
Planning with Monte Carlo
Random Walks: New Results

Martin Müller
University of Alberta
Edmonton, Canada

Joint work with:
Hootan Nakhost, Fan Xie, Richard Valenzano

(U Alberta)

Contents

Introduction - classical planning

Planning with Monte Carlo Random Walks

Recent progress: smart restarts, local tree search
(LTS)

The Arvand and Arvand Herd planners

The 2011 International Planning Competition
(IPC)

Planning

Planning - given a problem, find a plan to solve it

Very many variations, such as:

path planning in robotics

adversarial planning in games

planning with resource constraints - time,
fuel,...

Classical Planning - Graph Search

States represented by boolean predicates
or by multi-valued variables

Actions defined by preconditions and
effects

Initial state S

Goal conditions G - subset of state

Plan = any path from S to state satisfying G

deterministic, complete information

Example: Transportation

Planning Community

Well-established community

ICAPS conference, sessions at IJCAI, AAAI,
ECAI, SOCS,...

Planning competitions - IPC 2011

Approaches to Planning

Forward search is most popular

Translations to SAT work well too (Kautz,
Rintanen)

Strong, slow evaluation functions

Relaxed planning graph (Hoffmann)

Landmark heuristics

Search-based Planning

Used in most strong current planners

Heuristic function h to evaluate distance to a
goal state

Example: FF heuristic, hFF

Mostly greedy search, e.g. hill-climbing, weighted
A* (WA*), greedy best-first search (gbfs)

Problems

Strong planning heuristics are very slow

Based on solving relaxed problem - ignore
“negative effects”

Most planners use greedy searches:

Almost all exploitation

Lack of exploration

Nakhost & Müller, IJCAI 2009

Idea: apply lessons from games research to
planning

Background: work on Monte Carlo
algorithms (UCB, UCT, MCTS) shows
importance of exploration in search

Breakthrough performance in Go, many
other games. Nested MC search (Cazenave)

The Arvand Planner

Exploration in Planning

Still use a heuristic h, but not at every step

Generating set of all legal actions is fast

Evaluation is 2 orders of magnitude slower

Explore local neighbourhood of state before
choosing next actions

Simplest way of exploration: random actions

Monte Carlo Random Walks

Follow random sequence of actions for d
(e.g. d=10) steps, then evaluate endpoint

Repeat many times (e.g. n=2000)

End point search continuation:
Jump to best encountered endpoint

If no improvement, restart

Random Walks

14

45

∞

56

9

5

43

2

65

7

Advantages

Deals directly with issue of exploration,
randomization

Can escape quickly from local minima, plateaus

Exploits greater speed of action generation

Simple planner, surprisingly powerful

Good in coverage - number of problems
solved

Good scaling to larger problem instances

Disadvantages

Poor plan quality - plan consists of concatenated
random sequences

→ use plan improvement postprocessor

Not systematic - may miss the only good action

→ use portfolio planner

Slower on easy problems, where exploration is not
needed

(→ use portfolio planner)

Other Differences - Good or Bad?

Randomization

No guarantee to find solution

Can escape from traps where deterministic
algorithm gets stuck

Low memory usage

Can run forever, while e.g. WA* quickly
exhausts memory

On restart, can not profit from previous good
runs

Improvements

Modify length and number of random walks

MDA - Try to avoid deadlock states

MHA - Prefer helpful actions

Smart restarts - re-use pool of previous good
plan fragments

Use local tree search

Use portfolio with other types of planners

Smart Restarts

Arvand’s previous strategy: basic restarts

forward chaining local search

In each step, use MRW to find next state

If no progress, restart from beginning

Basic Restarts - best h values

Smart Restarts

Keep pool of most promising search episodes so
far

Restarting from random state of random episode
in pool

Main parameters:

pool size p

replacement policy

Smart Restarts - best h values

Local Tree Search (Xie et al 2011)

Combine tree search with random walks

More systematic search before each jump

Tree growth:

epsilon-greedy child selection

run random walk probe from leaf node

evaluate nodes by best probe in subtree

After n steps, jump greedily

Illustration - Arvand vs LTS

Arvand LTS

Example

Scaling to Larger Problems

Example: woodworking domain

Aras Postprocessor

Nakhost and Müller, ICAPS 2010

Problem of Arvand: low plan quality

Aras Postprocessor: improve given plan

Two main techniques:

Action elimination

Plan neighbourhood graph search

Action Elimination

Try to remove unnecessary actions from plan

Try to remove any one action

Remove every other action that loses support

Check if result is still valid plan

If not, undo changes

Plan Neighborhood Graph Search

Start with valid plan

Build neighbourhood of states near every
state along the plan trajectory

Find shortest path in this graph

While (not out of resources)

Extend size of neighborhood

Repeat

Parallel System: Arvand Herd

Anytime multicore planner developed for IPC

4 core version:

3 copies of Arvand w. randomized parameters

1 copy of LAMA2008 (winner of 2008 IPC)

Shared restart pool

Aras postprocessor run on all solutions

7th International Planning
Competition (IPC) 2011
Organized by Ángel García-Olaya, Sergio
Jiménez, Carlos Linares López, Universidad
Carlos III de Madrid

Thanks for tables and graphic of results!!!

Previous IPC: 1998, 2000, 2002, 2004, 2006,
2008

http://ipc.icaps-conference.org/

http://ipc.icaps-conference.org
http://ipc.icaps-conference.org

Basic Rules

Submit planners as source code

Can compile, test on competition systems

Only “trivial” bug fixes allowed later

“Blind” evaluation: domains not known before
or during the contest

Published now, after the competition

Rules, Satisficing Tracks

14 planning domains, 20 instances per domain =
280 problems in total

9 old, 5 new domains

In old domains, usually 10 previous and 10
new, harder instances

30 minutes per instance, 6 Gb memory

Deterministic Tracks

“Sequential satisficing”: single-core

27 participants, including Arvand

Previous IPC winner: LAMA2008

“Sequential multicore satisficing”: 4 cores, shared
memory

8 participants, including Arvand Herd

First multicore competition

Single Core Results

++ ++++++ ++ *+ *-- - ------

Discussion - Single Core

Arvand in 9th place out of 27 planners

Strong performance in “easy” domains, but very weak
in “hard” domains

Best in 4 of 14 domains, close to best in 3 more

Terrible in 4-5 puzzle-like domains, score close to 0

These domains favour a more systematic search

Multicore Results

Arvand Herd won by a large margin!

Consistently strong results over almost all domains

The LAMA component covers puzzle-like domains

Synergy in the elevators, barman domains?

Single core Winner: LAMA 2011
by Silvia Richter (NICTA), Matthias Westphal,
Malte Helmert (Univ. Freiburg)

Re-implementation of previous winner
LAMA2008 in the current Fast Downward
framework

Main change (as in many other top planners...)

run greedy best-first search first

ignore action costs in this run

increases coverage

Some Other Planners at IPC

Probe:

greedy best first search, plus run a single high-
quality probe from each state

More than half of previous IPC problems
solved by single probe, without search!

Fast Downward Stone Soup:

simple portfolio planner, tuned on previous
IPC

Other Planners (2)

Fast Downward Autotune

Uses stochastic parameter optimization system
ParamILS

2000 training instances, including previous IPC

Roamer

Combine best-first search with random walks to
escape from plateaus, local minima

Lesson Learned, Future Work

Move away from focus on heuristics, more focus
on search

Portfolio and multi-queue search methods are
here to stay

Try Arvand + LAMA2011 + Probe + Aras

Analyze components of success of Arvand Herd

Arvand, LAMA2008, Aras postprocessor

Try Arvand Herd in single core track

Summary

Monte-Carlo random walks in planning

Basic idea is already quite strong. Many refinements

Good scaling to larger problems

Does not work with puzzle-like domains

Strong results at IPC with portfolio system Arvand Herd

