
1

SOLVING PROBABILISTIC COMBINATORIAL GAMES

Ling Zhao1 and Martin Müller2

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada, T6E 2E8

ABSTRACT

Probabilistic combinatorial games (PCG) are a model for Go-like games recently introduced by
Ken Chen. They differ from normal combinatorial games since terminal position in each subgame
are evaluated by a probability distribution. The distribution expresses the uncertainty in the local
evaluation. This paper focuses on the analysis and solution methods for a special case, 1-level
binary PCG. Monte-Carlo analysis is used for move ordering in an exact solver, that can compute
the winning probability of a PCG efficiently. Monte-Carlo interior evaluation is used in a heuristic
player. Experimental results show that both types of Monte-Carlo methods work very well in this
problem.

1. INTRODUCTION

Heuristic position evaluation in game playing programs should be a measure of the probability of
winning. However, in point-scoring games such as Go or amazons, evaluation functions usually ap-
proximate the score of the game instead of the winning probability. This can lead to serious blunders
when programs make a risky moves to gain even more territory, instead of playing conservatively to
preserve a comfortable lead (Müller, 1995; Chen, 2005).

One approach to dealing with uncertainty of evaluation is to use partial ordered values such as prob-
ability distributions instead of scalar evaluation. For the case of mini-max search such approaches
were developed in (Baum and Smith, 1997; Müller, 2001). (Chen, 2005) extends this approach to
the case of combinatorial sums of independent games (Berlekamp, Conway, and Guy, 1982), and
defines the framework ofprobabilistic combinatorial games(PCG). Figure 1 shows an idealized
example of how PCG might be applied to Go. A board is split into three independent areas, and the
result of local search in each area is represented by a PCG. Terminal nodes in the local search are
evaluated by a probability distribution.

(Chen, 2005) defined the PCG model and gave a high-level solution algorithm. This paper presents
first computational results. The main contributions are:

• Efficient exact and heuristic solvers for the special case of sums of 1-level binary PCG’s, called
SPCG.

• An analysis of the search space of SPCG.

• A Monte-Carlo move ordering technique for the exact SPCG solver.

• A Monte-Carlo based heuristic evaluation technique for SPCG with performance close to that
of the optimal player.

• An extensive experimental evaluation of the two solvers.

1zhao@cs.ualberta.ca
2mmueller@cs.ualberta.ca

zhao@cs.ualberta.ca�
mmueller@cs.ualberta.ca�

2 ICGA Journal Submitted

Area 1 Area 2

Area 3

Black plays first:
20 points (,98%) 2 points (2%)

White plays first:
-8 points (50%), 12 points (50%)

Black plays first:
10 points (99%), 9 points (1%)

White plays first:
-12 points (90%), 3 points (10%)

Black plays first:
10 points (100%)

White plays first:
-25 points (30%), -7 points (70%)

Figure 1: PCG example: sum of three subgames

The remaining part of the paper is organized as follows. In Section 2, we introduce definitions and
notation of SPCG, and raise the main problems addressed in this paper. Section 3 analyzes game
trees in SPCGs, including the methods to evaluate terminal nodes and interior nodes. Section 4
presents our approaches to solve the game, and to play the game strongly if solving it is not feasible.
Section 5 presents detailed experimental results and analysis, and we conclude with future work in
Section 6.

2. DEFINITIONS AND PROBLEM IDENTIFICATION

The following definition of probabilistic combinatorial games (PCG) is quoted from (Chen, 2005)
with slight modification:

1. A terminal position, represented by a probability distributiond = [(p1, v1), (p2, v2), · · · , (pn, vn)],
is a PCG. Ind, the outcome isvi with a probability ofpi (1 ≤ i ≤ n). 0 ≤ pi ≤ 1 and∑n

i=1 pi = 1.

2. {A1, A2, · · · , An | B1, B2, · · · , Bn} is a PCG ifA1, A2, · · · , An andB1, B2, · · · , Bn are all
PCGs.A1, A2, · · · , An are called left options andB1, B2, · · · , Bn are called right options, the
same as in the normal combinatorial games.

3. A sum of PCGs is a PCG. Summation is understood in the sense of combinatorial game the-
ory (Berlekampet al., 1982): a move in a sum game consists of a move in exactly one subgame
and leaves all other subgames unchanged.

PCG are played as follows:

• A move can be played in any nonterminal subgame.

• If all subgames are terminal, the game itself is terminal, and its probability distribution is the
sum of the distributions of all subgames.

• A game is won for Left if the value is greater than 0, and won for Right otherwise. From
a terminal game, the probability of winning is computing by adding the probabilities of all
values greater than 0.

The PCG model contains combinatorial games as the special case where all probability distributions
in terminal positions have a single point distribution of the formd = [(1, v)].

This paper focuses on a different special case of PCG which models uncertainty but keeps the com-
binatorial games as simple as possible. Simple PCG (SPCG) are PCG which obey the following
constraints:

3

1. A SPCG consists ofn ≥ 1 subgames.

2. Each subgame has exactly one option for Left and one option for Right.

3. Each option immediately leads to a terminal position represented by a probability distribution.

4. Each distributiond in a terminal position has only two values with associated probabilities:
d = [(p1, v1), (p2, v2)].

A SPCG ofn subgames is of the form
∑n

i=1{dL
i | dR

i }, wheredL
i anddR

i are 2-valued probability
distributions.

In SPCG, a move can be simply indicated by the number of the subgame. In the experiments and
analysis in this paper, without loss of generality, Left always moves first. This paper focuses on two
basic problems concerning SPCGs:

1. Efficient exact solution: What is the winning probability of Left in a given SPCG?

2. Approximate solution: When solving a SPCG is too slow, how to play as well as possible under
time constraints?

3. GAME TREE ANALYSIS OF SPCG

The SPCG model presents many regularities in terms of its game trees. Suppose a gameG hasn
subgames. The first move hasn choices (n subgames to select from), and after that, the second move,
which will be done by the other player, hasn−1 choices (since one subgame is no longer available).
So in general thekth move hasn− k choices. If the root of a game tree is defined as a node at depth
0, then any node at depthk has exactn−k children, and there aren!/(n−k)! nodes in total at depth
k. Therefore, the total number of nodes in the game tree is

∑n
k=0 n!/(n − k)! =

∑n
k=0 n!/k!, and

there aren! terminal nodes.

Since the subgames are independent, the order of play of the subgames chosen by the same players
does not change the evaluation. Each position can be represented by three sets: TheLeft set (Right
set)contains the indices of all subgames played by Left (Right), and theopen setcontains the indices
of all subgames that have not been played yet. For example, the sequence of subgames chosen (1,
2, 3) is equivalent to the sequence of (3, 2, 1). ifn = 5, then the Left set after both these sequences
would be1, 3, the Right set2, and the open set4, 5.

For a position afterk moves (a node at depthk in a game tree),k subgames have been played
by the two players,dk/2e by Left andbk/2c by Right. The number of distinct nodes at depth

k is equal to the number of possible combinations of left and right sets,

(
n
k

)(
k

bk/2c
)

. There

are

(
n

bn/2c
)

distinct terminal nodes, and the total number of distinct nodes in the game tree is:

∑n
k=0(

(
n
k

)(
k

bk/2c
)

).

As an example, Table 1 lists the number of nodes for SPCG with 12 to 15 subgames. The total
number of distinct nodes in a game increases roughly by a factor of 3 per subgame. The number of
distinct terminal nodes increases by a factor close to 2 (exactly 2 ifn is odd,2 − 2

n+2 if n is even).
There is a very large number of transpositions in the game tree, and the number of distinct interior
nodes is significantly more than that of distinct terminal nodes.

3.1 Terminal Node Evaluation

For a SPCG withn subgames, each terminal nodeT in its game tree is a sum ofn probability
distributions.

4 ICGA Journal Submitted

subgames 12 13 14 15

all nodes 1,302,061,345 16,926,797,486 236,975,164,805 3,554,627,472,076
terminal nodes 479,001,600 6,227,020,800 87,178,291,200 1,307,674,368,000

all distinct nodes 143,365 414,584 1,201,917 3,492,117
distinct terminal nodes 924 1,716 3,432 6,435

Table 1: Statistics for SPCG with 12 to 15 subgames.

T =
n∑

i=1

[(p1i
, v1i

), (p2i
, v2i

)]

T itself can be expressed as a single, complex probability distribution over sums of valuesv1i and
v2i

. The winning probability ofT for Left is the sum of all probabilities of values greater than 0 in
T .

The following formula expresses the winning probabilityPw of T . Let q(i) ∈ {1, 2} (1 ≤ i ≤ n) be
such that the result valueVq(i) is chosen at subgame i. Then

Pw =
∑

{pq(1)1pq(2)2 · · · pq(n)n
|

n∑

i=1

vq(i) > 0},∀2n combinations of q(1), q(2), · · · , q(n). (1)

There are at least three methods to evaluatePw.

1. Direct evaluation of all2n combinations above.

2. A dynamic programming algorithm, representing the distribution as a list of bins and adding
one distribution at a time. This is effective when the valuesv are all integers within a small
range. However, in the worst case (real numbers or large integers) the final distribution can
have up to2n distinct non-zero entries, and this algorithm does not improve on the direct one.

3. Using the fact that the probability density of a sum is the convolution of their probability density
functions.

In the experiments reported in this paper, for the range ofn tested, methods 1. and 2. perform
similarly well. Method 2. can be further improved by noting that the final result is onlyPw, not
the exact distribution. All partial result that ensures a win or loss can be bagged and removed from
further processing. This improves the efficiency. In experiments withn = 14 subgames, optimized
dynamic programming was about twice as fast as the direct approach for a range of valuesv ∈
[−1000, 1000] but twice as slow for a larger rangev ∈ [−5000, 5000]. Since dynamic programming
version is efficient only when the range is limited, method 1. was used for all further experiments
and discussion in this paper.

It is costly or even infeasible to compute the exact winning probability of a terminal node when
n is large. In such a situation, it is desirable to have a good approximation method with control-
lable statistical errors. In cases when a quick estimate is sufficient, approximation can improve the
performance of a SPCG solver or player.

Monte-Carlo sampling is used to approximate winning probabilities. For each distributiond, a value
is generated. For example, ifd = [(p1, v1), (p2, v2)], thenv1 is generated with probabilityp1 and
v2 with probabilityp2 = 1 − p1. In a SPCG terminal nodeT , n values are generated from then
distributions, and the sum of thesen values is the result of the sample. If it is greater than 0, it counts
as a win for player Left, and a loss otherwise. The fraction of winsP k

w from k independent samples
is used to approximate the winning probability inT .

Each sample has a probability ofPw to win, and1− Pw to lose. The mean of the distribution is
Pw, and the standard deviation is

√
Pw(1− Pw). According to the Central Limit Theorem, the

5

mean of random samples drawn from a distribution tends to have a normal distribution. Whenk
is sufficiently large,P k

w has a normal distribution with the mean ofPw, and the standard deviation

of
√

Pw(1−Pw)
k ≤ 1

2
√

k
. This inequality can be used to select the minimum value ofk for a given

required accuracy. For example, according to the normal distribution, almost for sure (99.7%) the
difference betweenPw andP k

w is no more than 3
2
√

k
. With 10000 samples, the difference is 99.7%

likely to be within 0.015.

Experiments shown in Table 2 list the difference betweenPw andP k
w in random terminal nodes, and

compare it with the theoretical bounds. For games consisting ofn subgames, 100 terminal nodes
are randomly chosen as test cases. For each terminal node, probabilities were uniformly generated
from between 0% and 100% with granularities of 1% and 0.001%. Values were uniformly generated
between -1000 to 1000 with a granularity of 1.

For each terminal node, the error estimate, which is computed byPw − P k
w, is recorded fork from

3 to 33333. The standard deviation of the estimated error from the 100 terminal nodes is compared
with its theoretical bound (1

2
√

k
) in Table 2 forn is 14, 17, and 20 respectively.

samples 3 10 33 100 333 1000 3333 10000 33333

1/2
√

k 0.2887 0.1581 0.0870 0.0500 0.0274 0.0158 0.0087 0.0050 0.0027
14 subgames 0.1768 0.1118 0.0488 0.0320 0.0189 0.0118 0.0070 0.0050 0.0042
17 subgames 0.2294 0.1176 0.0717 0.0348 0.0203 0.0121 0.0074 0.0059 0.0052
20 subgames 0.2427 0.1020 0.0580 0.0314 0.0246 0.0121 0.0077 0.0059 0.0045

samples 3 10 33 100 333 1000 3333 10000 33333

1/2
√

k 0.2887 0.1581 0.0870 0.0500 0.0274 0.0158 0.0087 0.0050 0.0027
14 subgames 0.1893 0.0977 0.0655 0.0322 0.0190 0.0107 0.0053 0.0034 0.0019
17 subgames 0.1923 0.1093 0.0619 0.0419 0.0206 0.0125 0.0064 0.0038 0.0019
20 subgames 0.2091 0.1154 0.0634 0.0329 0.0199 0.0130 0.0064 0.0034 0.0019

Table 2: Standard deviation with probability granularity of 1% and 0.001%

The experimental results match the prediction very well when there is a fine granularity for randomly
generated probability, but the model is not appropriate for coarse granularity.

The termMonte-Carlo terminal evaluation(MCTE) is used to refer to the Monte-Carlo method
discussed in this subsection. MCTE estimates the winning probability of a terminal node.

3.2 Monte-Carlo Sampling for Heuristic Interior Node Evaluation

Left’s winning probability at an interior node, which is represented by its Left, Right and open sets,
can be computed by a complete mini-max search, using the exact evaluation of Section 3.1 in all
terminal nodes of the search. However, when full search is too slow, Monte-Carlo sampling is useful
for improving heuristic evaluation as well. Such methods are popular in games with incomplete
information such as Poker (Billingset al., 2002), and also in games with complete information such
as Go (Bouzy and Helmstetter, 2003). Abramson’s expected-outcome evaluation (Abramson, 1990)
evaluates a node in a search tree by averaging the values of terminal nodes reached from it through
random play. Similar ideas can only be found in (Palay, 1985; Baum and Smith, 1997). This method
is adapted here.

From an interior node, the sequence of alternate moves by both players to reach a terminal node is
simulated by randomly choosing each move of the sequence among all its legal choices with equal
probability. Such a simulation is iteratedk times, and the average winning probability of thek
sampled terminal nodes is an approximation of the winning probability of the interior node. The
winning probability at terminal nodes can be either accurately computed by using Formula (1) in
Section 3.1, or approximated by methods such as MCTE.

In SPCG, the order of moves chosen by the same players is irrelevant. For efficiency, a move se-

6 ICGA Journal Submitted

quence simulation can be replaced by uniformly randomly selectingk nodes out of all descendant
terminal nodes below this interior node. Such sampling is only meaningful ifk is (much) smaller
than the total number of descendant terminal nodes of an interior node.

Experiments measure the difference betweenPw andP ′w. For an interior node, its exact game value
Pw and the approximate valueP ′w estimated by the average winning probability of all its descendant
terminal nodes are computed. The test set consists of starting positions from 100 randomly generated
games withn = 14 subgames. The mean of|Pw − P ′w| is 0.148 in the experiments. Since the
difference is large, it is implausible to approximatePw usingP ′w. However, for a set of interior
nodes at the same depth, their errors are highly correlated, and the relative order of theirP ′w values
is a very good approximation of the order of theirPw values. Section 5.4 gives detailed results.P ′w
is an excellent move ordering heuristic.

In contrast to MCTE,Monte-Carlo interior evaluation(MCIE) is used to refer to the Monte-Carlo
sampling discussed in this subsection. MCIE estimates the winning probabilities at an interior node.
Monte-Carlo move orderinguses MCIE for move ordering at interior nodes in a search.

Monte-Carlo sampling is used in both the Monte-Carlo terminal evaluation and the interior evalua-
tion, but they serve different purposes, and have different parameters to control their qualities. These
two types of evaluation are used in both an exact SPCG solver and a heuristic SPCG player, which
will be discussed in the next two sections.

4. EXACT SOLVER AND HEURISTIC PLAYER FOR SPCG

In order to compute the exact winning probability of a game, a complete solver was implemented
based on alpha-beta mini-max search. Standard enhancements including transposition tables and
move ordering using the history heuristic (Schaeffer, 1989) are used.

The optimized solver spends more than 90% of its time on the accurate evaluation of terminal nodes
Since a SPCG game tree has far more interior than terminal nodes, most terminal nodes must be
evaluated in order to solve the game. Unless a more efficient method can be found to evaluate
terminal nodes, it is difficult to further improve the overall performance of the solver.

For cases when it is infeasible to solve a SPCG, or when it is desirable to play the game fast with
reasonable strength, a heuristic player was designed as follows:

A fixed depth alpha-beta search is performed. Nonterminal frontier nodes of the search are evaluated
using MCIE. Within MCIE, terminal nodes are evaluated by MCTE for efficiency.

A heuristic Monte-Carlo player with search depth of 1 is the same as the expected-outcome player
in (Abramson, 1990). It performed well in experiments. This player chooses its move as follows:
it finds all legal moves from the starting position, generates a depth 1 interior node for each move,
and compares these nodes using MCIE. The move that leads to the highest-valued depth 1 node is
chosen. This simple technique performs very well in SPCG. An advantage of this 1-ply Monte-Carlo
sampling method is that it is friendly to time control. Each sampling process costs almost the same
amount of time, and it can be performed continuously until time runs out.

Experimental results for the solver and heuristic player are given in the next section.

5. EXPERIMENTAL RESULTS AND ANALYSIS

This section summarizes experimental results for different configurations of the SPCG solver and
the Monte-Carlo SPCG player, and measures how Monte-Carlo move ordering performs in games.

7

5.1 Experimental Setup

All experiments were run on Linux workstations with AMD 2400MHz CPUs. The compiler was
gcc 3.4.2. The transposition table has220 entries, using about 34MB memory. Since the evaluation
of terminal nodes is expensive, they can never be overwritten by interior nodes in the transposition
table.

A set of 100 randomly generated games withn = 14 subgames are used for testing. Probabilities
were uniformly generated between 0% and 100% with a granularity of 1% and values between -1000
to 1000 with a granularity of 1. Table 3 contains statistics for solving these instances. Each cell is
of the form: mean value± standard deviation. The first player has a big advantage in SPCG, so the
average winning probability much larger than 50%.

Solving time (sec) Total nodes visited Terminal nodes visited Cache hits Winning prob.
8.2± 0.8 (2.2± 1.2)× 105 (2.5± 0.2)× 103 (1.3± 0.8)× 104 70.0%± 25.8%

Table 3: Statistics of solving the 100 random games

5.2 Performance of the Exact Solver

Monte-Carlo move ordering has two important parameters: the percentage of the total number of
descendant terminal nodes to be sampled,nt (see Section 3.2), and the number of value combina-
tions to be sampled for approximate evaluation of each terminal node,nc (see Section 3.1). The
Monte-Carlo move ordering uses MCIE, which contains two levels of Monte-Carlo sampling: on the
top level, a number of an interior node’s descendant terminal nodes are randomly chosen. On the
bottom level, each of these terminal nodes is evaluated by the average result of a number of value
combinations sampled from the value distributions of the node. Finally, the evaluation of the interior
node is the average evaluation of those terminal nodes sampled.

The solver has a depth limit for Monte-Carlo move ordering (dm). Nodes at depth up todm use
MCIE for move ordering, and others use the history heuristic. The total time for solving the 100 test
games for different parameter combinations is given in Figure 2.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 1 10 100 1000

T
ot

al
 s

ol
vi

ng
 ti

m
e

(s
ec

on
d)

Number of combinations sampled (nc)

nt=1 dm=1
nt=1/10 dm=1

nt=1/100 dm=1
nt=1 dm=2

nt=1/10 dm=2
nt=1/100 dm=2

Monte-Carlo disabled

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 1 10 100 1000

T
ot

al
 s

ol
vi

ng
 ti

m
e

(s
ec

on
d)

Number of combinations sampled (nc)

nt=1 dm=3
nt=1/10 dm=3

nt=1/100 dm=3
nt=1 dm=4

nt=1/10 dm=4
nt=1/100 dm=4

Monte-Carlo disabled

Figure 2: Solving time with respect to parameters in Monte-Carlo move ordering

In the figure, the straight lines parallel to x-axis denote the solving time when Monte-Carlo move
ordering is disabled, i.e., the solver only uses the history heuristic for move ordering. The large dif-
ference between these lines and the best solving time demonstrates that Monte-Carlo move ordering
is superior to the history heuristic.

8 ICGA Journal Submitted

Even when only a small number of value combinations are sampled (nc = 1, 10, 100), the terminal
node evaluation seems to provide a reasonably good estimate to compute the approximate value of
interior nodes. But whennc is 1000, it causes too much overhead.

If we focus on the range ofnc from 1 to 100, then for each depth limitdm, the solving time almost al-
ways increases whennt decreases. This indicates that the more descendant terminal nodes sampled,
the better the performance will be. Thus it is best to sample all of those terminal nodes whenever
possible.

The depth limit for Monte-Carlo move ordering is an intricate parameter that needs a trade-off be-
tween search efficiency and overhead computation. We setnt = 1 andnc = 10, and tested the
solver’s performance fordm from 0 to 14. The result is shown in Figure 3. Notedm = 0 implies
only the history heuristic are used for move ordering, anddm = 14 implies only the Monte-Carlo
move ordering is used.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
ot

al
 s

ol
vi

ng
 ti

m
e

(s
ec

on
d)

Depth limit for monte-carlo move ordering (dm)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 n
um

be
r

of
 n

od
es

 v
is

ite
d

Depth limit for monte-carlo move ordering (dm)

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 n
um

be
r

of
 te

rm
in

al
 n

od
es

 v
is

ite
d

Depth limit for monte-carlo move ordering (dm)

Figure 3: Statistics of the solver for different values ofdm (nt=1,nc=10)

Figure 3 clearly shows that whendm is at least 4, the solver’s performance is relatively stable in
terms of solving time and the number of nodes visited. This fact suggests that the Monte-Carlo
move ordering is more powerful for nodes close to the root of the game tree. It is also evident in the
rightmost graph of Figure 3 that the number of terminal nodes gradually decreases asdm increases,
which proves the Monte-Carlo interior evaluation is more accurate than the history heuristic for move
ordering in this game.

5.3 Performance of the Monte-Carlo Player

The relative strength of two players is tested by playing each of the 100 random games twice, switch-
ing colors for the second game. A player’s winning probability of a game is the average of its winning
probabilities in the two rounds. The perfect player always achieves 50% winning probability against
itself, and at least 50% against any player.

The Monte-Carlo player has two parameters: the search depth (at least 1), andnc for the approximate
evaluation of terminal nodes. We tested the Monte-Carlo player with different configurations of these
two parameters, and let it play against the perfect player. Figure 4 illustrate the winning probability
of the perfect player as well as the ratio of the time the perfect player spent to that of its Monte-Carlo
counterpart. The parameterdm is set to the search depth (meaning only MCIE is used), andnt is set
to be 1, since this setting works best. In the figure,nc = all means the accurate evaluation of terminal
nodes is performed.

The left graph in Figure 4 reveals an interesting property of the Monte-Carlo player: an increased
search depth does not necessarily generate a better winning probability, and sometimes it even makes
it worse. The Monte-Carlo player with the accurate terminal node evaluation is the best against the
perfect player, but it uses almost the same amount of time, so it is not practical.

When the number of value combinations sampled,nc, is from 100 to 1000 while the search depth
is very shallow (1 or 2), the Monte-Carlo player performs very well. Especially whennc is 1000

9

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

61%

62%

63%

64%

65%

 1 2 3 4 5 6

W
in

ni
ng

 p
ro

ba
bi

lit
y

Search depth

nc=all
nc=1000
nc=100
nc=10
nc=1

 1

 10

 100

 1000

 1 2 3 4 5 6

T
im

e
ra

tio
Search depth

nc=all
nc=1000
nc=100
nc=10
nc=1

Figure 4: The perfect player against the Monte-Carlo player: winning probability and time ratio

and the search depth is 1, the perfect player only has a slightly better winning probability of 50.56%.
That means the Monte-Carlo player is just about 1% weaker than perfect.

The Monte-Carlo player withnc = 1000 needs time comparable to the perfect player (about 25%
to 30%), and is much slower than the player withnc = 100. The latter player seems to be a good
compromise between time and accuracy: it plays games quickly, using 4% of the perfect player’s
time, and is only about 3% weaker.

It is not surprising that players with smallnc do not perform well. Insufficient sampling incurs
large errors. The graph on the right side in Figure 4 suggests that a deeper search can make up for
insufficient sampling to some extent.

5.4 Monte-Carlo Move Ordering

Since MCIE provides good estimates, it is important to provide a quantitative measurement to show
how good it is with regard to move ordering.

As an experiment, one interior node at each depth is randomly selected from each of the 100 test
games.

For each node, all pairs of legal moves are compared to test if the order of their exact values is
the same as the order suggested by MCIE. If it is different, then Monte-Carlo evaluation makes a
mistake, and the winning probability difference of the two moves is recorded. This value denotes the
winning probability lost due to the mistake. Theaverage probability error, defined as the average of
this value from all move pairs, measures the quality of move ordering for this node. The influence
of move ordering on choosing the best move is measured by theworst probability error, the winning
probability difference between the best move and the move suggested by MCIE.

Figure 5 illustrates the influence ofnc on the quality of Monte-Carlo move ordering. Data points
with probability error of 0 are not shown due to the logarithmic scale used. Again,nc = all means that
accurate terminal node evaluation is performed. The two graphs in Figure 5 clearly show that Monte-
Carlo evaluation provides nearly perfect move ordering with marginal error if there are a substantial
number of value combinations sampled. Even when only a small number of combinations sampled,
such as whennc is 10 or 100, the worst probability error is still less than 2%, though the error
becomes larger when the node is closer to terminal nodes.

10 ICGA Journal Submitted

1e-05

0.0001

0.001

0.01

0.1

 0 1 2 3 4 5 6 7 8 9 10 11 12

W
or

st
 p

ro
ba

bi
lit

y
er

ro
r

Depth of the node

nc=all
nc=1000
nc=100
nc=10

1e-05

0.0001

0.001

0.01

0.1

 0 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 p
ro

ba
bi

lit
y

er
ro

r

Depth of the node

nc=all
nc=1000
nc=100
nc=10

Figure 5: Probability error due to incorrect move ordering

6. CONCLUSIONS AND FUTURE WORK

This paper investigates SPCG, sums of 1-level probabilistic combinatorial games, and discusses
methods to solve them, as well as strong heuristic players. Properties of this game are analyzed,
and experimental results clearly show that Monte-Carlo methods are useful for evaluation of both
terminal and interior nodes.

Very interestingly, comparing the average winning probability of all descendant terminal nodes of an
interior node is a good indicator of relative value as measured by winning probability. Experimental
results show convincingly that this heuristic performs very well in move ordering for this game, and
that is why it could bring a big performance increase to the complete solver and also why the Monte-
Carlo player based on it performs well against the perfect player. It is interesting to investigate when
and why Abramson’s simple expected-outcome evaluation provides a good heuristic in games, SPCG
seems to be a good abstract model to study.

The SPCG solver and the Monte-Carlo player still have room for improvement. The bottleneck of
the solver lies in the accurate evaluation of terminal nodes.

An improvement on sampling strategy would be to incorporate progress pruning (Billingset al.,
2002; Bouzy and Helmstetter, 2003). In the current Monte-Carlo player, each legal move is sampled
at the same frequency. However, it is more efficient to use an adaptive strategy such that most of the
effort is spent on those moves that have a high chance of being the best.

A SPCG solver could be incorporated in a Go program. The solver would be used on the high level
to instruct the program to maximize its winning probability. As proposed in (Chen, 2005), such an
approach might help to improve the playing strengths of current Go programs. It would present a
significant new application of Monte-Carlo methods.

7. REFERENCES

Abramson, B. (1990). Expected-Outcome: A General Model of Static Evaluation.IEEE transactions
on PAMI, Vol. 12, pp. 182–193.

Baum, E. and Smith, W. (1997). A bayesian approach to relevance in game-playing.Artificial
Intelligence, Vol. 97, Nos. 1–2, pp. 195–242.

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (1982).Winning Ways for your Mathematical
Plays. Academic Press.

11

Billings, D., Davidson, A., Schaeffer, J., and Szafron, D. (2002). The Challenge of Poker.Artificial
Intelligence, Vol. 134, Nos. 1–2, pp. 201–240.

Bouzy, B. and Helmstetter, B. (2003). Monte Carlo Go Developments.Advances in Computer
Games conference (ACG-10)(ed. E. A. H. H. J. van den Herik, H. Iida), pp. 159–174.

Chen, K. (2005). Maximizing the chance of winning in searching Go game trees.Information
Sciences. To Appear.

Müller, M. (1995).Computer Go as a Sum of Local Games: An Application of Combinatorial Game
Theory. Ph.D. thesis, ETH Z̈urich. Diss. ETH Nr. 11.006.

Müller, M. (2001). Partial Order Bounding: A new Approach to Evaluation in Game Tree Search.
Artificial Intelligence, Vol. 129, Nos. 1–2, pp. 279–311.

Palay, A. (1985).Search with Probabilities. Morgan Kaufman.

Schaeffer, J. (1989). The history heuristic and the performance of Alpha-Beta enhancements.IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 11, pp. 1203–1212.

ACKNOWLEDGEMENTS

The authors would like to thank Markus Enzenberger and David Silver for their valuable comments
on this paper. This work has been supported by the Alberta Informatics Circle of Research Excel-
lence (iCORE) and the Alberta Ingenuity Fund.

