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Abstract
We explore an application to the game of Go of
a reinforcement learning approach based on a lin-
ear evaluation function and large numbers of bi-
nary features. This strategy has proved effective
in game playing programs and other reinforcement
learning applications. We apply this strategy to Go
by creating over a million features based on tem-
plates for small fragments of the board, and then
use temporal difference learning and self-play. This
method identifies hundreds of low level shapes with
recognisable significance to expert Go players, and
provides quantitive estimates of their values. We
analyse the relative contributions to performance of
templates of different types and sizes. Our results
show that small, translation-invariant templates are
surprisingly effective. We assess the performance
of our program by playing against the Average Lib-
erty Player and a variety of computer opponents on
the 9×9Computer Go Server. Our linear evaluation
function appears to outperform all other static eval-
uation functions that do not incorporate substantial
domain knowledge.

1 Introduction
A number of notable successes in artificial intelligence can be
attributed to a straightforward strategy: linear evaluation of
many simple features, trained by temporal difference learn-
ing, and combined with a suitable search algorithm. Games
provide interesting case studies for this approach. In games as
varied as Chess, Checkers, Othello, Backgammon and Scrab-
ble, computers have exceeded human levels of performance.
Despite the diversity of these domains, many of the best pro-
grams share this simple strategy.
First, positions are evaluated by a linear combination of

many features. In each game, the position is broken down into
small, local components: material, pawn structure and king
safety in Chess [3]; material and mobility terms in Check-
ers [7]; configurations of discs in Othello [2]; checker counts
in Backgammon [13]; single, duplicate and triplicate letter
rack leaves in Scrabble [9]; and one to four card combina-
tions in Hearts [11]. In each case, with the notable exception
of Backgammon, a linear evaluation function has provenmost

effective. They are fast to compute; easy to interpret, modify
and debug; and they have good convergence properties.
Secondly, weights are trained by temporal difference learn-

ing and self-play. The world champion Checkers program
Chinook was hand-tuned by expert players over 5 years.
When weights were trained instead by self-play using a tem-
poral difference learning algorithm, the program equalled
the performance of the original version [7]. A similar ap-
proach attained master level play in Chess [1]. TD-Gammon
achieved world class Backgammon performance after train-
ing by TD(0) and self-play [13]. A program trained by
TD(λ) and self-play outperformed an expert, hand-tuned ver-
sion at the card game Hearts [11]. Experience generated
by self-play was also used to train the weights of the world
champion Othello and Scrabble programs, using least squares
regression and a domain specific solution respectively [2;
9].
Finally, a linear evaluation function is combined with

a suitable search algorithm to produce a high-performance
game playing program. Minimax search variants are particu-
larly effective in Chess, Checkers, Othello and Backgammon
[3; 7; 2; 13], whereas Monte-Carlo simulation has proven
most successful in Scrabble [9] and Hearts [11].
In contrast to these games, the ancient oriental game of

Go has proven to be particularly challenging. The strongest
programs currently play at the level of human beginners, due
to the difficulty in constructing a suitable evaluation function
[6]. It has often been speculated that Go is uniquely difficult
for computers because of its intuitive nature, and requires an
altogether different approach to other games. Accordingly,
many new approaches have been tried, with limited success.
In this paper, we return to the strategy that has been so

successful in other domains, and apply it to Go. We develop
a systematic approach for representing intuitive Go knowl-
edge using local shape features. We evaluate positions using
a linear combination of these features, and learn weights by
temporal difference learning and self-play. Finally, we incor-
porate a simple alpha-beta search algorithm.

2 The Game of Go
The main rules of Go are simple. Black and white players
take turns to place a single stone onto an intersection of the
Go board. Stones cannot be moved once played, but may be
captured. Sets of adjacent, connected stones of one colour
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Figure 1: (a) If black plays at A he captures two white stones
on the right. Playing at B is a common tesuji to capture the
white stone at the top. The stones in the bottom-left form a
common joseki from the marked stone. (b) Black can play
according to one of three proverbs: A is the one-point jump;
B is the ponnuki; and C is a hane at the head of two stones.
(c) The safety of the marked black stone depends on context:
it is safe in the top-left; should be captured by white A in the
top-right; but should be safe from white B in the bottom-left.

are known as blocks. The empty intersections adjacent to a
block are called its liberties. If a block is reduced to zero
liberties by the opponent, it is captured and removed from the
board (Figure 1a). At the end of the game, each player’s score
is equal to the number of stones they have captured plus the
total number of empty intersections, known as territory, that
they have surrounded.

3 Shape Knowledge in Go
The concept of shape is extremely important in Go. A good
shape uses local stones efficiently to maximise tactical advan-
tage. Professional players analyse positions using a large vo-
cabulary of shapes, such as joseki (corner patterns) and tesuji
(tactical patterns). These may occur at a variety of different
scales, and may be specific to one location on the board or
equally applicable across the whole board (Figure 1). For ex-
ample, the joseki at the bottom left of Figure 1a is specific to
the marked black stone on the 3-4 point, whereas the tesuji at
the top could be used at any location. Many Go proverbs exist
to describe shape knowledge, for example “ponnuki is worth
30 points”, “the one-point jump is never bad” and “hane at
the head of two stones” (Figure 1b).
Commercial Computer Go programs rely heavily on the

use of pattern databases to represent shape knowledge [6].
Many years are devoted to hand-encoding professional ex-
pertise in the form of local pattern rules. Each pattern rec-
ommends a move to be played whenever a specific configura-
tion of stones is encountered on the board. The configuration
can also include additional features, such as requirements on
the liberties or strength of a particular stone. Unfortunately,
pattern databases suffer from the knowledge acquisition bot-
tleneck: expert shape knowledge is hard to quantify and en-
code, and the interactions between different patterns may lead
to unpredictable behaviour. If pattern databases were instead
learned purely from experience, it could significantly boost
the robustness and overall performance of the top programs.
Prior work on learning shape knowledge has focussed on

predicting expert moves by supervised learning of local shape
[10; 14]. Although success rates of around 40% have been

achieved in predicting expert moves, this approach has not
led to strong play in practice. This may be due to its focus
on mimicking rather than evaluating and understanding the
shapes encountered.
A second approach has been to train a multi-layer per-

ceptron, using temporal difference learning by self-play [8;
4]. The networks implicitly contain some representation of
local shape, and utilise weight sharing to exploit the natu-
ral symmetries of the Go board. This approach has led to
stronger Go playing programs, such as Enzenberger’s Neu-
roGo III [4], that are competitive with the top commercial
programs on 9 × 9 boards. However, the capacity for shape
knowledge is limited by the network architecture, and the
knowledge learned cannot be directly interpreted or modified
in the manner of pattern databases.

4 Local shape representation
We represent local shape by a template of features on the Go
board. The shape type is defined by the template size, the fea-
tures used in the template, and the weight sharing technique
used.
A template is a configuration of features for a rectangu-

lar region of the board. A basic template specifies a colour
(black, white or empty) for each intersection within the rect-
angle. The template is matched in a given position if the rect-
angle on the board contains exactly the same configuration as
the template. A local shape feature simply returns a binary
value indicating whether the template matches the current po-
sition.
We use weight sharing to exploit several symmetries of the

Go board [8]. All rotationally and reflectionally symmetric
shapes share the same weights. Colour symmetry is repre-
sented by inverting the colour of all stones when evaluating
a white move. These invariances define the class of location
dependent shapes. A second class of location independent
shapes also incorporates translation invariance. Weights are
shared between all local shape features that have the same
template, regardless of its location on the board. Figure 2
shows some examples of weight sharing for both classes of
shape.
For each type of shape, all possible templates are exhaus-

tively enumerated to give a shape set. For template sizes up
to 3 × 3, weights can be stored in memory for all shapes
in the set. For template sizes of 4 × 3 and larger, storage
of all weights in memory becomes impractical. Instead, we
utilise hashed weight sharing. A unique Zobrist hash [15] is
computed for each location dependent or location indepen-
dent shape, and h bins are created according to the available
memory. Weights are shared between those shapes falling
into the same hash bin, resulting in pseudo-random weight
sharing. Because the distribution of shapes is highly skewed,
we hope that updates to each hash bin will be dominated by
the most frequently occurring shape. This idea is similar to
the hashing methods used by tile coding [5].
There is a partial order between shape sets. We define the

predicate Gi,j to be 1 if shape set Si is more general than
shape set Sj , and 0 otherwise. Shape sets with smaller tem-
plates are strictly more general than larger ones, and location



Figure 2: Examples of location dependent and location inde-
pendent weight sharing, on a 5 × 5 board.

independent shape sets are strictly more general than location
dependent. A more general shape set provides no additional
information over a more specific shape set, but may provide
a useful abstraction for rapid learning.
The frequency with which shapes occur varies by several

orders of magnitude. For each of the m shape sets S j , the
total number of weights in the set is denoted by N j , and the
total number of local shape features in the set that are matched
in any position is a constant value nj . Figure 3 shows the
breakdown of total number and frequency of shape sets on a
5 × 5 board.

5 Learning algorithm
In principle, a set of shape weights can be learned for any
purpose, for example connecting, capturing, or surrounding
territory. In our case, weights are learned that directly con-
tribute to winning the game of 9 × 9 Go. At the end of each
game, the agent is given a reward of r = 1 for a win and
r = 0 for a loss.
The value function V π(s) is defined to be the expected

reward from board position s when following policy π, or
equivalently the probability of winning the game. We form
an approximation V (s) to the value function by taking a lin-

Template Location Location
size independent dependent

ni Ni ni Ni

1 × 1 25 3 25 27
2 × 1 40 9 40 54
2 × 2 16 81 16 324
3 × 2 24 729 24 2916
3 × 3 9 19683 9 78732
4 × 3 12 h 12 h
4 × 4 4 h 4 h
5 × 4 4 h 4 h
5 × 5 1 h 1 h

Figure 3: Number of shapes in each set for 5 × 5 Go.

ear combination of all local shape features φj,k from all shape
sets j, with their corresponding weights θj,k. The sigmoid
function σ squashes the output to the desired range [0, 1].

V (s) = σ




m∑

j=1

nj∑

k=1

φj,k(s)θj,k



 (1)

.
All weights θ are initialised to zero. The agent selects

moves by a ε-greedy single-ply search over the value func-
tion, breaking ties randomly. After the agent plays a move,
the weights are updated by the TD(0) algorithm [12]. The
step-size is the same for all local shape features within a set,
and is defined to give each set an equivalent proportion of
credit, by normalising by the number of parameters updated
on each time-step.

δ = r + V (st+1) − V (st) (2)

∆θj,k =
α

mnj
δφj,kV (st)(1 − V (st)) (3)

Because the local shape features are binary, only a sub-
set of features need be evaluated and updated. This leads to
an an efficient O(

∑m
j=1 nj) implementation rather than the

O(
∑m

j=1 Nj) time that would be required to evaluate or up-
date all weights.

6 Experiments with learning shape in 5 × 5
Go

We trained two Go-playing agents by coadaptive self-play,
each adapting its own set of weights so as to defeat the other.
This approach offers some advantages over self-play with a
single agent: it utilises two different gradients to avoid local
minima; and the two learned policies provide a robust per-
formance comparison. To prevent games from continuing for
excessive numbers of moves, agents were not allowed to play
within their own single-point eyes [4].
To test the performance of an agent, we used a simple tac-

tical algorithm for the opponent: ALP, the average liberty
player. To evaluate a position, the average number of liberties
of all opponent blocks is subtracted from the average over the
player’s blocks. Any ties are broken randomly. For every 500
games of self-play, 100 test games were played between each
agent in the pair and ALP.
We performed several experiments, each consisting of 50

separate runs of 100,000 training games. At the end of train-
ing, a final 1,000 test games were played between each agent
and ALP. All games were played on 5 × 5 boards. The learn-
ing rate in each experiment was measured by the average
number of training games required for both agents to exceed
a 50% win rate against ALP, during ongoing testing. Over-
all performance was estimated by the average percentage of
wins of both agents during final testing. All experiments were
run with α = 0.1 and an exploration rate of ε = 0.1 during
training and ε = 0 during testing. For shape sets using hashed
weight sharing, the number of bins was set to h = 100, 000.
In the first set of experiments, agents were trained using

just one set of shapes, with one experiment each for the 1× 1



location independent shape set, up to the 5 × 5 location de-
pendent shape set. The remaining experiments measured the
effect of combining shape sets of various degrees of general-
ity. For each shape set Si, an experiment was run using all
shape sets as or more general, {Sj : Gj,i}.
Amongst individual shape sets, the 2 × 2 shapes perform

best (Figure 4), achieving a 25% win rate within just 1000
games, and surpassing an 80% win rate after further train-
ing. Smaller shapes lack sufficient representational power,
and larger shapes are too numerous and specific to be learned
effectively within the training time. Location independent
sets appear to outperform location dependent sets, and learn
considerably faster when using small shapes. If training runs
were longer, it seems likely that larger, location dependent
shapes would become more effective.
When several shape sets are combined together, the per-

formance surpasses a 90% win rate. Location independent
sets again learn faster and more effectively. However, a mix-
ture of different shapes appears to be a robust and successful
approach. Learning time slows down approximately linearly
with the number of shape sets, but may provide a small in-
crease in performance for medium sized shapes.

7 Board growing
The training time for an agent performing one-ply search is
O(k4) for k × k Go, because both the number of moves and
the length of the game increase quadratically with the board
size. Training on small boards can lead to significantly faster
learning, if the knowledge learned can be transferred appro-
priately to larger boards.
Of course, knowledge can only be transferred when equiv-

alent features exist on different board sizes, and when the ef-
fect of those features remains similar. Local shape features
satisfy both of these requirements. A local shape feature on
a small board can be aligned to an equivalent location on a
larger board, relative to the corner position. The weights for
each local shape feature are initialised to the values learned
on the smaller board. Some new local shape features are in-
troduced in the centre of the larger board; these do not align
with any shape in the smaller board and are initialised with
zero weights.
Using this procedure, we started learning on a 5× 5 board,

and incremented the board size whenever a win rate of 90%
against ALP was achieved by both agents.

8 Online cascade
The local shape features in our representation are linearly de-
pendent; the inclusion of more general shapes in the partial
order introduces much redundancy. There is no unique solu-
tion giving the definitive value of each shape; instead there is
a large subspace of optimal weight vectors.
Defining a canonical optimal solution is desirable for two

reasons. Firstly, we would like the goodness of each shape to
be interpretable by humans. Secondly, a canonical weight
vector provides each weight with an independent meaning
which is preserved between different board sizes, for example
when using the board growing procedure.

To approximate a canonical solution, we introduce the on-
line cascade algorithm. This calculates multiple approxima-
tions to the value function, each one based on a different sub-
set of all features. For each shape set Si, a TD-error δi is cal-
culated, based on the evaluation of all shape sets as or more
general than Si, and ignoring any less general shape sets. The
corresponding value function approximation is then updated
according to this error,

Vi(s) = σ




m∑

j=1

nj∑

k=1

Gj,iφj,k(s)θj,k



 (4)

δi = r + Vi(st+1) − Vi(st) (5)

∆θj,k =
α

mnj
δjφj,kVj(st)(1 − Vj(st)) (6)

By calculating separate TD-errors, the weights of the most
general features will approximate the best representation pos-
sible from just those features. Simultaneously, the specific
features will learn any weights required to locally correct the
abstract representation. This prevents the specific features
from accumulating any knowledge that can be represented
at a more general level, and leads to a canonical and easily
interpreted weight vector.

9 Generalised shape features
The local shape features used so far specify whether each in-
tersection is empty, black or white. However, the templates
can be extended to specify the value of additional features at
each intersection. This provides a simple mechanism for in-
corporating global knowledge, and to increase the expressive
power of the representation.
One natural extension is to use liberty templates, which

incorporate an external liberty count at each stone, in addi-
tion to its colour. An external liberty is a liberty of a block
that lies outside of the template. The corresponding count
measures whether there is zero, one, or more than one exter-
nal liberty for a particular stone. This provides a primitive
measure of a stone’s strength beyond the local shape. A lo-
cal liberty feature returns a binary value indicating whether
its liberty template matches the current position. There are a
large number of local liberty features, and so we use hashed
weight sharing for these shapes.

10 Results
To conclude our study of shape knowledge, we evaluated the
performance of our shape-based agents at 9 × 9 Go against a
variety of established Computer Go programs. We trained a
final pair of agents by coadaptive self-play, using the online
cascade technique and the board growing method described
above. The agents used all shapes from 1 × 1 up to 3 × 3,
including both location independent and location dependent
shapes based on both local shape features and local liberty
features, for a total of around 1.5 million weights.
To evaluate each agent’s performance, we connected it to

the Computer Go Server1 and played around 50 games of
1http://cgos.boardspace.net/9x9.html



Figure 4: (Top left) Percentage test wins against ALP after training with an individual shape set for 100,000 games. (Top right)
Number of training games with an individual shape set required to achieve 50% test wins against ALP. (Bottom left) Percentage
test wins using all shape sets as or more general. (Bottom right) Training games required for 50% wins, using all shape sets as
or more general.

9 × 9 Go with a 10 minute time control. At the time of writ-
ing, this server includes over fifty widely varying Computer
Go programs. Each program is assigned an Elo rating ac-
cording to its performance on the server, currently ranging
from around -170 for the random player up to +1860 for the
strongest current programs. Programs based on a static evalu-
ation functionwith little prior knowledge include ALP (+850)
and the Influence Player (+700). All of the stronger programs
on the server incorporate sophisticated search algorithms or
complex, hand-encoded Go knowledge.
The agent trained with local shape features attains a rating

of +1070, significantly outperforming the other simple, static
evaluators on the server. When local liberty features are used
as well, the agent’s rating increases to +1140 (Figure 5). Fi-
nally, when the basic evaluation function is combined with a
full-width, iterative-deepening alpha-beta search, the agent’s
performance increases to +1210.

11 Discussion
The shape knowledge learned by the agent (Figure 6) repre-
sents a broad library of common-sense Go intuitions. The
1 × 1 shapes encode the basic value of a stone, and the value
of each intersection. The 2 × 1 shapes show that playing

CGOS name Program description Games Elo rating
Linear-B Shape features 71 +1070
Linear-L Shape and liberty features 28 +1140
Linear-S Shape features and search 43 +1210

Figure 5: CGOS ratings attained by trained agents.

stones in the corner is bad, but that surrounding the corner
is good; and that connected stones are powerful. The 3 × 2
shapes show the value of cutting the opponent stones into sep-
arate groups, and the 3×3 shapes demonstrate three different
ways to form two eyes in the corner. Each specialisation of
shape adds more detail; for example playing one stone in the
corner is bad, but playing two connected stones in the corner
is twice as bad.
However, the whole is greater than the sum of its parts.

Weights are learned for over a million shapes, and the agent’s
play exhibits global behaviours beyond the scope of any sin-
gle shape, such as territory building and control of the cor-
ners. Its principle weakness is its local view of the board;
the agent will frequently play moves that look beneficial lo-
cally but miss the overall direction of the game, for example
adding stones to a group that has no hope of survival. Our



Figure 6: (Left) The 10 shapes in each set from 1 × 1 to 3 × 3, location independent and location dependent, with the greatest
absolute weight after training on a 9 × 9 board. (Top-right) A game between Linear-B (white) and DingBat-3.2 (rated +1580).
Linear-B plays a nice opening and develops a big lead. Moves 48 and 50 make good eye shape locally, but for the wrong group.
DingBat takes away the eyes from the group at the bottom with move 51 and goes on to win. (Bottom-right) A game between
Linear-L (white) and the search based Liberty-1.0 (rated +1110). Linear-L plays good attacking shape from moves 24-37. It
then extends from the wrong group, but returns later to make two safe eyes with 50 and 62 and ensure the win.

current work is focussed on using generalised shapes to over-
come this problem, based on more complex features such as
eyes, capture and connectivity.
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