
The game of Go,
Monte Carlo Tree Search

and Computer Go
Martin Müller

mmueller@ualberta.ca

Acknowledgement: some slides adapted from
Dave Silver’s presentations

mailto:mmueller@ualberta.ca
mailto:mmueller@ualberta.ca
mailto:mmueller@ualberta.ca
mailto:mmueller@ualberta.ca

Contents

• Limits of alpha-beta search

• The Game of Go

• What is Monte Carlo Tree Search?

• The Fuego project

Alphabeta Search

• Minimax principle

• My turn: choose best move

• Opponent’s turn: they choose move that’s
worst for me

• Alphabeta (αβ): prune irrelevant parts of
tree

αβ Successes (1)

• Full search: solve the game

• checkers (Schaeffer et al 2007)

• Nine men’s morris (Gasser 1994)

• Gomoku (5 in a row) (Allis 1990)

• Awari, 5x5 Go, 5x5 Amazons,.....

αβ Successes (2)

• Not solved, but super-human strength:

• chess (Deep Blue team, 1996)

• Othello (Buro 1996)

• Grandmaster strength:

• shogi (Japanese chess)

• xiangqi (Chinese chess)

αβ Failures

• Go

• General Game Playing (GGP)

• Why fail?

• Focus on Go here

Go

• Classic Asian board game

• Simple rules, complex strategy

• Played by millions

• Hundreds of top experts - professional
players

• Until recently, computers much weaker
than humans

Go Rules
• Start: empty board

• Goal: surround

• Empty points

• Opponent (capture)

• Win: control more than
half the board

• Komi: compensation for first player
advantage

1 1

9

4

2
1 0

8 6

1 2
1 4

1

1 3

7

3

a

5

• End: both players pass

• Territory - intersections surrounded by one player

• The player with more (stones+territory) wins the game

• Komi: adjustment for first player advantage (e.g. 7.5 points)

End of Game

Why does αβ
Fail in Go?

• Depth and width of game tree

• 250 moves on average

• game length > 200 moves

• Lack of good evaluation function

Monte Carlo Methods

• Recently popular (mainly last 5 years)

• Hugely successful

• Backgammon (Tesauro)

• Scabble (Sheppard)

• Go (many)

• Amazons, Havannah, Lines of Action, ...

Monte-Carlo Simulation

• No evaluation function? No problem!

• Simulate rest of game using random moves
(easy)

• Score the game at the end (easy)

• Use that as evaluation (hmm, but...)

The GIGO Principle

• Garbage in, garbage out

• Even the best algorithms do not work if the
input data is bad

• How can we gain any information from
playing random moves?

Well, it Works!

• For some games, anyway

• Even random moves often preserve some
difference between a good position and a
bad one

• The rest is statistics...

• ...well, not quite.

Basic Monte Carlo
Search

• Play lots of random games starting with
each possible move

• Keep winning statistics for each move

• Play move with best winning percentage

Simulation - Example

• Random legal moves,
but…

• …do not fill one point
eyes

• End of game after both
pass

• Evaluate by Chinese
rules:
+1 for win
 0 for loss

valkyria-ExBoss-randomgame.sgf

Example
(for one
move)

Example
(for one
move)

Current position s

Example
(for one
move)

Current position s

Simulation

Example
(for one
move)

Current position s

Simulation

 1 1 0 0 Outcomes

Example
(for one
move)

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Evaluation
• Surprisingly good e.g. in Go - much better

than random or simple knowledge-based
players

• Still limited

• Prefers moves that work “on average”

• Often these moves fail against the best
response

• “Silly threats”

How to Improve?

1. Better-than-random simulations

2. Add game tree (as in αβ)

3. Add statistics over move quality (RAVE,
AMAF) - not today

4. Add knowledge in the game tree - not today

1. human knowledge

2. machine-learnt knowledge

1. Better Simulations

• Goal: strong correlation between initial
position and result of simulation

• Preserve wins and losses

• How?

Knowledge in
Simulations

• MoGo-style patterns

• Tactical rules

MoGo-Style Patterns
• 3x3 or 2x3 patterns

• Apply as response near last move

Tactical rules
• Escape from threats

• Stabilize/attack weak stones

Example
of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf

Building a better
Randomized Policy

• Two main approaches

• Crazy Stone: use rules, patterns to set
probabilities for each legal move

• MoGo, Fuego: hierarchy of rules

• Find set of highest priority rules

• Choose randomly from this (often
small) set

2. Add Game Tree

• Using simulations directly as an evaluation
function for αβ fails

• Too much noise, or too slow if running
many simulations per state

• Result: Monte-Carlo was ignored for over
10 years in Go

Monte Carlo
Tree Search

• Idea: use results of simulations to guide
growth of the game tree

• Exploitation: focus on promising moves

• Exploration: focus on moves where
uncertainty about evaluation is high

• Two contradictory goals?

UCB Formula

• Multi-armed bandits (slot machines in
Casino)

• Which bandit has best payoff?

• Explore all arms, but:

• Play promising arms more often

• Minimize regret from playing poor arms

UCT Algorithm
• Kocsis and Szepesvari (2006)

• Apply UCB in each node of a game tree

• Which node to expand next?

• Start at root (current state)

• While in tree, choose child n that
maximizes

UCTValue(parent, n) =

winrate(n) + C*sqrt(ln(parent.visits)/n.visits)

• UCTValue(parent, n) =

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

• winrate(n) .. exploitation term - average success
of n so far

• 1/n.visits .. part of exploration term - explore
nodes with very few visits - reduce
uncertainty

• ln(parent.visits) .. part of exploration term -
explore all nodes at least a little bit

• C .. exploration constant - how important is
exploration relative to exploitation?

Monte Carlo Tree Search

Monte Carlo Tree Search

Monte Carlo Tree Search

Monte Carlo Tree Search

Monte Carlo Tree Search

Summary of Monte
Carlo Tree Search

• Amazingly successful in games where
alphabeta failed

• Top in Backgammon, Go, General Game
Playing, Hex, Amazons, Lines of Action,
Havannah,...

• Similar methods work in multiplayer
games (e.g. card games), planning and
puzzles

Summary(2)

• Very successful in practice

• Scales OK to parallel machines

• Reasons for why and how it works still
poorly understood

• Some limitations (see later)

The Fuego Project

• Developed at UofA (Enzenberger, Müller,
Arneson,...)

• Open-source program hosted on sourceforge

• http://fuego.sourceforge.net/

• Goals:

• General game-independent framework

• Strong programs, e.g. Go, Hex, Amazons

http://fuego.sourceforge.net
http://fuego.sourceforge.net

Fuego Structure

• Game-independent kernel:
smartgame library

• MCTS, alphabeta, common
data structures, utility classes

• General Go engine

• Go board, rules, blocks, static
safety algorithms

• Fuego - Monte Carlo Go program

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain

Fuego Go Successes

• 2009: First program to beat top human
professional Chou Chun-Hsun in 9x9 game
with no handicap

• Won 2009 Computer Olympiad 9x9 Go

• 2nd place in 2009 Olympiad 19x19

• 8-core Fuego ranked 3rd on 9x9 CGOS all-
time

• 80-core Fuego about 200 Elo stronger

Analysis and Update
• (Game demo here)

• According to expert analysis, Chou did not
make a mistake in this game, but Fuego
played flawlessly

• A milestone for Computer Go

• In game 2 with Black, Fuego played a
dubious move 3 and lost easily

• This year, we had 1 win 3 losses against
professionals :(

Projects using Fuego(1)
• Bluefuego: MPI library for Fuego

• Developed by IBM

• Distributed memory - connects (many)
copies of Fuego

• Scales to hundreds of cores

• MoHex: strongest Hex program

• Developed by Ryan Hayward’s group, CS,
University of Alberta

• Uses SmartGame kernel, MCTS engine

• Explorer: ``classical’’ Go program

• Strong solvers for Tsume Go, safe
territory, endgame

• Uses Fuego’s SmartGame, Go libraries

• FuegoEx: add Explorer knowledge to
Fuego

• Tactical search (block capture)

• Pattern matching - 4000 handmade large
irregular patterns

• Filter: prune blunders from MCTS

Projects using Fuego(2)

• RLGO (Dave Silver)

• Reinforcement-learning based Go program

• Uses SmartGame, Go, GoUct

• TsumeGo Explorer (Kishimoto + Müller)

• World’s best Life and Death solver for
enclosed areas

• Uses SmartGame, Go

• Arrow (Müller) Amazons-playing program

• uses classical alpha-beta search other basic
functionality from SmartGame

• Arrow2 (Huntley, VanEyck) MCTS-based

Projects using Fuego(3)

Parallel Search

• Shared memory parallelization
(Enzenberger)

• Good speedup up to about 8 cores

• Lockfree shared game tree

• Memory-limited

• Distributed memory - BlueFuego (IBM)

Research Challenges

• How to improve simulations?

• offline

• online (during a game)

• How to achieve “locally strong” play?

• Global search cannot see enough

• How to scale to massively parallel systems?

Summary
• Monte-Carlo methods have revolutionized

search and games

• Still not well understood

• Lots of good research to be done

• Ideas transfer to planning, optimization,...

• Challenge in Go:

• How to scale up to full 19x19 board?

