
Monte Carlo Tree Search
and Computer Go

Cmput 366 Guest Lecture
Martin Müller

mmueller@ualberta.ca

mailto:mmueller@ualberta.ca
mailto:mmueller@ualberta.ca

Contents

• Limits of alpha-beta search

• The Game of Go

• What is Monte Carlo Tree Search?

• The Fuego project

Alphabeta Search

• Minimax principle

• My turn: choose best move

• Opponent’s turn: they choose move that’s
worst for me

• Alphabeta (αβ): prune irrelevant parts of
tree

αβ Successes (1)

• Full search: solve the game

• checkers (Schaeffer et al 2007)

• Nine men’s morris (Gasser 1994)

• Gomoku (5 in a row) (Allis 1990)

• Awari, 5x5 Go, 5x5 Amazons,.....

αβ Successes (2)

• Not solved, but super-human strength:

• chess (Deep Blue team, 1996)

• Othello (Buro 1996)

• Grandmaster strength:

• shogi (Japanese chess)

• xiangqi (Chinese chess)

αβ Failures

• Go

• General Game Playing (GGP)

• Why fail?

• Focus on Go here

Go

• Classic Asian board game

• Simple rules, complex strategy

• Played by millions

• Hundreds of top experts - professional
players

• Until recently, computers much weaker
than humans

Go Rules
• Start: empty board

• Goal: surround

• Empty points

• Opponent (capture)

• Win: control more than
half the board

• Komi: compensation for first player
advantage

1 1

9

4

2
1 0

8 6

1 2
1 4

1

1 3

7

3

a

5

• End: both players pass

• Territory - intersections surrounded by one player

• The player with more (stones+territory) wins the game

• Komi: adjustment for first player advantage (e.g. 7.5 points)

End of Game

Why does αβ
Fail in Go?

• Depth and width of game tree

• 250 moves on average

• game length > 200 moves

• Lack of good evaluation function

Monte Carlo Methods

• Recently popular (mainly last 5 years)

• Hugely successful

• Backgammon (Tesauro)

• Go (many)

• Amazons, Havannah, Lines of Action, ...

Monte Carlo Simulation

• No evaluation function? No problem!

• Simulate rest of game using random moves
(easy)

• Score the game at the end (easy)

• Use that as evaluation (hmm, but...)

The GIGO Principle

• Garbage in, garbage out

• Even the best algorithms do not work if the
input data is bad

• How can we gain any information from
playing random moves?

Well, it Works!

• For some games, anyway

• Even random moves often preserve some
difference between a good position and a
bad one

• The rest is statistics...

• ...well, not quite.

Basic
Monte Carlo Search

• Play lots of random games starting with
each possible move

• Keep winning statistics for each move

• Play move with best winning percentage

Simulation - Example

• Random legal moves,
but…

• …do not fill one point
eyes

• End of game after both
pass

• Evaluate by Chinese
rules:
+1 for win
 0 for loss

valkyria-ExBoss-randomgame.sgf

Example
(for one
move)

Example
(for one
move)

Current position s

Example
(for one
move)

Current position s

Simulation

Example
(for one
move)

Current position s

Simulation

 1 1 0 0 Outcomes

Example
(for one
move)

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Evaluation
• Surprisingly good e.g. in Go - much better

than random or simple knowledge-based
players

• Still limited

• Prefers moves that work “on average”

• Often these moves fail against the best
response

• “Silly threats”

How to Improve?

1. Better-than-random simulations

2. Add game tree (as in αβ)

3. Add statistics over move quality (RAVE,
AMAF) - not today

4. Add knowledge in the game tree - not today

1. human knowledge

2. machine-learnt knowledge

1. Better Simulations

• Goal: strong correlation between initial
position and result of simulation

• Preserve wins and losses

• How?

Knowledge in
Simulations

• MoGo-style patterns

• Tactical rules

MoGo-Style Patterns
• 3x3 or 2x3 patterns

• Apply as response near last move

Tactical rules
• Escape from threats

• Stabilize/attack weak stones

Example
of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf

Building a better
Random Policy

• Two main approaches

• Crazy Stone: use rules, patterns to set
probabilities for each legal move

• MoGo, Fuego: hierarchy of rules

• Find set of highest priority rules

• Choose randomly from this (often
small) set

2. Add Game Tree

• Using simulations directly as an evaluation
function for αβ fails

• Too much noise, or too slow if running
many simulations per state

• Result: Monte Carlo was ignored for over
10 years in Go

Monte Carlo
Tree Search

• Idea: use results of simulations to guide
growth of the game tree

• Exploitation: focus on promising moves

• Exploration: focus on moves where
uncertainty about evaluation is high

• Two contradictory goals?

UCB Formula

• Multi-armed bandits (slot machines in
Casino)

• Which bandit has best payoff?

• Explore all arms, but:

• Play promising arms more often

• Minimize regret from playing poor arms

UCT Algorithm
• Kocsis and Szepesvari (2006)

• Apply UCB in each node of a game tree

• Which node to expand next?

• Start at root (current state)

• While in tree, choose child n that maximizes

UCTValue(parent, n) =

winrate(n) + C*sqrt(ln(parent.visits)/n.visits)

• UCTValue(parent, n) =

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

• winrate(n) .. exploitation term - average success
of n so far

• 1/n.visits .. part of exploration term - explore
nodes with very few visits - reduce
uncertainty

• ln(parent.visits) .. part of exploration term -
explore all nodes at least a little bit

• C .. exploration constant - how important is
exploration relative to exploitation?

Acknowledgement:
these slides were

adapted from
David Silver’s
presentations

Summary - Monte-
Carlo Tree Search

• Amazingly successful in games where
alphabeta failed

• Top in Backgammon, Go, General Game
Playing, Hex, Amazons, Lines of Action,
Havannah,...

• Similar methods work in multiplayer
games (e.g. card games), planning and
puzzles

Summary(2)

• Very successful in practice

• Scales OK to parallel machines

• Reasons for why and how it works still
poorly understood

• Some limitations (see later)

The Fuego Project

• Developed at UofA (Enzenberger, Müller,
Arneson,...)

• Open-source program hosted on sourceforge

• http://fuego.sourceforge.net/

• Goals:

• General game-independent framework

• Strong programs, e.g. Go, Hex, Amazons

http://fuego.sourceforge.net
http://fuego.sourceforge.net

Fuego Structure
• Game-independent kernel:

smartgame library

• MCTS, alphabeta,
common data structures,
utility classes

• General Go engine

• Go board, rules, blocks,
static safety algorithms

• Fuego - Monte Carlo Go program

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain

Fuego Go Successes
• 2009: First program to beat top human

professional Chou Chun-Hsun in 9x9 game
with no handicap

• Won 2009 Computer Olympiad 9x9 Go,
2010 UEC cup (19x19)

• 2nd places in Olympiad: 2009 (19x19), 2010
(9x9 and 13x13)

• This year: 3rd(9x9), 4th(13x13), 5th(19x19)

• Fuego ranked 1st on 9x9 CGOS all-time

Projects using Fuego(1)

• Bluefuego: MPI library for Fuego

• Developed by IBM

• Scales to hundreds of cores

• MoHex: world’s strongest Hex program

• Developed by Ryan Hayward’s group in
Alberta

• Uses SmartGame kernel, MCTS engine

• Won Olympiad 2009, 2010, 2011

• Explorer: ``classical’’ Go program

• Strong solvers for Tsume Go, safe
territory, endgame

• Uses Fuego’s SmartGame, Go libraries

• FuegoEx: add Explorer knowledge to
Fuego

• Tactical search (block capture)

• Pattern matching - 4000 handmade large
irregular patterns

• Filter: prune blunders from MCTS

Projects using Fuego(2)

• RLGO (Dave Silver)

• Reinforcement-learning based Go program

• Uses SmartGame, Go, GoUct

• TsumeGo Explorer (Kishimoto + Müller)

• World’s best Life and Death solver for
enclosed areas

• Uses SmartGame, Go

• Arrow (Müller) Amazons-playing program

• uses classical alpha-beta search other basic
functionality from SmartGame

• Arrow2 (Huntley, VanEyck) MCTS-based -
third in 2011 Olympiad

Projects using Fuego(3)

Parallel Search

• Shared memory parallelization
(Enzenberger)

• Good speedup up to about 8 cores

• Lockfree shared game tree

• Memory-limited

• Distributed memory - BlueFuego (IBM)

Research Challenges

• How to improve simulations?

• offline

• online (during a game)

• How to achieve “locally strong” play?

• Global search cannot see enough

• How to scale to massively parallel systems?

AI Planning

• Related idea: Monte Carlo random walks

• Add exploration into the search

• Arvand planner (Nakhost)

• Strong in finding plans

• Weaker in plan quality

• Strong for problems with limited resources

• Recent work: add local search tree (Xie)

Summary

• Monte Carlo methods have revolutionized
search and games

• Still not well understood

• Lots of good research to be done

• General method, promising for many other
applications

