Monte Carlo Tree Search and Computer Go

Cmput 366 Guest Lecture Martin Müller <u>mmueller@ualberta.ca</u>

Contents

- Limits of alpha-beta search
- The Game of Go
- What is Monte Carlo Tree Search?
- The Fuego project

Alphabeta Search

- Minimax principle
 - My turn: choose best move
 - Opponent's turn: they choose move that's worst for me
- Alphabeta (αβ): prune irrelevant parts of tree

αβ Successes (I)

- Full search: solve the game
 - checkers (Schaeffer et al 2007)
 - Nine men's morris (Gasser 1994)
 - Gomoku (5 in a row) (Allis 1990)
 - Awari, 5x5 Go, 5x5 Amazons,....

αβ Successes (2)

- Not solved, but super-human strength:
 - chess (Deep Blue team, 1996)
 - Othello (Buro 1996)
- Grandmaster strength:
 - shogi (Japanese chess)
 - xiangqi (Chinese chess)

$\alpha\beta$ Failures

- General Game Playing (GGP)
- Why fail?
 - Focus on Go here

- Classic Asian board game
- Simple rules, complex strategy
- Played by millions
- Hundreds of top experts professional players
- Until recently, computers much weaker than humans

Go Rules

- Start: empty board
- Goal: surround
 - Empty points
 - Opponent (capture
- Win: control more th half the board

 Komi: compensation for first player advantage

End of Game

- End: both players pass
- Territory intersections surrounded by one player
- The player with more (stones+territory) wins the game
- *Komi*: adjustment for first player advantage (e.g. 7.5 points)

Why does αβ Fail in Go?

- Depth and width of game tree
 - 250 moves on average
 - game length > 200 moves
- Lack of good evaluation function

Monte Carlo Methods

- Recently popular (mainly last 5 years)
- Hugely successful
 - Backgammon (Tesauro)
 - Go (many)
 - Amazons, Havannah, Lines of Action, ...

Monte Carlo Simulation

- No evaluation function? No problem!
- Simulate rest of game using random moves (easy)
- Score the game at the end (easy)
- Use that as evaluation (hmm, but...)

The GIGO Principle

- Garbage in, garbage out
- Even the best algorithms do not work if the input data is bad
- How can we gain any information from playing random moves?

Well, it Works!

- For some games, anyway
- Even random moves often preserve some difference between a good position and a bad one
- The rest is statistics...
 - ...well, not quite.

Basic Monte Carlo Search

- Play lots of random games starting with each possible move
- Keep winning statistics for each move
- Play move with best winning percentage

Simulation - Example

- Random legal moves, but...
- ...do not fill one point eyes
- End of game after both pass
- Evaluate by Chinese rules:
 +1 for win 0 for loss

Simulation

Simulation

Outcomes

IJ

Evaluation

- Surprisingly good e.g. in Go much better than random or simple knowledge-based players
 - Still limited
 - Prefers moves that work "on average"
 - Often these moves fail against the best response
 - "Silly threats"

How to Improve?

- I. Better-than-random simulations
- 2. Add game tree (as in $\alpha\beta$)
- 3. Add statistics over move quality (RAVE, AMAF) not today
- 4. Add knowledge in the game tree not today
 - I. human knowledge
 - 2. machine-learnt knowledge

I. Better Simulations

- Goal: strong correlation between initial position and result of simulation
- Preserve wins and losses
- How?

Knowledge in Simulations

- MoGo-style patterns
- Tactical rules

MoGo-Style Patterns

- 3x3 or 2x3 patterns
- Apply as response near last move

Tactical rules

- Escape from threats
- Stabilize/attack weak stones

Example of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf

Building a better Random Policy

- Two main approaches
 - Crazy Stone: use rules, patterns to set probabilities for each legal move
 - MoGo, Fuego: hierarchy of rules
 - Find set of highest priority rules
 - Choose randomly from this (often small) set

2. Add Game Tree

- Using simulations directly as an evaluation function for $\alpha\beta$ fails
 - Too much noise, or too slow if running many simulations per state
- Result: Monte Carlo was ignored for over 10 years in Go

Monte Carlo Tree Search

- Idea: use results of simulations to guide growth of the game tree
- **Exploitation**: focus on promising moves
- **Exploration**: focus on moves where uncertainty about evaluation is high
- Two contradictory goals?

UCB Formula

- Multi-armed bandits (slot machines in Casino)
 - Which bandit has best payoff?
 - Explore all arms, but:
 - Play promising arms more often
 - Minimize *regret* from playing poor arms

UCT Algorithm

- Kocsis and Szepesvari (2006)
- Apply UCB in each node of a game tree
- Which node to expand next?
- Start at root (current state)
- While in tree, choose child *n* that maximizes
 UCTValue(*parent*, *n*) =

winrate(n) + C*sqrt(ln(parent.visits)/n.visits)

• UCTValue(*parent*, *n*) =

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

- winrate(n) .. exploitation term average success
 of n so far
- I/n.visits .. part of exploration term explore nodes with very few visits - reduce uncertainty
- In(*parent.visits*) .. part of *exploration* term explore all nodes at least a little bit
- C .. exploration constant how important is exploration relative to exploitation?

Summary - Monte-Carlo Tree Search

- Amazingly successful in games where alphabeta failed
 - Top in Backgammon, Go, General Game Playing, Hex, Amazons, Lines of Action, Havannah,...
 - Similar methods work in multiplayer games (e.g. card games), planning and puzzles

Summary(2)

- Very successful in practice
- Scales OK to parallel machines
- Reasons for why and how it works still poorly understood
- Some limitations (see later)

The Fuego Project

- Developed at UofA (Enzenberger, Müller, Arneson,...)
- Open-source program hosted on sourceforge
- <u>http://fuego.sourceforge.net/</u>
- Goals:
 - General game-independent framework
 - Strong programs, e.g. Go, Hex, Amazons

Fuego Structure

- Game-independent kernel: smartgame library
 - MCTS, alphabeta, common data structures, utility classes
- General Go engine
 - Go board, rules, blocks, static safety algorithms
- Fuego Monte Carlo Go program

Fuego Go Successes

- 2009: First program to beat top human professional Chou Chun-Hsun in 9x9 game with no handicap
- Won 2009 Computer Olympiad 9x9 Go, 2010 UEC cup (19x19)
- 2nd places in Olympiad: 2009 (19x19), 2010 (9x9 and 13x13)
- This year: 3rd(9x9), 4th(13x13), 5th(19x19)
- Fuego ranked 1st on 9x9 CGOS all-time

Projects using Fuego(I)

- Bluefuego: MPI library for Fuego
 - Developed by IBM
 - Scales to hundreds of cores
- MoHex: world's strongest Hex program
 - Developed by Ryan Hayward's group in Alberta
 - Uses SmartGame kernel, MCTS engine
 - Won Olympiad 2009, 2010, 2011

Projects using Fuego(2)

- **Explorer**: ``classical" Go program
 - Strong solvers for Tsume Go, safe territory, endgame
 - Uses Fuego's SmartGame, Go libraries
- FuegoEx: add Explorer knowledge to Fuego
 - Tactical search (block capture)
 - Pattern matching 4000 handmade large irregular patterns
 - Filter: prune blunders from MCTS

Projects using Fuego(3)

- **RLGO** (Ďave Silver)
 - Reinforcement-learning based Go program
 - Uses SmartGame, Go, GoUct
- TsumeGo Explorer (Kishimoto + Müller)
 - World's best Life and Death solver for enclosed areas
 - Uses SmartGame, Go
- Arrow (Müller) Amazons-playing program
 - uses classical alpha-beta search other basic functionality from SmartGame
 - Arrow2 (Huntley, VanEyck) MCTS-based third in 2011 Olympiad

Parallel Search

- Shared memory parallelization (Enzenberger)
 - Good speedup up to about 8 cores
 - Lockfree shared game tree
 - Memory-limited
- Distributed memory BlueFuego (IBM)

Research Challenges

- How to improve simulations?
 - offline
 - online (during a game)
- How to achieve "locally strong" play?
 - Global search cannot see enough
- How to scale to massively parallel systems?

Al Planning

- Related idea: Monte Carlo random walks
- Add exploration into the search
- Arvand planner (Nakhost)
- Strong in finding plans
- Weaker in plan quality
- Strong for problems with limited resources
- Recent work: add local search tree (Xie)

Summary

- Monte Carlo methods have revolutionized search and games
- Still not well understood
- Lots of good research to be done
- General method, promising for many other applications