent of the choice of the relation that is
distributed. Thus, they do not affect the decision of which
relation to distribute and do not need to be derived. For
instance, we have the cost for disseminating the query in
regions A and B (Step 1) and the cost for constructing the
routing tree over regions RA and RB (Step 2). These costs
are identical when processing the join by distributing A or
B and do not affect the decision. The steps that have differ-
ent costs when A or B are the distributed relation Rd are the
construction of the join region RJ (Step 4), the distribution
of the relation Rd (Step 5a) and the broadcast of the relation
Rb (Step 6a). Note that we are only interested in differences
in the communication cost between the two alternatives.

4.1. Constructing the join region (Step 4)

As discussed in Section 3.1, we use the k-hop-pooling
strategy to construct the join region RJ . In each round of
memory allocation, CJ broadcasts its request for memory

in a hop-wise increasing fashion, until sufficient nodes with
the required buffer space are located.

During a round h, each node within h-hops from CJ

broadcast the memory request and its 1-hop neighbours re-
ceive the request message. Thus, the total energy cost is:

Ememreq
4 =

k−1∑

h=0

(EtN
h
nMr + ErN

h
nN1

nMr),

where Nh
n represents the average number of nodes within h

hops from a node, Et and Er represents the energy required
to transmit, respectively receive, one bit of information and
Mr represents the size of the memory request message (in
bits). Nh

n is a network-dependent value independent of our
technique and it is derived in the Appendix.

When a node receives a memory request message for the
first time, it allocates buffer space in its memory and sends
the memory information to CJ . The nodes located h-hops
away from CJ perform two tasks: they send their own mem-
ory information to the nodes located h − 1 hops away; and
they forward the information they have received from the
nodes located between h + 1 and k hops away from CJ . If
we denote by Mi the size of the memory information for
one node, the total energy cost of collecting the information
on available memory is:

Ememinfo
4 =

k∑

h=1

((Et + Er)(Nh
n − Nh−1

n)Mi

+(Et + Er)(Nk
n − Nh

n)Mi)

= (Et + Er)(kNk
n −

k−1∑

h=1

Nh
n)Mi

Note that (Nh
n − Nh−1

n) represents the number of nodes
h-hops away and (Nk

n − Nh−1
n) represents the number of

nodes located more than h and up to k hops away from CJ .
The total energy cost of the fourth step of DIJ is:

E4 = Ememreq
4 + Ememinfo

4 .

Note that the costs of Step 4 do not depend on the join re-
lations directly, but through k which determines the size of
the join region RJ and it is determined by the size of the
join relation Rd.

Let Bs be the average size (in bits) of the buffer space
that each node in RJ can allocate for processing the query.
The minimum number of nodes that must be used to store
relation Rd in region RJ is ||Rd||

Bs
, where ||R|| denotes the

size (in bits) of relation R. Since nodes are added to RJ in
groups based on their hop distance, k is the lowest number
of hops such that the nodes within k hops from CJ have
sufficient buffer space to buffer Rd:

k = {min h | Nh
nBs ≥ ||Rd||}.

4.2. Distributing Rd over RJ (Step 5a)

In Step 5a of DIJ, CJ receives and distributes relation
Rd at the nodes in RJ . Nodes located h hops away from CJ

receive from the nodes located h − 1 hops away from CJ

partitions of Rd of size Bs for buffering. They also route
toward their destination the partitions Bs allocated to the
nodes between h+1 and k− 1 hops away from CJ , as well
as the partitions allocated to the nodes k hops away. Note
that nodes located k hops away will only buffer whatever is
left of Rd instead of Bs as the other nodes do. Therefore,
the energy cost for distributing Rd at the nodes in RJ is:

E5a =
k−1∑

h=1

((Et + Er)(Nh
n − Nh−1

n)Bs

+ (Et + Er)(Nk−1
n − Nh

n)Bs

+ (Et + Er)(||Rd|| − Nk−1
n Bs))

= (Et + Er)((k − 1) ||Rd|| − Bs

k−2∑

h=0

Nh
n).

4.3. Broadcasting Rb over RJ (Step 6a)

In Step 6a of DIJ, CJ broadcasts relation Rb (packet by
packet) over the nodes in RJ , where it is joined with the
buffered partitions of Rd. Note that only the nodes in RJ

up to k − 1 hops away from CJ need to broadcast Rb so
that all nodes participating in the join receive it. The total
energy cost of the broadcast is:

E6a = EtN
k−1
n ||Rb|| + ErN

k−1
n N1

n||Rb|| (1)

4.4. Discussion

Using the cost models for Steps 4, 5a and 6a of DIJ,
CJ can determine which of the two join relation should be
Rd and which should be Rb. To calculate the energy costs,
CJ need to know the value of the parameters used in the
models. CJ learns the size of the join relation A and B in
the Step 3 of DIJ. CJ can estimate Bs based on the size of
the available memory at itself and its 1-hop neighbours. We
show in the Appendix how Nh

n can be estimated. The other
parameters used in the cost model are network or algorithm
constants.

5. Cost Model Evaluation

The cost model developed in Section 4 allows CJ to
choose which of the join relation should be distributed (Rd)
in the the join region RJ and which should be broadcast
(Rb) to minimize the cost of processing the join operator.
In this section we further investigate the behaviour of DIJ

Table 1. Cost model parameters
Parameter Value (default)

Network area 1000x1000
Wireless range (W) 50
Average number of neighbours (N1

n) 12 (N = 1655)
Number of tuples in A 500
Number of tuples in B 500
Number of tuples per node in RJ (Bs/Ts) 25
Size of a tuple (Ts) 192 bits
Size of a memory request message (Mr) 8 bits
Size of a memory information record (Mi) 80 bits

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 1 2 3 4 5 6 7

E
(R

d=
B

)
/ E

(R
d=

A
)

||B|| / ||A||

Figure 6. Energy cost ratio for variations in
the join relation sizes

based on the cost model. In our evaluation we consider a
sensor network with nodes uniformly distributed over a two
dimensional region. We are interested in evaluating the rel-
ative performance of two alternatives: distributing relation
A in RJ and broadcasting relation B over RJ (denoted by
Rd = A); and distributing relation B in RJ and broad-
casting A over RJ (denoted by Rd = B). Our measure
of efficiency is the energy used for communication while
processing the join operator. Thus, we compare the energy
cost E(Rd = A) of DIJ when A is the distributed relation
with the cost E(Rd = B) when B is distributed. We only
consider the energy costs of the Steps 4, 5a and 6a as they
are the ones that determine the difference between the two
options of DIJ for which relation to distribute and which to
broadcast. Figures 6, 8 and 9 evaluate the relative cost of
DIJ when Rd = B compared to the cost when Rd = A:
E(Rd = B)/E(Rd = A). When the cost ratio is equal to
1, both alternatives for which relation to distribute have the
same cost. When the cost ratio is lower than 1 it is more ef-
ficient to distribute relation B (Rd = B) and broadcast rela-
tion A, while for cost ratios higher than 1 relation A should
be the distributed relation (Rd = A). The cost model pa-
rameters and their default values used in our evaluation are
presented in Table 1.

Our measure of efficiency is the energy used for commu-
nication while processing a query. According to [12], the
energy used to transmit and receive one bit of information
in wireless communication is given by Et = α+γ×dn and

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7S
iz

e
of

 J
oi

n
R

eg
io

n
in

 H
op

s
(k

)

||B|| / ||A||

Rd=A
Rd=B

Figure 7. Size of RJ in number of hops for
variations in the relative size of A and B

Er = β, where d is the distance to which a bit is being trans-
mitted, n is the path loss index, α and β capture the energy
dissipated by the communication electronics and γ repre-
sents the energy radiated by the power-amp. In our evalua-
tion, we use the following values for these parameters [7]:
α = β = 50nJ/bit, n = 2, and γ = 10 pJ/bit/m2.

In the first experiment, we evaluate the relative costs of
the Steps 4, 5a and 6a for different ratios between the sizes
of the join relations. We keep relation A fixed and we vary
B such that it is between 1 to 7 times larger than A. Fig-
ure 6 shows the relative performance of the two alternatives.
When both relations have the same size (||B||/||A|| = 1),
the cost of the processing the join operator is the same
for both alternatives, as one would expect. For rations
||B||/||A|| up to 6, the best relation to distribute changes
with variations in the ratio. For ratios higher than 6 (we only
show ratios up to 7 in the graph), the smaller relation (A) is
always the relation that should be distributed for lower join
processing costs. The sharp changes in the cost ratio are
caused by the increase in the number of hops (k) that are
required so that RJ is sufficiently large to store Rd. When
k increases, the cost of broadcasting relation Rb in Step 6a
increases substantially as another set of nodes are added to
RJ . Note that k does not vary for Rd = A as the size of
A does not change, but it does vary between 2 and 5 for
Rd = B as shown in Figure 7. For instance, when B is be-
tween 1.8 to 3.5 times larger than A, nodes up to k = 3 hops
away from CJ are required to buffer relation B when dis-
tributed over RJ . As k stays constant for these ratios, the
cost of broadcasting relation A over RJ stays constant as
well. At the same time, as the size of B increases, the cost
of distributing A over RJ and broadcasting B increases.
Thus, the cost ratio E(Rd = B)/E(Rd = A) decreases and
it becomes more efficient to distribute B when ||B||/||A|| is
between 2.9 and 3.5. When ||B||/||A| reaches 3.6, CJ must
contact another “hop” of nodes (k = 4) so that RJ is suffi-
ciently large to buffer B. Not only that the cost of distribut-
ing B increases with the addition of new nodes, but the cost
of broadcasting A over the 4-hop neighbourhood is substan-

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 15 20 25 30 35

E
(R

d=
B

)
/ E

(R
d=

A
)

Number of tuples per node

||B||/||A||=3
||B||/||A||=5
||B||/||A||=7

Figure 8. Energy cost ratio for variations in
the size of available buffer space

tially higher than the cost of broadcasting it over the 3-hop
neighbourhood. When this happens, it becomes more effi-
cient to distribute A over the smaller RJ (k = 2) required to
buffer it and broadcast the larger relation B over the smaller
region. In general, the cost of Step 6a (broadcasting) domi-
nates by a large margin the costs for Steps 4 and 5a. Thus,
distributing the smaller relation and broadcasting the larger
one over the join region RJ performs better for most ra-
tios than broadcasting the smaller relation. The reason is
that the cost of broadcasting increases quadratically as the
size of RJ increases (see Equation 1). It is only when the
size of RJ must be increased to accommodate a larger rela-
tion that the processing cost increases drastically, causing a
sharp change in the cost ratio.

Figure 8 shows the relative performance of the two al-
ternatives for distributing the join relations when the size of
allocated buffer space at nodes (Bs) varies. The variation of
Bs affects the size of the join region RJ (through the num-
ber of hops k required to reach sufficient nodes) and thus the
performance of the two processing alternatives. We show
the relative costs for three ratios between the sizes of the
join relations. Note that when the two relations are equal
in size (||B||/||A|| = 1), the processing costs of the two
alternatives are equal as well. The relative performance of
the alternatives has a similar trend for the three ratios of the
relation sizes and, thus, we discuss in detail the behaviour
for ||B||/||A|| = 3. Consistent to the results shown in Fig-
ure 6, distributing the smaller relation A and broadcasting
the larger relation B is most efficient for more buffer sizes
(Bs) due to the large weight of the cost of broadcasting in
the total cost. The exception is, again, when the size of RJ

is modified (through k). When the number of tuples that
can be stored at a node (Bs/Ts) increases from 20 to 25, the
number of hops k required for distributing relation B over
the nodes in RJ decreases from 4 to 3, while it stays con-
stant for distributing relation A (k = 2). Thus, the cost of
the alternative that distributes B decreases substantially due
to the much reduced cost of broadcasting A over the smaller
number of nodes. At the same time, the cost of the alterna-

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 16 12 8

E
(R

d=
B

)
/ E

(R
d=

A
)

Average number of neighbors

||B||/||A||=3
||B||/||A||=5
||B||/||A||=7

Figure 9. Energy cost ratio for variations in
the average number of neighbors (N1

n)

tive distributing A over RJ varies only slightly as more of
A’s tuples can be stored closer to CJ (but still up to k = 2
hops away from CJ), causing a sharp change in the rela-
tive performance of the two solutions. When Bs/Ts varies
from 15 to 20 and 25 to 35, the number of hops required
for distributing Rd (be it A or B) does not change, and,
thus, there is only a small variation in the relative perfor-
mance of the two alternatives caused by the slightly lower
cost of distributing Rd. Similar trends can be observed for
||B||/||A|| = 5 and ||B||/||A|| = 7.

Another parameter affecting the relative performance of
the two alternatives is the network density. The variation of
network density directly affects the size of the join area RJ

as nodes farther (in terms of hop-count), or closer, to CJ are
required for storing the relation that is distributed when the
density decreases, respectively increases. Figure 9 shows
the effect of the network density on the relative performance
of the two solutions. We evaluate again the relative cost for
three ratios of join relation sizes. As the relative perfor-
mance of the two alternatives shows similar trends for all
three ratios, we focus our discussion on ||B||/||A|| = 3.
When the average number of neighbours (N1

n) is between 8
and 18, only nodes up to k = 2 hops are required to buffer
relation A in RJ . This effectively means that the cost of the
alternative distributing A in RJ varies only slightly, while
the alternative that distributes B decreases its cost at a faster
rate as k decreases from 4 to 3 when the N1

n increases from
10 to 12. When the number of neighbours is 20, the net-
work is sufficiently dense so that CJ uses only its 1-hop
neighbours (k = 1) to store A. As such, the cost of broad-
casting B decreases sharply, causing a similar decrease in
the overall processing cost. Note that for k = 1, only one
node (CJ) need to broadcast relation Rb. This is a sharp de-
crease in the number of broadcasts since for N1

n = 18 and
k = 2 the number of nodes broadcasting Rb is 19 (CJ plus
18 1-hop neighbours). On the other hand, the cost of the
alternative distributing B varies only slightly when the N1

n

increases from 18 to 20. Therefore, there is a sharp change
in the relative performance of the two solutions, and it be-

comes substantially more efficient to distribute A than to
distribute B when N1

n = 20.

6. Related Work

Research on query processing in sensor networks has
mostly focused on processing of selection, unions, group-
ing and aggregation operators [6]. Recently, a few works
addressed the processing of join queries.

Adaptive placement of a correlation operator is studied
in [3]. Initially, the operator is randomly placed at a network
node. The position is progressively refined by moving the
operator to the nodes with lower processing cost during the
lifetime of a continuous query. The refinement allows the
operator placements to adapt to changes in data during the
query lifetime. For historical and short continuous queries
the solution would perform much worse than the optimal
cost due to the initial random placement. The authors focus
on the operator’s placement problem, assuming that each
node that will hold the operator is able to handle the flow
and processing of data alone.

Chowdhary and Gupta [4] propose an algorithm for per-
forming joins in-network over a processing region. The al-
gorithm is a form of distributed block-nested loop join and it
is similar in spirit with the algorithm proposed in this paper.
Differently from us, they do not investigate the allocation of
memory at the nodes in the join region and the synchronized
data flow. Pandit and Gupta [11] propose two algorithms
for in-network processing of the range-join operator. Both
works [4, 11] consider that the optimal join location is the
weighted centroid of the triangle ABO. The centroid has the
property that it minimizes the weighted sum of the squared
distances, and thus it is not optimal.

Yu et al. [16] investigate the processing of self-join
queries with equi-joins over historical data in sensor net-
works. In their solution they constructs synopsis (e.g., his-
tograms) of both join relations, which are then used for fil-
tering out the tuples that will not join. The solution per-
forms best when the join selectivity is high and it is sim-
ilar to a semi-join. The join of the synopsis is performed
in a square join region whose size is determined based on
the size of the synopsis, the network density and the aver-
age memory available at the join nodes, which is similar in
spirit to our approach. When allocating the synopsis to the
join partition, they fail to consider the memory available at
the individual nodes in their hash-based allocation scheme,
which would cause buffer overflows and invalidate the join
result. They also assume that nodes have sufficient memory
when performing the final join of the filtered tuples.

Abadi et al. [1] study the processing of joins with an ex-
ternal relation. If the external relation is small, it is flooded
in the network and the join occurs locally at each node.
When the external relation is too large to be stored in the

network, bloom filters and partial joins are used for filtering
the sensor tuples. Non-filtered tuples are then joined at the
base-station. When the external relation fits into a group of
nodes, the join between the external relation and every new
generated tuple is performed over the group.

Omotayo et al. [10] study the problem of using the mem-
ory of the nodes as a shared resource. Similar to us, they
consider the problem of using the memory of some nodes to
store or buffer the observations of other nodes. Differently
from us, their goal is maximizing the size of the history that
is stored in the network. The join operation for streaming
sensor data is studied in [2, 15]. Ali at al. [2] study the use
of a multi-way join operator for detecting and tracking phe-
nomena. Schmidt at al. [15] focus on re-sampling the sensor
streams to allow meaningful temporal joins.

7. Conclusions

In this paper we have discussed in details a technique
(DIJ) for processing the theta-join operator in a sensor net-
work. The strength of the technique is that we take into
account the memory available at the sensors nodes and the
synchronization of the data flow. Both issues have been
overlooked or simplified in the existing literature. We have
also developed a cost model that allows our technique to
be optimized with respect to the size of the join relations
and the amount of available memory at the nodes process-
ing the join. Another important aspect is that our technique
is general in the sense that it can be re-used in the core of
other previously proposed join solutions for relaxing their
assumptions on memory availability at nodes. Finally, we
studied the technique’s behaviour through the cost models
under several combinations of query and network parame-
ters. We have shown that the size of the region over which
the join is processed (represented by k) has a strong impact
on the cost of the processing.

References

[1] D. Abadi, S. Madden, and W. Lindner. REED: robust, ef-
ficient filtering and event detection in sensor networks. In
Proc. of VLDB, pages 769–780, 2005.

[2] M. Ali, W. Aref, and I. Kamel. Scalability management in
sensor-network phenomenabases. In Proc. of SSDBM, pages
91–100, 2006.

[3] B. Bonfils and P. Bonnet. Adaptive and decentralized oper-
ator placement for in-network query processing. In Proc. of
IPSN, pages 47–62, 2003.

[4] V. Chowdhary and H. Gupta. Communication-efficient im-
plementation of join in sensor networks. In Proc. of DAS-
FAA, pages 447–460, 2005.

[5] A. Coman, M. Nascimento, and J. Sander. On join location
in sensor networks. In Proc. of MDM, 2007.

[6] J. Gehrke and S. Madden. Query processing in sensor net-
works. Pervasive Computing, Jan. 2004.

[7] W. Heinzelman. Application-Specific Protocol Architectures
for Wireless Networks. PhD thesis, MIT, 2000.

[8] X. Jiang, J. Polastre, and D. Culler. Perpetual environmen-
tally powered sensor networks. In Proc. of IPSN, 2005.

[9] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor net-
works. In Proc. of SIGMOD, pages 491–502, 2003.

[10] A. Omotayo, M. Hammad, and K. Barker. Efficient data
harvesting for tracing phenomena in sensor networks. In
Proc. of SSDBM, pages 59–70, 2006.

[11] A. Pandit and H. Gupta. Communication-efficient imple-
mentation of range-join in sensor networks. In Proc. of DAS-
FAA, pages 859–869, 2006.

[12] T. Rappaport. Wireless Communications: Principles and
Practice. Prentice-Hall Inc., 1996.

[13] A. Ricadela. Sensors everywhere. Information Week, Jan.
24, 2005.

[14] A. Savvides, M. Srivastava, L. Girod, and D. Estrin. Local-
ization in sensor networks. Wireless sensor networks, pages
327–349, 2004.

[15] S. Schmidt, M. Fiedler, and W. Lehner. Source-aware join
strategies of sensor data streams. In Proc. of SSDBM, pages
123–132, 2005.

[16] H. Yu, E. Lim, and J. Zhang. On in-network synopsis join
processing for sensor networks. In Proc. of MDM, pages
32–39, 2006.

Appendix – Estimating the number of nodes
within h-hops from a node

Let AN be the area of the network, N the number of sen-
sor nodes uniformly distributed over the network area and
S the node whose h hop neighbours we try to determine.
The number of nodes located up to h-hops away from S
is equal to the number of sensor nodes located in an area
equal in size to the area where these nodes are located. Let
us denote this area with Ah. We have that Nh

n = N Ah

AN
for

h ≥ 1. For h = 0 we have N0
n = 1 to account for S.

We need to find the size of the area Ah. For the 1-hop
neighbours, A1 is equal to the circle of wireless range W

and we have N1
n = N πW 2

AN
. The average distance from S

to its 1-hop neighbours is d1hop =
∫ ∫

A1
dSNi

dA1 = 2
3W ,

where dSNi
represents the distance between S and a 1-hop

neighbour Ni. Since the 1-hop neighbours are located in
average at distance d1hop away from S, and the neighbours
of the 1-hop neighbours could be located as far as W , we
have that the 2-hop neighbours of S are located in average
within a circle of radius d1hop + W = 5

3W . Generalizing
this result for h-hop neighbours, we have that they are lo-
cated within a circle of (h−1)d1hop +W = 2h+1

3 W radius
from S. Therefore, we have:

Nh
n =

π(2h + 1)2W 2

9AN
N for h ≥ 1.

