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Alphabeta Search

• Minimax principle

• My turn: choose best move

• Opponent’s turn: they choose move that’s 
worst for me

• Alphabeta (αβ): prune irrelevant parts of 
tree



αβ Successes (1)

• Full search: solve the game

• checkers (Schaeffer et al 2007)

• Nine men’s morris (Gasser 1994)

• Gomoku (5 in a row) (Allis 1990)

• Awari, 5x5 Go, 5x5 Amazons,.....



αβ Successes (2)

• Not solved, but super-human strength:

• chess (Deep Blue team, 1996)

• Othello (Buro 1996)

• Grandmaster strength:

• shogi (Japanese chess)

• xiangqi (Chinese chess)



αβ Failures

• Go

• General Game Playing (GGP)

• Why fail?

• Focus on Go here



Go

• Classic Asian board game

• Simple rules, complex strategy

• Played by millions

• Hundreds of top experts - professional 
players

• Until recently, computers much weaker 
than humans



Go Rules
• Start: empty board

• Goal: surround

• Empty points

• Opponent (capture)

• Win: control more than 
half the board

• Komi: compensation for first player 
advantage
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• End: both players pass

• Territory - intersections surrounded by one player

• The player with more (stones+territory) wins the game

• Komi: adjustment for first player advantage (e.g. 7.5 points)

End of Game



Why does αβ 
Fail in Go?

• Depth and width of game tree 

• 250 moves on average 

• game length > 200 moves

• Lack of good evaluation function



Monte Carlo Methods

• Recently popular (mainly last 5 years)

• Hugely successful

• Backgammon (Tesauro)

• Scabble (Sheppard)

• Go (many)

• Amazons, Havannah, Lines of Action, ...



Monte-Carlo Simulation

• No evaluation function? No problem!

• Simulate rest of game using random moves 
(easy)

• Score the game at the end (easy)

• Use that as evaluation (hmm, but...)



The GIGO Principle

• Garbage in, garbage out

• Even the best algorithms do not work if the 
input data is bad

• How can we gain any information from 
playing random moves?



Well, it Works!

• For some games, anyway

• Even random moves often preserve some 
difference between a good position and a 
bad one

• The rest is statistics...

• ...well, not quite.



Basic Monte Carlo 
Search

• Play lots of random games starting with 
each possible move

• Keep winning statistics for each move

• Play move with best winning percentage



Simulation - Example

• Random legal moves, 
but…

• …do not fill one point 
eyes

• End of game after both 
pass

• Evaluate by Chinese 
rules:
+1 for win
  0 for loss

valkyria-ExBoss-randomgame.sgf



Example
(for one 
move)
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 1      1      0      0        Outcomes



Example
(for one 
move)

Current position s

Simulation

 1      1      0      0        Outcomes

V(s) = 2/4 = 0.5



Evaluation
• Surprisingly good e.g. in Go - much better 

than random or simple knowledge-based 
players

• Still limited

• Prefers moves that work “on average”

• Often these moves fail against the best 
response

• “Silly threats”



How to Improve?

1. Better-than-random simulations

2. Add game tree (as in αβ)

3. Add statistics over move quality (RAVE, 
AMAF) - not today

4. Add knowledge in the game tree - not today

1. human knowledge

2. machine-learnt knowledge



1. Better Simulations

• Goal: strong correlation between initial 
position and result of simulation

• Preserve wins and losses

• How?



Knowledge in 
Simulations

• MoGo-style patterns

• Tactical rules



MoGo-Style Patterns
• 3x3 or 2x3 patterns

• Apply as response near last move



Tactical rules
• Escape from threats

• Stabilize/attack weak stones



Example 
of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf



Building a better 
Randomized Policy

• Two main approaches

• Crazy Stone: use rules, patterns to set 
probabilities for each legal move

• MoGo, Fuego: hierarchy of rules

• Find set of highest priority rules

• Choose randomly from this (often 
small) set



2.  Add Game Tree

• Using simulations directly as an evaluation 
function for αβ fails

• Too much noise, or too slow if running 
many simulations per state

• Result: Monte-Carlo was ignored for over 
10 years in Go



Monte Carlo 
Tree Search

• Idea: use results of simulations to guide 
growth of the game tree

• Exploitation: focus on promising moves

• Exploration: focus on moves where 
uncertainty about evaluation is high

• Two contradictory goals?



UCB Formula

• Multi-armed bandits (slot machines in 
Casino)

• Which bandit has best payoff?

• Explore all arms, but: 

• Play promising arms more often

• Minimize regret from playing poor arms



UCT Algorithm
• Kocsis and Szepesvari (2006)

• Apply UCB in each node of a game tree

• Which node to expand next?

• Start at root (current state)

• While in tree, choose child n that 
maximizes

UCTValue(parent, n) = 

winrate(n) + C*sqrt(ln(parent.visits)/n.visits)



• UCTValue(parent, n) = 

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

• winrate(n) .. exploitation term - average success 
of n so far

• 1/n.visits .. part of exploration term - explore 
nodes with very few visits - reduce 
uncertainty

• ln(parent.visits) .. part of exploration term - 
explore all nodes at least a little bit

• C .. exploration constant - how important is 
exploration relative to exploitation?



Monte Carlo Tree Search



Monte Carlo Tree Search



Monte Carlo Tree Search



Monte Carlo Tree Search



Monte Carlo Tree Search



Summary of Monte 
Carlo Tree Search

• Amazingly successful in games where 
alphabeta failed

• Top in Backgammon, Go, General Game 
Playing, Hex, Amazons, Lines of Action, 
Havannah,...

• Similar methods work in multiplayer 
games (e.g. card games), planning and 
puzzles



Summary(2)

• Very successful in practice

• Scales OK to parallel machines

• Reasons for why and how it works still 
poorly understood

• Some limitations (see later)



The Fuego Project

• Developed at UofA (Enzenberger, Müller, 
Arneson,...)

• Open-source program hosted on sourceforge

• http://fuego.sourceforge.net/

• Goals:

• General game-independent framework

• Strong programs, e.g. Go, Hex,  Amazons

http://fuego.sourceforge.net
http://fuego.sourceforge.net


Fuego Structure

• Game-independent kernel: 
smartgame library

• MCTS, alphabeta, common 
data structures, utility classes

• General Go engine

• Go board, rules, blocks, static 
safety algorithms

• Fuego - Monte Carlo Go program

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain



Fuego Go Successes

• 2009: First program to beat top human 
professional Chou Chun-Hsun in 9x9 game 
with no handicap

• Won 2009 Computer Olympiad 9x9 Go

• 2nd place in 2009 Olympiad 19x19

• 8-core Fuego ranked 3rd on 9x9 CGOS all-
time

• 80-core Fuego about 200 Elo stronger



Analysis and Update
• (Game demo here)

• According to expert analysis, Chou did not 
make a mistake in this game, but Fuego 
played flawlessly

• A milestone for Computer Go

• In game 2 with Black, Fuego played a 
dubious move 3 and lost easily

• This year, we had 1 win 3 losses against 
professionals :(



Projects using Fuego(1)
• Bluefuego: MPI library for Fuego

• Developed by IBM

• Distributed memory - connects (many) 
copies of Fuego

• Scales to hundreds of cores

• MoHex: strongest Hex program

• Developed by Ryan Hayward’s group, CS, 
University of Alberta

• Uses SmartGame kernel, MCTS engine



• Explorer: ``classical’’ Go program

• Strong solvers for Tsume Go, safe 
territory, endgame

• Uses Fuego’s SmartGame, Go libraries

• FuegoEx: add Explorer knowledge to 
Fuego

• Tactical search (block capture)

• Pattern matching - 4000 handmade large 
irregular patterns

• Filter: prune blunders from MCTS

Projects using Fuego(2)



• RLGO (Dave Silver)

•  Reinforcement-learning based Go program

• Uses SmartGame, Go, GoUct

• TsumeGo Explorer (Kishimoto + Müller)

• World’s best Life and Death solver for 
enclosed areas

•  Uses SmartGame, Go

• Arrow (Müller) Amazons-playing program 

•  uses classical alpha-beta search other basic 
functionality from SmartGame

• Arrow2 (Huntley, VanEyck) MCTS-based

Projects using Fuego(3)



Parallel Search

• Shared memory parallelization 
(Enzenberger)

• Good speedup up to about 8 cores

• Lockfree shared game tree

• Memory-limited

• Distributed memory - BlueFuego (IBM)



Research Challenges

• How to improve simulations?

• offline

• online (during a game)

• How to achieve “locally strong” play?

• Global search cannot see enough

• How to scale to massively parallel systems?



Summary
• Monte-Carlo methods have revolutionized 

search and games

• Still not well understood

• Lots of good research to be done

• Ideas transfer to planning, optimization,...

• Challenge in Go:

• How to scale up to full 19x19 board?


