Modern Heuristic Search: Towards a Unifying Framework

Martin Müller, University of Alberta

2017
Outline of the Talk

- What is heuristic search?
- Some textbook examples
- What is different in modern heuristic search?
- Examples of recent work
- Towards a general framework
What is Heuristic Search?
Heuristic Search Example

- Heuristic search is a research area in computing science
- It is considered a part of the field of Artificial Intelligence
- It can be used for *sequential decision-making problems*
- Many applications: automated planning, optimization problems, pathfinding, *games*, puzzles,…
Which Kind of Search?

- There are many other kinds of search in computing science
 - Internet search, database search, binary search, …
- In *heuristic search*, we search ahead into the future
 - Which sequences of actions can happen?
 - What is their effect?
- Goal: make decisions about best actions
What is a Heuristic?

- Heuristic is a rough, inexact rule
- A heuristic can *guide* the search

 Roughly, how good is an action?

 Roughly, how good is a state?

- Main question: How to use them to make good decisions?

Heuristic: straight-line distance
Why Use a Heuristic?

- Contrast: heuristic vs exact knowledge
- Why not use exact knowledge instead?
 - Often, it is simply not available
 - Example: how good is this Go position?
 - Sometimes, it is available but too expensive to compute
- Problem: how to build a robust system on inexact heuristics
Making Complex Decisions

- We make decisions every moment of our lives
- What is the process that leads to our decisions?
- How to make good decisions?
- Consider many alternatives
- Consider short-term and long-term consequences
- Evaluate different options and choose the best-looking one
Making Sequential Decisions

- Make decision:
 - Get current state of world
 - Analyze it
 - Select an action
 - Observe the world’s response
- If not done: make another decision

Image Source:
http://www.prenhall.com
Some Textbook Examples of Heuristic Search
A* Algorithm, Shortest Path

- State space with start state, end state
- Heuristic h(s) estimates cost-to-go from s to goal
- g(s) is cost-so-far from start to s
- A* always expands a node of smallest sum g(s) + h(s)
- Greedy, always follows heuristic, no other steps
Minimax, Alphabeta Algorithm

- Standard algorithm for game tree search
- Very successful for chess, checkers, many other games
- Tree search, then call heuristic evaluation function in leaf node
- Problem: always trusts the evaluation function, not robust against errors
- Mostly useless in Go, evaluation quality too bad
Main Problem of Classical Heuristic Search

- Classical methods have two main ingredients
 - Search algorithm
 - Knowledge expressed as heuristic (evaluation) function
- Problem: search is greedy / naive
 - Always trusts the heuristic
 - Not robust against errors in heuristic
 - Search can amplify the errors
What is Different in Modern Heuristic Search?
Exploration and Exploitation

- We often deal with information that is:
 - Heuristic, incomplete, stochastic, sparse,…

- Fundamental trade-off:
 - **Exploitation**: make decision based on the information we have
 - **Exploration**: go find more information
Exploration Algorithm for Bandit Problems

- Different actions, unknown “payoff” value
- Can sample each action, at a cost
- Value of action = expected payoff
- Uncertainty about value from lack of samples
Bandit Problems and UCB

- **Explore** = get more statistics
- **Exploit** = play best action
- UCB combines both ideas into one balanced formula
- One fundamental algorithm for solving exploration-exploitation problems
The Many Forms of Exploration

- UCB is one of the best known algorithms for exploration
- Many others
 - Random walk
 - Random simulation
 - Epsilon - greedy
 - Many more…
Exploration in Modern Heuristic Search

- Doing exploration is the key difference between classic and modern heuristic search
- Many success stories
- Many different approaches to exploration
- I try to understand the common principles
- At this point, we are just doing many case studies
The Three Plus One Pillars of Modern Heuristic Search

- Three main ingredients:
 - Search (old)
 - Knowledge (old) plus machine learning
 - Simulations for exploration (new)

- All of these are used in AlphaGo
- All of these are used in many modern systems
Examples of Recent Work
Game of Go

- Search = Monte Carlo Tree Search
- Knowledge, machine learning = deep convolutional neural networks
- Simulation = play full games until the end
Game of Amazons

- Modern two player game with aspects of both chess (queens) and Go (make territory)
- Search = Monte Carlo Tree Search
- Knowledge = traditional evaluation function
- Simulation = short random move sequences (about 5 moves deep) followed by evaluation
- Interesting case mixing aspects of old and new methods
Automated Planning

- **Search** = Greedy Best-first Search
- **Knowledge** = automatically constructed heuristic, specific for each problem
- **Simulation** = random walks, random sequences of actions
- (Much work done in my group, e.g. Arvand system)
Motion Planning

- Move robot through terrain
- RRT - rapidly exploring random tree (LaValle 1998)
- RRT* - approach optimal paths (Karaman and Frazzoli 2010)
- Extremely popular in robotics
- Early example of random walks

Image: Sertac Karaman

Yellow: start
Purple: goal
Red: obstacles
Green: RRT* tree
Red line: near-optimal path
Towards a General Framework
Many Results, More Questions

- Modern heuristic search has been extremely successful
- Taking proper account of exploration makes algorithms much more robust, and able to handle harder problems
- Advances in search allow to integrate different exploration techniques (simulations, random walks)
- Machine learning gives much stronger domain knowledge (deep neural nets, AlphaGo)
Many More Questions

- Each success story is one data point in a larger space
- How and why exactly do these programs work?
 - We don’t know
- Much development is by trial and error, not by systematic design
 - Example in Go: change program, then play thousands of test games to check it
Examples of Open Questions

- Given a new problem to solve:
- What is the right exploration method?
- Which machine learning techniques should we use?
- How do we scale to similar but harder problems?
- How do we transfer results to other problems?
Summary

- Modern heuristic search considers exploration
- Search, simulations, machine-learned knowledge
- Many diverse examples of programs which follow this pattern
- Work in progress: Looking for common ground