
l

(DA)

troduce
A from

ets)
Information Processing Letters 88 (2003) 195–200

www.elsevier.com/locate/ip

Depth-First Discovery Algorithm for incremental topological
sorting of directed acyclic graphs

Jianjun Zhou∗, Martin Müller

Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada

Received 16 September 2002; received in revised form 19 March 2003

Communicated by F.Y.L. Chin

Abstract

We study the problem of incrementally maintaining a topological sorting in a large DAG. The Discovery Algorithm
of Alpern et al. [Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 32–42] computes a coverK of nodes
such that a solution to the modified problem can be found by changing node priorities withinK only. It achieves a runtime
complexity that is polynomially bounded in terms of the minimal cover sizek.

The temporary space complexity of DA grows quickly with increasing number of added edges and cover size. We in
the Depth-First Discovery Algorithm (DFDA), which uses depth-first search to reduce the temporary space of D
O(|A| × ‖K‖) to O(|A| + ‖K‖), where|A| is the number of edges to add and‖K‖ is theextended size of the cover. DFDA is
simpler than DA and performs better in our empirical tests.
 2003 Elsevier B.V. All rights reserved.

Keywords: Topological sorting; Incremental updating; Graph algorithms; DAG; Space complexity

1. Introduction consistent information (for example, in spreadshe
all
sely
ed
an
ion
s

ms,
ce o

[1,5].
g

n-
ph
ly
d

roy
ss
nce

the
e,
be

erved
In many types of computational problems, sm
changes to a problem instance often have clo
related solutions. Computing a solution to a modifi
problem incrementally from an existing solution c
be much more efficient than computing each solut
from scratch. Applications of incremental algorithm
include program development, interactive syste
text processing, and management and maintenan

* Corresponding author.
E-mail addresses: jianjun@cs.ualberta.ca (J. Zhou),

mmueller@cs.ualberta.ca (M. Müller).

0020-0190/$ – see front matter 2003 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2003.07.005
f

The goal of incremental dynamic priority orderin
(topological ordering, topological sorting) is to mai
tain a correct prioritization of a directed acyclic gra
(DAG) as it is modified. A DAG is said to be correct
prioritized if every vertexv in the graph is assigne
a scalar priority, denoted bypriority(v), such that if
there is a directed edge fromv to w, thenpriority(v) <

priority(w) [6]. Since deleting edges does not dest
an existing priority order of a DAG, we only discu
edge insertions in this paper. Fig. 1 shows an insta
of the incremental updating problem. After adding
edge from the priority 3 node to the priority 2 nod
the priorities of the source and destination must

.

196 J. Zhou, M. Müller / Information Processing Letters 88 (2003) 195–200
Fig. 1. Inserting an edge and changing priorities.

changed to fix the priority order. In general, changes 2. Previous work

beyond the endpoints of inserted edges may be neces-

ed
ri-

re-

nt

tes
h is
e.
ch
in
and

in-
r’s
, in
hes
al-
s.
x-
in

1].
ge
s a
lv-

a
in-
n be
the
d,
the

of
)
A)
DA
2

of
oid
ich
led

ize
ew
re
sary. Acover is a set of nodes such that the modifi
problem can be solved by changing only node prio
ties within the cover.

Definition 1 (cover [1]). A set of nodesK is a cover
if, for all nodesv andw in the changed graph,

v
+−→ w ∧ priority(v) � priority(w)

	⇒ v ∈ K∨ w ∈ K,

wherev
+−→ w denotes a nonnull path fromv to w.

Alpern et al. argue that the size ofK is not
enough to measure the effort of computing the
quired changes, and propose theextended size as a bet-
ter measure:

Definition 2 (extended size [1]). Given a coverK, its
extended size

‖K‖ def= |K| + ∣
∣Touch(K)

∣
∣,

where Touch(K) is the set of edges that are incide
with nodes inK.

This paper describes an algorithm that compu
a cover by a series of searches. The approac
conceptually simple and performs well in practic
We survey previous work and motivate our approa
in Section 2, and develop the DFDA algorithm
Section 3. Section 4 presents empirical results,
Section 5 summarizes our contribution.
We discuss three algorithms for the problem of
crementally updating a topological ordering. Hoove
method [2] inserts one edge at a time. However
typical applications edges are added in larger batc
[1]. Based on Hoover’s work, Alpern et al. gave an
gorithm for simultaneously inserting multiple edge
This algorithm was the first with a runtime comple
ity that is polynomially bounded in the general case
terms of the minimal extended size of the cover [
However, when dealing with large DAGs with a lar
number of edges to insert, their algorithm require
lot of working memory. Our work focuses on reso
ing this problem. Ramalingam et al. [5] developed
method for the more general problem of managing
cremental changes in constraint systems, which ca
used to maintain a topological sorting. However,
runtime of this algorithm is not polynomially bounde
and it can produce covers that are much larger than
minimal one.

Our work is based on the two-step algorithm
Alpern et al.: first the Discovery Algorithm (DA
marks a cover, then the Reassignment Algorithm (R
assigns consistent priorities to nodes in the cover.
processes all added edges simultaneously, needs|A|
different priority queues, and requires
(|A|) storage
per visited node in the worst case. The purpose
marking nodes for all edges simultaneously is to av
repeatedly reassigning the priorities of nodes, wh
can happen if Hoover’s single-edge algorithm is cal
for each edge.

While DA uses a breadth-first approach to organ
the processing of different inserted edges, our n
algorithm DFDA works depth-first. Added edges a

J. Zhou, M. Müller / Information Processing Letters 88 (2003) 195–200 197

processed one by one, extending the cover, while re-
ducing the O(|A| × ‖K‖) temporary storage require-

eed
ret-

er
at
the

d
the

s
h

at

at
use

is
ibed

d
ew
ard
re

ch

e

til
red

is
rch

eeds

two visited fields for each (visited node, inserted edge)
pair. DFDA keeps pushing the frontiers of one inserted

ntil
lds
dge.

een
gle

g
en

s
the
r
re
ual

key

of

A,

de.

d.

and
ments of DA to O(|A|+ ‖K‖). The improved memory
efficiency also enhances the overall processing sp
in practice. Both algorithms achieve the same theo
ical runtime complexity of O(|A|k logk), wherek is
the minimum extended size for a cover.

Given a correctly prioritized DAG and a cov
K, the Reassignment Algorithm (RA) checks th
the graph is cycle-free and reassigns priorities to
nodes inK with a worst case runtime of O(‖K‖ +
|K| log|K|). In practice, RA is faster than DA an
uses less memory, so improving DA enhances
performance of the whole system.

3. Depth-First Discovery Algorithm (DFDA)

Our Depth-First Discovery Algorithm (DFDA) i
based on the Discovery Algorithm (DA) [1]. Bot
DA and DFDA mark the nodes of a coverK by
considering pairs(x, y) of unmarked nodes such th

x
+−→ y. If the priorities are out of order, then

least one of the nodes is marked. The algorithms
a counter called theedge value (ev) in each visited
node.ev is initialized to the degree of the node, and
decremented during algorithm execution as descr
below.

Initially, the DAG is assumed to be prioritize
correctly. After adding a batch of edges, each n
edgee searches backward from its source and forw
from its destination, forming two frontiers which a
stored in priority queues: abackwardFrontier that
keeps the largest priority, and aforwardFrontier that
keeps the smallest priority on top.

In DA, there is one pair of priority queues for ea
new edgee. The nodesb andf at the top of the two
queues ofe represent the set of all pairs(x, y) such

thatx
+−→ y along a path that includesb, e andf . If

the priorities ofb andf are in order, then so are th
priorities of all x andy. Otherwise,b or f (or both)
are marked as visited bye, and search continues un
either a frontier becomes empty or a correctly orde
pair (b, f) is found.

The main difference between DA and DFDA
the handling of inserted edges. DA expands sea
frontiers of inserted edges one step at a time, and n
edge until the frontier node pairs are in order, or u
at least one frontier becomes empty. The visited fie
are reset before processing the next inserted e
DFDA only needs two fields for each visited node.

There are two kinds of dependencies betw
computations in both algorithms. One is for a sin
inserted edge. The first time a nodex is visited by an
edgee while searching forward,x is marked as visited
by e. When the search frome meetsx again along a
different path, it is skipped, ande continues searchin
the successors ofx. Another dependency is betwe
different inserted edges. If nodex is already marked
by e, then all other edgese′ will skip x and search
beyond it.

An important feature of both DA and DFDA i
how they choose which nodes to mark as part of
cover. For every pair(b, f), the node with smalle
ev is marked, and theev counters of both nodes a
decreased by this smaller value. In case of eq
ev values, both nodes are marked. This is the
technique to achieve bounded runtime complexity.

The process is illustrated in Fig. 3. For the case
DA, after addinge and e′, x andy are the frontiers
of edgee, andx andz the frontiers ofe′. Assuming
the algorithm deals withe first, x is marked since
x.ev < y.ev, and is extended. Theev of bothx andy

is reduced byx.ev = 3. For edgee′, nodex is skipped
since it was already marked bye. Next, DA checks the
pairs(w,y) and(w, z).

They are in order, so the so DA stops. For DFD
first (x, y) and (w,y), then (x, z) and (w, z) are
checked.

Let A be the set of added edges. DA uses
(|A|)
worst case space for marking in each visited no
Temporary space is bounded by O(|A| × ‖K‖), since
only nodes inK, and neighbor nodes will be visite
Let k be the minimal possible value of‖K‖. Then DA
computes a cover with extended size‖K‖ � 3k in a
worst case time of O(|A|k logk) [1].

Pseudocode for DFDA is shown in Fig. 2.Process-
Edge is called for each inserted edge. The source
destination of an edgee are denoted bye.source and
e.destination. The edge value of a noden is indicated
by n.ev. ProceduresGetBackward andGrowBackward
are analogous to the proceduresGetForward and
GrowForward shown.

198 J. Zhou, M. Müller / Information Processing Letters 88 (2003) 195–200

Main()
for all inserted edgese
e.destination.visitedForward := true;
forwardFrontier.Clear(); forwardFrontier.evPush(e.destination);
e.source.visitedBackward := true;
backwardFrontier.Clear(); backwardFrontier.evPush(e.source);
ProcessEdge();
Reset all visitedForward and visitedBackward fields;

PriorityQueue.evPush(x)
x.ev := degree(x);
Push(x);

ProcessEdge()
while f := GetForward() ∧ b := GetBackward() ∧ b.priority � f .priority

µ := min(f.ev, b.ev);
if f.ev = µ

forwardFrontier.Pop();
f .marked := true;
GrowForward(f);

if b.ev = µ,
backwardFrontier.Pop();
b.marked := true;
GrowBackward(b);

f.ev := f.ev − µ; b.ev := b.ev − µ;

GetForward()
do

if forwardFrontier.IsEmpty() returnNull;
x := forwardFrontier.Top();
if x.marked

forwardFrontier.Pop();
GrowForward(x);

while x.marked;
returnx;

GrowForward(x)
for all y with x → y do

if ∼ y.visitedForward
y.visitedForward := true;
if y.marked GrowForward(y);
else forwardFrontier.evPush(y);

Fig. 2. The Depth-First Discovery Algorithm.

Theorem 1. DFDA needs temporary space of size

O(|A| + ‖K‖).

ues
at
Proof. Besides storing the input DAG, the|A| added
edges and two frontiers of size O(‖K‖), the algorithm
stores an edge value and only two visited val
(visitedForward and visitedBackward) for each of
most‖K‖ visited nodes. ✷
 Fig. 3. Communication between edges.

J. Zhou, M. Müller / Information Processing Letters 88 (2003) 195–200 199

Theorem 2. Given a correctly prioritized directed
graph and a set A of newly added edges, DFDA marks

s.
any

2

s
, by
ws

th

, at
ited

A
ni-
A
r-
z

Gs
all,
rom
this
for
ds

g
ry

over
ed

he
s

nd
es
rted
also

ul
d to
atly

ck,
1st
,

ort
nell
a set of nodes K such that

(a) K is a cover;
(b) ‖K‖ � 3k, where k is the minimum extended size

for a cover;
(c) the worst case running time is O(|A|k logk).

Proof (Sketch). (a) Any nonnull pathP :w
+−→ z with

Priority(w) � Priority(z) must contain inserted edge
As in DA, the search for an inserted edge skips
marked node as the frontier moves alongP . A proof
by induction over the path length as in Theorem
of [1] shows thatw or z (or both) will be marked.

(b) BecauseK, is a cover, and like DA, DFDA use
the smaller edge value for selecting nodes to mark
the same argument as in Theorem 2 of [1], it follo
that‖K‖ � 3k.

(c) Insertion and deletion in a priority queue wi
O(k) elements can be performed in time O(logk).
Each node inK and the neighbor nodes ofK will be
added to a queue at most once for eache, and each
time the algorithm checks the order of two nodes
least one node is removed from the queue. The vis
values must be reset in at most‖K‖ nodes for eache.
The overall time complexity is O(|A|k logk +|A|k) =
O(|A|k logk). ✷

4. Empirical results

We compared the performance of DA and DFD
on random DAGs generated by DagAlea [4]. For u
formity, algorithms were implemented using LED
[3], with Fibonacci heap priority queues. All expe
iments were performed on a Pentium III 700 MH
workstation with 768 MB of memory.

Fig. 4 compares the runtime on 1000 random DA
with 1000 vertices and 3000 edges each. A sm
randomly selected set of edges was removed f
each DAG, then added as a batch. We repeated
process 10 times with different random batches
each DAG, so each point in the plot correspon
to an average over 10× 1000 runs. With increasin
batch size, DFDA benefits from its smaller tempora
storage and simpler algorithm.
Fig. 4. Comparison of runtime as batch size varies.

We also compared cover size and extended c
size for DA and DFDA experimentally. The observ
differences in sizes were very small.

5. Summary

We proposed DFDA as an improvement to t
Discovery Algorithm of Alpern et al. that reduce
the temporary space from O(|A| × ‖K‖) to O(|A| +
‖K‖), where |A| is the number of added edges a
‖K‖ the extended size of the cover. DFDA achiev
much better runtime performance. Processing inse
edges by a series of searches, not simultaneously,
simplifies the algorithm.

Acknowledgements

We are grateful to Lorna Stewart for insightf
discussions and feedback on our manuscript, an
the anonymous reviewers for comments that gre
helped to improve the presentation of this paper.

References

[1] B. Alpern, R. Hoover, B. Rosen, P. Sweeney, F.D. Zade
Incremental evaluation of computational circuits, in: Proc.
Annual ACM-SIAM Symp. on Discrete Algorithms, 1990
pp. 32–42.

[2] R. Hoover, Incremental graph evaluation, Technical Rep
87-836 (PhD Thesis), Dept. of Computer Science, Cor
University, Ithaca, NY, May 1987.

200 J. Zhou, M. Müller / Information Processing Letters 88 (2003) 195–200

[3] K. Mehlhorn, S. Näher, LEDA: a platform for combinatorial and
geometric computing, Comm. ACM 38 (1995) 96–102.

n
and
ble

[5] G. Ramalingam, J. Song, L. Joskowicz, R.E. Miller, Solv-
ing systems of difference constraints incrementally, Algorith-

ms
ss.
[4] G. Melancon, I. Herman, DAG drawing from an informatio
visualization perspective, in: Proc. of the Joint Eurographics
IEEE TCVG Symposium on Visualization, 2000; also availa
online: http://www.cwi.nl/InfoVisu.
mica 23 (1999) 261–275.
[6] G. Ramalingam, T. Reps, On competitive on-line algorith

for the dynamic priority-ordering problem, Inform. Proce
Lett. 51 (3) (1994) 155–161.

