Monte Carlo Tree Search and Computer Go

Cmput 366 Guest Lecture
Martin Müller
mmueller@ualberta.ca
Contents

• Limits of alpha-beta search
• The Game of Go
• What is Monte Carlo Tree Search?
• The Fuego project
Alphabeta Search

• Minimax principle
 • My turn: choose best move
 • Opponent’s turn: they choose move that’s worst for me

• Alphabeta ($\alpha\beta$): prune irrelevant parts of tree
\(\alpha \beta \text{ Successes (I)} \)

- Full search: solve the game
- checkers (Schaeffer et al 2007)
- Nine men’s morris (Gasser 1994)
- Gomoku (5 in a row) (Allis 1990)
- Awari, 5x5 Go, 5x5 Amazons,.....
αβ Successes (2)

• Not solved, but super-human strength:
 • chess (Deep Blue team, 1996)
 • Othello (Buro 1996)

• Grandmaster strength:
 • shogi (Japanese chess)
 • xiangqi (Chinese chess)
αβ Failures

- Go
- General Game Playing (GGP)
- Why fail?
 - Focus on Go here
Go

- Classic Asian board game
- Simple rules, complex strategy
- Played by millions
- Hundreds of top experts - professional players
- Until recently, computers much weaker than humans
Go Rules

- Start: empty board
- Goal: surround
 - Empty points
 - Opponent (capture)
- Win: control more than half the board
- Komi: compensation for first player advantage
End of Game

- End: both players pass
- **Territory** - intersections surrounded by one player
- The player with more (stones+territory) wins the game
- *Komi*: adjustment for first player advantage (e.g. 7.5 points)
Why does $\alpha\beta$ Fail in Go?

- Depth and width of game tree
- 250 moves on average
- Game length > 200 moves
- Lack of good evaluation function
Monte Carlo Methods

- Recently popular (mainly last 5 years)
- Hugely successful
 - Backgammon (Tesauro)
 - Go (many)
 - Amazons, Havannah, Lines of Action, ...
Monte Carlo Simulation

- No evaluation function? No problem!
- Simulate rest of game using random moves (easy)
- Score the game at the end (easy)
- Use that as evaluation (hmm, but...)
The GIGO Principle

• **Garbage in, garbage out**

• Even the best algorithms do not work if the input data is bad

• How can we gain any information from playing random moves?
Well, it Works!

• For some games, anyway
• Even random moves often preserve some difference between a good position and a bad one
• The rest is statistics...
 • ...well, not quite.
Basic Monte Carlo Search

- Play lots of random games starting with each possible move
- Keep winning statistics for each move
- Play move with best winning percentage
Simulation - Example

- Random legal moves, but...
- ...do not fill one point eyes
- End of game after both pass
- Evaluate by Chinese rules:
 +1 for win
 0 for loss
Example (for one move)
Example (for one move)
Example (for one move)

Current position s

Simulation
Example (for one move)

Current position s

Simulation

Outcomes

1 1 0 0
Example (for one move)

\[V(s) = \frac{2}{4} = 0.5 \]
Evaluation

• Surprisingly good e.g. in Go - much better than random or simple knowledge-based players

• Still limited
 • Prefers moves that work “on average”
 • Often these moves fail against the best response
 • “Silly threats”
How to Improve?

1. Better-than-random simulations
2. Add game tree (as in $\alpha\beta$)
3. Add statistics over move quality (RAVE, AMAF) - not today
4. Add knowledge in the game tree - not today
 1. human knowledge
 2. machine-learnt knowledge
I. Better Simulations

• Goal: strong correlation between initial position and result of simulation

• Preserve wins and losses

• How?
Knowledge in Simulations

- MoGo-style patterns
- Tactical rules
MoGo-Style Patterns

- 3x3 or 2x3 patterns
- Apply as response near last move
Tactical rules

- Escape from threats
- Stabilize/attack weak stones
Example of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf
Building a better Random Policy

• Two main approaches
 • Crazy Stone: use rules, patterns to set probabilities for each legal move
 • MoGo, Fuego: hierarchy of rules
 • Find set of highest priority rules
 • Choose randomly from this (often small) set
2. Add Game Tree

- Using simulations directly as an evaluation function for $\alpha\beta$ fails
- Too much noise, or too slow if running many simulations per state
- Result: Monte Carlo was ignored for over 10 years in Go
Monte Carlo Tree Search

- Idea: use results of simulations to guide growth of the game tree

- **Exploitation**: focus on promising moves

- **Exploration**: focus on moves where uncertainty about evaluation is high

- Two contradictory goals?
UCB Formula

- Multi-armed bandits (slot machines in Casino)
- Which bandit has best payoff?
- Explore all arms, but:
 - Play promising arms more often
- Minimize regret from playing poor arms
UCT Algorithm

- Kocsis and Szepesvari (2006)
- Apply UCB in each node of a game tree
- Which node to expand next?
- Start at root (current state)
- While in tree, choose child \(n \) that maximizes

\[
\text{UCTValue}(\text{parent}, n) = \text{winrate}(n) + C \cdot \sqrt{\frac{\ln(\text{parent.visits})}{n\text{.visits}}}
\]
• UCTValue(parent, n) =
 \[\text{winrate}(n) + C \times \sqrt{\ln(\text{parent.visits})/n.visits}\]

• winrate(n) .. \textit{exploitation} term - average success of n so far

• \(1/n.visits\) .. part of \textit{exploration} term - explore nodes with very few visits - reduce uncertainty

• \(\ln(\text{parent.visits})\) .. part of \textit{exploration} term - explore all nodes at least a little bit

• \(C\) .. \textit{exploration constant} - how important is exploration relative to exploitation?
Acknowledgement: these slides were adapted from David Silver’s presentations.
Current state → 1/2

Tree Policy

Default Policy
Summary - Monte-Carlo Tree Search

• Amazingly successful in games where alphabeta failed

• Top in Backgammon, Go, General Game Playing, Hex, Amazons, Lines of Action, Havannah,...

• Similar methods work in multiplayer games (e.g. card games), planning and puzzles
Summary (2)

• Very successful in practice
• Scales OK to parallel machines
• Reasons for why and how it works still poorly understood
• Some limitations (see later)
The Fuego Project

- Developed at UofA (Enzenberger, Müller, Arneson, ...)
- Open-source program hosted on sourceforge
- Goals:
 - General game-independent framework
 - Strong programs, e.g. Go, Hex, Amazons
Fuego Structure

- Game-independent kernel: smartgame library
- MCTS, alphabeta, common data structures, utility classes
- General Go engine
- Go board, rules, blocks, static safety algorithms
- Fuego - Monte Carlo Go program
Fuego Go Successes

• 2009: First program to beat top human professional Chou Chun-Hsun in 9x9 game with no handicap

• Won 2009 Computer Olympiad 9x9 Go, 2010 UEC cup (19x19)

• 2nd places in Olympiad: 2009 (19x19), 2010 (9x9 and 13x13)

• This year: 3rd(9x9), 4th(13x13), 5th(19x19)

• Fuego ranked 1st on 9x9 CGOS all-time
Projects using Fuego(1)

- **Bluefuego**: MPI library for Fuego
 - Developed by IBM
 - Scales to hundreds of cores

- **MoHex**: world’s strongest Hex program
 - Developed by Ryan Hayward’s group in Alberta
 - Uses SmartGame kernel, MCTS engine
Projects using Fuego(2)

- **Explorer**: "classical" Go program
 - Strong solvers for Tsume Go, safe territory, endgame
 - Uses Fuego’s SmartGame, Go libraries
- **FuegoEx**: add Explorer knowledge to Fuego
 - Tactical search (block capture)
 - Pattern matching - 4000 handmade large irregular patterns
 - Filter: prune blunders from MCTS
Projects using Fuego(3)

- **RLGO** (Dave Silver)
 - Reinforcement-learning based Go program
 - Uses SmartGame, Go, GoUct

- **TsumeGo Explorer** (Kishimoto + Müller)
 - World’s best Life and Death solver for enclosed areas
 - Uses SmartGame, Go

- **Arrow** (Müller) Amazons-playing program
 - uses classical alpha-beta search other basic functionality from SmartGame

- **Arrow2** (Huntley, VanEyck) MCTS-based - third in 2011 Olympiad
Parallel Search

• Shared memory parallelization (Enzenberger)
 • Good speedup up to about 8 cores
 • Lockfree shared game tree
 • Memory-limited
• Distributed memory - BlueFuego (IBM)
Research Challenges

• How to improve simulations?
 • offline
 • online (during a game)

• How to achieve “locally strong” play?
 • Global search cannot see enough

• How to scale to massively parallel systems?
AI Planning

• Related idea: Monte Carlo random walks
• Add exploration into the search
• Arvand planner (Nakhost)
• Strong in finding plans
• Weaker in plan quality
• Strong for problems with limited resources
• Recent work: add local search tree (Xie)
Summary

- Monte Carlo methods have revolutionized search and games
- Still not well understood
- Lots of good research to be done
- General method, promising for many other applications