Computer Go: from the Beginnings to AlphaGo

Martin Müller, University of Alberta

2017
Outline of the Talk

- Game of Go
- Short history - Computer Go from the beginnings to AlphaGo
- The science behind AlphaGo
- The legacy of AlphaGo
The Game of Go
Go

- Classic two-player board game
- Invented in China thousands of years ago
- Simple rules, complex strategy
- Played by millions
- Hundreds of top experts - professional players
- Until 2016, computers weaker than humans
Go Rules

- Start with empty board
- Place stone of your own color
- Goal: surround empty points or opponent - capture
- Win: control more than half the board
- Komi: first player advantage

Final score, 9x9 board
Measuring Go Strength

- People in Europe and America use the traditional Japanese ranking system
- Kyu (student) and Dan (master) levels
 - Separate Dan ranks for professional players
- Kyu grades go down from 30 (absolute beginner) to 1 (best)
- Dan grades go up from 1 (weakest) to about 6
- There is also a numerical (Elo) system, e.g. 2500 = 5 Dan
Short History of Computer Go
Computer Go History - Beginnings

- 1960’s: initial ideas, designs on paper
- 1970’s: first serious program - Reitman & Wilcox
- Interviews with strong human players
- Try to build a model of human decision-making
- Level: “advanced beginner”, 15-20 kyu
- One game costs thousands of dollars in computer time
From 1980: PC (personal computers) arrive

Many people get cheap access to computers

Many start writing Go programs

First competitions, Computer Olympiad, Ing Cup

Level 10-15 kyu
1990-2005: Slow Progress

- Slow progress, commercial successes
- 1990 Ing Cup in Beijing
- 1993 Ing Cup in Chengdu
- Top programs Handtalk (Prof. Chen Zhixing), Goliath (Mark Boon), Go++ (Michael Reiss), Many Faces of Go (David Fotland)
- GNU Go - open source program, almost equal to top commercial programs
- Level - maybe 5 Kyu, but some “blind spots”
1998 - 29 Stone Handicap Game

- Played at US Go Congress
- Black: Many Faces of Go, world champion and one of the top Go programs at the time
- White: Martin Müller, 5 Dan amateur
- Result: White won by 6 points
2006-08 Monte Carlo Revolution

- Remi Coulom, Crazy Stone program: Monte Carlo Tree Search (MCTS)
- Levente Kocsis and Csaba Szepesvari: UCT algorithm
- Sylvain Gelly, Olivier Teytaud et al: MoGo program
- Level: about 1 Dan
Search - Game Tree Search

❖ All possible move sequences
❖ Combined in a tree structure
❖ Root is the current game position
❖ Leaf node is end of game
❖ Search used to find good move sequences
❖ Minimax principle

Search - Monte Carlo Tree Search

- Invented about 10 years ago (Coulom - Crazystone, UCT)
- Grow tree using win/loss statistics of simulations
- First successful use of simulations for classical two-player games
- Scaled up to massively parallel
 - MoGo; Fuego on several thousand cores
Simulation

- For complex problems, there are far too many possible future states
- Example: predict the path of a storm
- Sometimes, there is no good evaluation
- We can sample long-term consequences by simulating many future trajectories

Image Source: https://upload.wikimedia.org
Simulation in Computer Go

- Play until end of game
- Find who wins at end (easy)
- Moves in simulation: random + simple rules
- Early rules hand-made

Example:
Simple rule-based policy
Simulation in Computer Go (2)

- Later improvement:
- Machine-learned policy based on simple features
- Probability for each move
- AlphaGo: machine-trained simple network
- Fast: goal is about 1,000,000 moves/second/CPU
2008 First win on 9 Stones

- MoGo program
- Used supercomputer with 3200 CPUs
- Won with 9 stones handicap vs Myungwan Kim, 8 Dan professional
2008-15: Rapid Improvement

- Improve Monte Carlo Tree Search
- Better simulation policies (trial and error)
- Add Go knowledge in tree
 - Simple features, learn weights by machine learning
- Level: about 5-6 Dan
 3-4 stones handicap from top human players
Progress In 19x19 Go, 1996-2010

Monte-Carlo Search

Traditional Search

1 dan
2 dan
3 dan
4 dan
2 kyu
5 dan
3 kyu
4 kyu
5 kyu
6 kyu
7 kyu
8 kyu
9 kyu
10 kyu
11 kyu
12 kyu
13 kyu
14 kyu
15 kyu

1 kyu
2 kyu
3 kyu
4 kyu
5 kyu
6 kyu
7 kyu
8 kyu
9 kyu
10 kyu
11 kyu
12 kyu
13 kyu
14 kyu
15 kyu

Beginner

Master

Monte-Carlo Search

CrazyStone

Indigo

MoGo

Fuego

Zen
2009 - First 9x9 Win vs Top Pro

- Fuego open source program
- Mostly developed at University of Alberta
- First win against top human professional on 9x9 board
- MCTS, deep searches
- 80 core parallel machine

White: Fuego
Black: Chou Chun-Hsun 9 Dan
White wins by 2.5 points
Computer Go Before AlphaGo

- Summary of state of the art before AlphaGo:
 - Search - quite strong
 - Simulations - OK, but hard to improve
- Knowledge
 - Good for move selection
 - Considered hopeless for position evaluation

Who is better here?
2015 - Deep Neural Nets Arrive

- Two papers within a few weeks
 - First by Clark and Storkey, University of Edinburgh
 - Second paper by group at DeepMind, stronger results
- Deep convolutional neural nets (DCNN) used for move prediction in Go
- Much better prediction than old feature-based systems
AlphaGo

- Program by DeepMind
- Based in London, UK and Edmonton (from 2017)
- Bought by Google
- Expertise in Reinforcement Learning and search
- 2014-16: worked on Go program for about 2 years, mostly in secret
- One paper on move prediction (previous slide)
AlphaGo Matches

- Fall 2015 - beat European champion Fan Hui by 5:0 (kept secret)
- January 2016 paper in Nature, announced win vs Fan Hui
- March 2016 match vs Lee Sedol
 Wins 4:1
- January 2017, wins fast games
 60:0 against many top players
- May 2017 match vs Ke Jie
 Wins 3:0 then retires
The Science Behind AlphaGo
The Science Behind AlphaGo

- AlphaGo builds on decades of research in:
 - Building high performance game playing programs
 - Reinforcement Learning
 - (Deep) neural networks
Main Components of AlphaGo

- AlphaGo shares the same main components with many other modern heuristic search programs:
 - Search - MCTS (normal)
 - Knowledge created by machine learning (new types of knowledge)
 - Simulations (normal)
Knowledge - Policy and Evaluation

- Two types of knowledge
- Encoded in deep convolutional neural networks
 - *Policy network*: selects good moves for the search (as in move prediction)
 - *Value network*: evaluation function, measures probability of winning
Deep Neural Networks in AlphaGo

- Three different deep neural networks
- Supervised Learning (SL) policy network as in 2015 paper
 - Learn from master games: improved in details, more data
- New: Reinforcement Learning (RL) from self-play for policy network
- New: value network trained from labeled data from self-play games
RL Policy Network

- Deep neural network, same architecture as SL network
- Given a Go position
- Computes probability of each move being best
- Initialized with SL policy weights
- Trained by Reinforcement Learning from millions of self-play games
- Adjust weights in network from win/loss result at end of game only
Data for Training Value Network

- Policy network can be used as a strong and relatively fast player
- Randomize moves according to their learned probability
- After training, played 30 million self-play games
- Pick a single position from each game randomly
- Label it with the win/loss result of the game

- Result: data set of 30 million Go positions, each labeled as win or loss
- Next step: train the value network on those positions
Value Network

- Another deep neural network
- Given a Go position
- Computes probability of winning
- Static evaluation function
- Trained from the 30 million labeled game positions
- Trained to minimize the prediction error on the (win/loss) labels
Putting it All Together

- A huge engineering effort
- Many other technical contributions
- Massive amounts of self-play training for the neural networks
- Massive amounts of testing/tuning
- Large parallel hardware in earlier matches
- “Single TPU machine” in 2017
What’s New in AlphaGo 2017?

❖ Few details known as of now
❖ More publications promised
❖ Main change: better games data for training the value net
❖ Old system: 30 million games played by RL policy net
❖ New system: unknown number of games played by the full AlphaGo system

❖ Consequences:
❖ Much better quality of games
❖ Much better quality of final result labels
❖ From strong amateur (RL network) to full AlphaGo strength
❖ Most likely, many other improvements in all parts of the system
The Legacy of AlphaGo
Legacy of AlphaGo

- Research contributions, the path leading to AlphaGo
- Impact on communities
 - Go players
 - Computer Go researchers
 - Computing science
 - General public
Review: Contributions to AlphaGo

- Deepmind developed AlphaGo, with many great breakthrough ideas
- AlphaGo is also based on decades of research in heuristic search and machine learning
- Much of that research was done at University of Alberta
- Next slide: references from AlphaGo paper in Nature
 - Over 40% of references have a University of Alberta (co-)author
U. Alberta Research and Training

• Citation list from AlphaGo paper in Nature
• Papers with Alberta faculty or trainees in yellow
Impact on Game of Go

- AlphaGo received honorary 9 Dan diploma from both Chinese and Korean Go associations
- Strong impact on professional players
- Many new ideas, for example Ke Jie has experimented a lot with AlphaGo style openings
- Goal: Go programs as teaching tools
- Potential problem: cheating in tournaments?
What’s Next in Computer Go?

- Currently, developing a top Go program is *Big Science*
 - Needs a large team of engineers
 - Example: Tencent's FineArt

- What can a small-scale university project contribute?

- One idea: work on *solving* parts of the game
Is the Game of Go Solved Now?

- No!
- AlphaGo is incredibly strong but...
 - ... it is all based on heuristics
- AlphaGo still makes mistakes
- Example: 50 self-play games
 - Which color should win?
 - 38 wins for White
 - 12 wins for Black
- One of these results must be wrong
Solving Go on Small Boards

❖ Solving means proving the best result against any possible opponent play
❖ Much harder to scale up than heuristic play
❖ 5x5, 5x6 Go are the largest solved board sizes (v.d.Werf 2003, 2009)
❖ Much work to be done: 6x6, 7x7, …
Solving Go Endgames

- How about solving 19x19 Go?
- Completely impossible, much too hard
- Solving endgames is more promising
- Can play some full-board 19x19 puzzles perfectly
 - Algorithms based on combinatorial game theory (Berlekamp+Wolfe 1994, Müller 1995)
Solving Go Endgame Puzzles

(Theory Berlekamp+Wolfe 1994, computer program Müller 1995)
Impact on Computing Science, AI

- The promise of AlphaGo: methods are general, little game-specific engineering
- Shown that we have algorithms to acquire strong knowledge from very complex domains
- Challenge: what about real life applications?
 - Rules are not clear and change, hard to simulate
 - Even more actions
 - Less precise goals and evaluation
Impact on General Public

❖ Massive publicity about AlphaGo’s success
❖ Illustration of the power of AI methods
❖ Feelings of both opportunities and fear
❖ We can solve many complex problems with AI
❖ Will AI destroy many good human jobs?
 Or replace boring jobs with better ones?
Summary and Outlook

❖ DeepMind’s AlphaGo program is an incredible research breakthrough
❖ Landmark achievement for Computing Science
❖ Reviewed the main techniques that made this progress possible
❖ One big question: will the techniques apply to other problems?