Challenges in Monte Carlo Tree Search

Martin Müller University of Alberta

Contents

State of the Fuego project (brief)
Two Problems with simulations and search
Examples from Fuego games
Some recent and future(?) approaches

The Fuego Project

Open-source program hosted on sourceforge

- Originally developed at University of Alberta
- Game-independent kernel, General Go engine, MC Go program
- Applications and extensions: MoHex (Hex), BlueFuego, Arrow (Amazons), RLGo,...

Fuego Go Program

High-level design similar to MoGo, many others Many differences in details, implementation First program to win a 9x9 game vs top human professional Won 9x9 Olympiad in Pamplona 2009 Second in 9x9, 13x13 in Kanazawa 2010 Won 4th UEC cup (19x19) in 2010

Topics of This Talk

- Two limitations of current MCTS
 Take games against strong humans as examples to illustrate these problems with Fuego
 Discussion points:
- **Discussion points:**
 - Are these general issues with Go programs?
 - With Monte Carlo Tree Search?

Two Problems with MCTS

I believe that in the current "standard model" of MCTS, both simulation and search processes are fundamentally flawed
 Simulations - results do not reflect "true value" of a position

Search - a single global search cannot deal well with many simultaneous local complications

Barcelona 2010: 9x9 with Black vs Professionals

Two quick losses, follow same pattern

White quickly creates two safe groups (around move 10), Program does not "see" they are safe for long time

Fuego-GB Evaluation Scores

Left - vs 4 Dan: seki misevaluation, program has no clue Right - vs 9 Dan: overoptimistic, game lost after 10 moves

What Goes Wrong?

Simulations

- systematic bias for attacker (Black here)
 - Often, one White group dies
- I think some other programs such as Zen,
 Valkyria have more knowledgeable simulations
- **Global Tree Search**

9x9 Win with White

ABCDEFGHJ

Difficult opening lots of territory for human

Good reduction in top right

O.5 point win for program

What Went Well?

- Program knows exactly how much it needs to reduce the top right
- Single focus on the board at each time global search does well

9x9 Loss with White vs 9 Dan

ABCDEFGHJ

Program played well in middle game

- Winning up to move 39
- Big fight covering 3/4 of board
- 40 is losing move loses capturing race

Move 40: The Mistake

What Went Wrong?

Complex single fight involving many blocks of stones
 Need to shift focus between top right, bottom right, top left

MCTS too selective, misses crucial moves deep in the fight
 Human: even more selective, but based on sound Go knowledge

Sidebar: MoGo's Mistake

MoGo won a good game vs 9 Dan Lost a good game vs 4 Dan - shown here White A loses semeai, B or C would win Similar kind of mistake?

Two 13x13 Games

Left: vs Tsai 6 Dan amateur; Right: vs Yen 6 Dan amateur

Evaluation Problems

Main problem: high uncertainty about tactics in playouts

What Went Wrong?

Randomized playouts in Fuego-GB are tactically weak

- Outcome of capturing races is mostly random
- On bigger boards, global search cannot cover all local fights
- Selective search in MCTS often misses tactics

Evaluation Bias

- Each misevaluated fight introduces systematic bias of a number of points
- [In both 13x13 games, all biases in same direction:
 - Program does not clearly see that opponent stones are safe
- **Result: program is about 20 points off in its evaluation**
 - Even 1 point would be enough to lose games

Evaluation in Game vs Tsai

Some Recent Approaches

How to improve simulations? How to improve search?

Local Accuracy in Playouts

Can we make playouts locally accurate?

- Zen, Valkyria use much Go-specific knowledge
 - Knowledge arms race? Back to the bad old days?
- Is this a problem specific to Go? Or a deeper, more general problem with simulations?
 - Is there a generic way to solve it?

Towards Dynamic Simulation Policies

Tesauro, Silver: simulation balancing (offline)
 Rimmel: prefer RAVE moves in simulations
 Drake: last winning reply
 need more research

Using Domain Knowledge

- We can easily solve many tactical questions with traditional alphabeta or proof number search
- How to integrate such knowledge with MCTS?
 - Today: in-tree only
 - Hex: virtual connection solver, endgame solver
 - Go Examples: Many Faces of Go, Steenvreter, FuegoEx

Preserve Tactical Invariants

- Playouts should preserve "crucial properties" of position
 Examples:
 - Safety of territories
- Tactics, semeai
 - Life and Death
- How to do that?

Improving on Global Search

Global search becomes bottleneck for problems with lots of "local structure"

Ideal: flexible combination of local and global searches
 How to do it?

Challenges and Ideas

- **Find good local sequences**
- **Restrict search locally to those sequences**
- Recent work: case study using endgame puzzles
 - Optimal player using combinatorial game theory available for evaluation
 - How to integrate with MCTS on rest of board?

Summary

- MCTS has come a long way in a very short time
 Now we seem to have hit some major road blocks
 I believe that to achieve the next level of performance, we must improve both:
 - content of simulations
 - global search