Challenges in Monte Carlo Tree Search

Martin Müller
University of Alberta
State of the Fuego project (brief)

Two Problems with simulations and search

Examples from Fuego games

Some recent and future(?) approaches
The Fuego Project

- Open-source program hosted on SourceForge
- Originally developed at University of Alberta
- Game-independent kernel, General Go engine, MC Go program
- Applications and extensions: MoHex (Hex), BlueFuego, Arrow (Amazons), RLGo,...
Fuego Go Program

- High-level design similar to MoGo, many others
- Many differences in details, implementation
- First program to win a 9x9 game vs top human professional
- Won 9x9 Olympiad in Pamplona 2009
- Second in 9x9, 13x13 in Kanazawa 2010
- Won 4th UEC cup (19x19) in 2010
Topics of This Talk

- Two limitations of current MCTS
- Take games against strong humans as examples to illustrate these problems with Fuego

Discussion points:
- Are these general issues with Go programs?
- With Monte Carlo Tree Search?
Two Problems with MCTS

I believe that in the current “standard model” of MCTS, both simulation and search processes are fundamentally flawed.

- Simulations - results do not reflect “true value” of a position
- Search - a single global search cannot deal well with many simultaneous local complications
Barcelona 2010: 9x9 with Black vs Professionals

Two quick losses, follow same pattern

White quickly creates two safe groups (around move 10), Program does not "see" they are safe for long time
Fuego-GB Evaluation Scores

Left - vs 4 Dan: seki misevaluation, program has no clue

Right - vs 9 Dan: overoptimistic, game lost after 10 moves
What Goes Wrong?

Simulations

systematic bias for attacker (Black here)

Often, one White group dies

I think some other programs such as Zen, Valkyria have more knowledgeable simulations

Global Tree Search
9x9 Win with White

Difficult opening - lots of territory for human

Good reduction in top right

0.5 point win for program
What Went Well?

- Program knows exactly how much it needs to reduce the top right
- Single focus on the board at each time - global search does well
9x9 Loss with White vs 9 Dan

- Program played well in middle game
- Winning up to move 39
- Big fight covering 3/4 of board
- 40 is losing move - loses capturing race
Move 40: The Mistake

A would win. B loses

One possible sequence. White wins the ko for everything.
What Went Wrong?

- Complex single fight involving many blocks of stones
- Need to shift focus between top right, bottom right, top left
- MCTS too selective, misses crucial moves deep in the fight
- Human: even more selective, but based on sound Go knowledge
Sidebar: MoGo’s Mistake

- MoGo won a good game vs 9 Dan
- Lost a good game vs 4 Dan - shown here
- White A loses semeai, B or C would win
- Similar kind of mistake?
Two 13x13 Games

Left: vs Tsai 6 Dan amateur; Right: vs Yen 6 Dan amateur
Evaluation Problems

Main problem: high uncertainty about tactics in playouts
What Went Wrong?

Randomized playouts in Fuego-GB are tactically weak

- Outcome of capturing races is mostly random
- On bigger boards, global search cannot cover all local fights
- Selective search in MCTS often misses tactics
Evaluation Bias

Each misevaluated fight introduces systematic bias of a number of points.

In both 13x13 games, all biases in same direction:

- Program does not clearly see that opponent stones are safe.

Result: program is about 20 points off in its evaluation.

- Even 1 point would be enough to lose games.
Evaluation in Game vs Tsai
Some Recent Approaches

- How to improve simulations?
- How to improve search?
Local Accuracy in Playouts

Can we make playouts locally accurate?

- Zen, Valkyria use much Go-specific knowledge

- Knowledge arms race? Back to the bad old days?

- Is this a problem specific to Go? Or a deeper, more general problem with simulations?

- Is there a generic way to solve it?
Towards Dynamic Simulation Policies

- Tesauro, Silver: simulation balancing (offline)
- Rimmel: prefer RAVE moves in simulations
- Drake: last winning reply
- Need more research
Using Domain Knowledge

- We can easily solve many tactical questions with traditional alphabeta or proof number search
- How to integrate such knowledge with MCTS?
 - Today: in-tree only
 - Hex: virtual connection solver, endgame solver
 - Go Examples: Many Faces of Go, Steenvreter, FuegoEx
Preserve Tactical Invariants

Playouts should preserve “crucial properties” of position

Examples:
- Safety of territories
- Tactics, semeai
- Life and Death

How to do that?
Improving on Global Search

- Global search becomes bottleneck for problems with lots of "local structure"

- Ideal: flexible combination of local and global searches

- How to do it?
Challenges and Ideas

- Find good local sequences
- Restrict search locally to those sequences
- Recent work: case study using endgame puzzles
 - Optimal player using combinatorial game theory available for evaluation
 - How to integrate with MCTS on rest of board?
Summary

MCTS has come a long way in a very short time

Now we seem to have hit some major road blocks

I believe that to achieve the next level of performance, we must improve both:

- content of simulations
- global search