Memory-Augmented Monte Carlo Tree Search

Chenjun Xiao, Jincheng Mei and Martin Müller

University of Alberta
Contributions

• Framework for Online Value Approximation

• Theoretical Analysis

• Design Memory and Integrate with MCTS

• Experiments in the Game of Go
Monte Carlo Tree Search

Selection

Expansion

Simulation

Backpropagation

Image source: http://en.wikipedia.org/wiki/Monte-Carlo_tree_search
Value Approximation

Generalization is the key!

\[V_\theta \rightarrow 0.4 \]
\[V_\theta \rightarrow 0.8 \]
\[V_\theta \rightarrow 0.1 \]
\[V_\theta \rightarrow 0.6 \]
MCTS in AlphaGo

Image source: Mastering the game of Go with deep neural networks and tree search
Online Value Approximation

\[\delta_s = |\hat{V}(s) - V^*(s)| \]

\[\varepsilon_{s,x} = |V^*(s) - V^*(x)| \]

Assumption:

\(\delta_s \) is sub-gaussian

\[\varepsilon_M = \max_{i \in \mathcal{M}_s} \varepsilon_{s,i} \in [0, \varepsilon] \]
Online Value Approximation

- Memory Value:

\[
\hat{V}_M(x) = \sum_{i=1}^{M} w_i(x) \hat{V}(i) \quad \text{s.t.} \quad \sum_{i=1}^{M} w_i(x) = 1
\]

- Memory Value error:

\[
| \sum_{i=1}^{M} w_i(x) \hat{V}(i) - V^*(x) | \leq \sum_{i=1}^{M} w_i(x) (\delta_i + \varepsilon_{i,x})
\]
Entropy Regularized Optimization

Let \(q_i = - (\delta_i + \varepsilon_i) \)

- \(\max_{\mathbf{w} \in \Delta} \mathbf{w} \cdot \mathbf{q} \)
- \(\max_{\mathbf{w} \in \Delta} \mathbf{w} \cdot \mathbf{q} + \tau H(\mathbf{w}) \)
Entropy Regularized Optimization

- The “softmax”: \(F_\tau(q) = \tau \log(\sum_{i=1}^M e^{q_i/\tau}) \)

- The “soft indmax”: \(f_\tau(q) = \frac{e^{q/\tau}}{\sum_{i=1}^M e^{q_i/\tau}} = e^{(q-F_\tau(q))/\tau} \)

Lemma. (Nachum et al. 2017; Haarnoja et al. 2017; Ziebart 2010)

\[
F_\tau(q) = \max_{w \in \Delta} \{ w \cdot q + \tau H(w) \} \\
= f_\tau(q) \cdot q + \tau H(f_\tau(q))
\]
Main Theorem

- Choose weights $\mathbf{w} = f_\tau(-\mathbf{c})$

- For states with large sampling error $\delta_x > \varepsilon$

- With large enough number of simulations of "addressed" neighbour states $n = \sum_{i=1}^{M} N_i$

- Memory value is better than MC value with high probability
From Theory to Application

• Approximate optimal weights

• Design of memory and operations

• Integrate memory in MCTS
Approximate Optimal Weight

- Approximate simulation error: $\delta_i \propto 1/N_i$

- Approximate similarity: $\varepsilon_{i,x} \approx d(i, x) = -\cos(\phi(i), \phi(x))$

- Approximate weight: $w_i(x) = \frac{N_i \exp(-d(i, x)/\tau)}{\sum_{j=1}^{M} N_j \exp(-d(j, x)/\tau)}$
Feature Representation

- Unbiased property of Feature Hashing (Weinberger et al. 2009):

\[
\mathbb{E}[\cos(\phi(s), \phi(x))] = \cos(\zeta(s), \zeta(x))
\]
Design of Memory

Add/Update

Query
M-MCTS

- Selection: compute state value by \(V(s) = (1 - \lambda_s)\hat{V}_s + \lambda_s \hat{V}_M \)
- Evaluation: evaluate states by both MC and memory
- Backup: update MC value and memory value in tree
Experiments

- Implementation based on Go program Fuego
- Baseline: Fuego + Policy network (CNN)
- Two tests:
 - Test neighbourhood size M and temperature T
 - Test the size of memory
- Test scaling with number of simulations
Varying M and τ
Varying Memory Size

M=50, \(\tau = 0.1 \)
Future Work

• Combine with Value Network evaluation

• Learn feature representation for similarity

• Investigate online generalization in other methods, such as model-based RL
Thanks! Questions?