
Memory-Augmented 
Monte Carlo Tree Search

Chenjun Xiao, Jincheng Mei and Martin Müller 

University of Alberta



Contributions

• Framework for Online Value Approximation 

• Theoretical Analysis 

• Design Memory and Integrate with MCTS 

• Experiments in the Game of Go



Monte Carlo Tree Search

Image source:http://en.wikipedia.org/wiki/Monte-Carlo_tree_search



Value Approximation

0

1

1

0

…

V✓

Generalization is the key!

0.4V✓

V✓

V✓

V✓

0.8

0.1

0.6

…



MCTS in AlphaGo

Image source:  Mastering the game of Go with deep neural networks and tree search



Online Value Approximation

�s = |V̂ (s)� V ⇤(s)|
M

s

"s,x = |V ⇤(s)� V ⇤(x)|

Assumption:

�s is sub-gaussian

"M = maxi2Ms"s,i 2 [0, "]

Ms

M=2



Online Value Approximation

V̂M(x) =
MX

i=1

wi(x)V̂ (i) s.t.
MX

i=1

wi(x) = 1

Memory Value:

Memory Value error:

|
MX

i=1

wi(x)V̂ (i)� V ⇤(x)| 
MX

i=1

wi(x)(�i + "i,x)



Entropy Regularized 
Optimization

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

maxw2�w · q

maxw2�w · q+ ⌧H(w)

Let qi = �(�i + "i)



Entropy Regularized 
Optimization

• The “softmax” : 

• The “soft indmax” :

F⌧ (q) = ⌧ log(
MX

i=1

eqi/⌧ )

f⌧ (q) =
eq/⌧

PM
i=1 e

qi/⌧
= e(q�F⌧ (q))/⌧



Main Theorem

• Choose weights 

• For states with large sampling error  

• With large enough number of simulations of “addressed” 
neighbour states 

• Memory value is better than MC value with high probability

w = f⌧ (�c)

�x > "



From Theory to Application

• Approximate optimal weights 

• Design of memory and operations 

• Integrate memory in MCTS



Approximate Optimal Weight

• Approximate simulation error: 

• Approximate similarity: 

• Approximate weight: 

�i / 1/Ni

"i,x ⇡ d(i, x) = � cos(�(i),�(x))

wi(x) =
Ni exp(�d(i, x)/⌧)

PM
j=1 Nj exp(�d(j, x)/⌧)



Feature Representation

• Unbiased property of Feature Hashing (Weinberger et al. 2009):

s CNN ⇣(s) Feature
Hashing

�(s)

E[cos(�(s),�(x))] = cos(⇣(s), ⇣(x))



Design of Memory

Add/Update Query



M-MCTS

• Selection: compute state value 

by   

• Evaluation: evaluate states by 

both MC and memory 

• Backup: update MC value and 

memory value in tree

V (s) = (1� �s)V̂s + �sV̂M



Experiments
• Implementation based on Go program Fuego 

• Baseline: Fuego + Policy network (CNN) 

• Two tests: 

• Test neighbourhood size M and temperature  

• Test the size of memory 

• Test scaling with number of simulations

⌧



Varying M and

M=20 M=50 M=100

⌧



Varying Memory Size

M=50, tau=0.1



Future Work

• Combine with Value Network evaluation 

• Learn feature representation for similarity 

• Investigate online generalization in other 
methods, such as model-based RL



Thanks! Questions?


