
Information Sciences 154 (2003) 189–202

www.elsevier.com/locate/ins
Conditional combinatorial games
and their application to analyzing

capturing races in Go

Martin M€uuller

Department of Computing Science, University of Alberta, Edmonton, Canada T6G 2E8

Received 27 September 2001; accepted 24 September 2002
Abstract

Conditional combinatorial games (CCG) are a new tool developed for describing

loosely coupled games. The definition of CCG is based on the one for classical inde-

pendent combinatorial games. However, play in a CCG depends on its global context:

certain moves are legal only if a nonlocal context condition is currently true. Compared

with independent combinatorial games, CCG only allow some weaker forms of pruning.

The first part of this paper starts to develop a theory of CCG and gives some examples.

In the second part, CCG are shown to be useful for studying capturing races called

semeai in the game of Go. We introduce a general framework for analyzing semeai,

which is based on CCG and on an extension called liberty count games. We show how

this framework encompasses and extends our earlier work on solving semeai [M.

M€uuller, Race to capture: Analyzing semeai in Go, in: Game Programming Workshop in

Japan �99, IPSJ Symposium Series, vol. 99(14), 1999, p. 61].

� 2003 Elsevier Science Inc. All rights reserved.

Keywords: Combinatorial games; Conditional combinatorial games; Go; Semeai

1. Introduction

Classical combinatorial game theory [2,4] studies games that can be repre-

sented as sums of independent subgames. However, in many interesting games,
E-mail address: mmueller@cs.ualberta.ca (M. M€uuller).

0020-0255/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0020-0255(03)00050-1

mail to: mmueller@cs.ualberta.ca


190 M. M€uuller / Information Sciences 154 (2003) 189–202
most notably in the game of Go, true independence of subgames is a rare event.

Games can be sensibly divided into subgames which are ‘‘almost independent’’,

but not quite. In their work on Go endgame analysis, Berlekamp and his

students have frequently encountered this problem, and have invented a
number of ingenious mathematical methods to deal with some cases of de-

pendencies. In this paper, we start to develop a general framework for de-

scribing and analyzing games that can be decomposed into loosely coupled

subgames. The influence of the overall game on a subgame is expressed in

terms of abstract context conditions, which control which moves are legal in the

subgame. The goal of this work is to describe weak dependencies between

games in a concise form, and develop a framework that can yield a mostly local

analysis of a game while taking the global dependencies between subgames into
account.

The structure of this paper is as follows: in Section 2 we review some basic

concepts of combinatorial game theory, then develop our new framework of

conditional combinatorial games (CCG) in Section 3. In Section 4 we apply

CCG to the game of Go by introducing the idea of liberty count games

(LCG). We apply the new framework to capturing races in Go in Section 5,

briefly survey related work in Section 6 and summarize our contributions in

Section 7.
2. Combinatorial game theory

Combinatorial game theory [2,4] provides a mathematical basis for a divide-

and-conquer analysis of games: it breaks up game positions into pieces and

analyzes an overall game in terms of these smaller local subgames.

Each move in the game corresponds to a move in one subgame and leaves all

other subgames unchanged. A game ends when all subgames have ended, and

the final outcome of the game can be determined from the subgame outcomes.

A well-known example of a combinatorial game is Nim, shown in Fig. 1, which
is played with heaps of tokens. At each move, a player removes an arbitrary

number of tokens from a single heap, and whoever runs out of moves first

loses. Each Nim heap constitutes one subgame. While winning a single sub-

game is trivial, winning the sum of several heaps requires either exhaustive
Fig. 1. A three heap Nim position and its subgames.



M. M€uuller / Information Sciences 154 (2003) 189–202 191
analysis, or, much more efficiently, a computation using the calculus of com-

binatorial games.

A combinatorial game is defined recursively by G ¼ fGLjGRg, where GL and

GR are sets of combinatorial games representing the move options for the
players Left (L) and Right (R) in G.
3. Conditional combinatorial games

The subgames of a combinatorial game must be strictly independent from

each other. In games such as Go, a strict independence rarely holds. However,

human Go players routinely analyze local situations and combine the results to

achieve a full-board analysis. In their work on understanding professional Go
endgames, Berlekamp and his co-workers often found dependencies between

subgames which had to be handled by special-purpose analyses. The idea of

CCG is to develop a framework for describing loosely coupled games, which

takes the dependencies between games into account, but limits the combina-

torial explosion encountered in a brute force combination method such as

global minimax search.

Only a restricted type of dependency between CCG is allowed, as follows: A

subgame G in a CCG is similar to a subgame in classical combinatorial games.
However, the legality of a move from G to an option H may depend on some

abstract context condition C, a boolean predicate defined over the global game

state S that can be evaluated at runtime. In this case, the conditional move

option from G to H is written as HC. A move HC from G to H is legal in a global

game state S if and only if C evaluates to true in S. A classical combinatorial

game can be viewed as a special kind of CCG, in which none of the moves

depends on a context condition, or equivalently, a CCG where all context

conditions are the constant function true.

3.1. Example: Prime-Nim

To illustrate the idea of CCG, we introduce the game of Prime-Nim, with the

following rules:
1. As in normal Nim, players remove a number of tokens from a single heap at

each move.

2. Additionally, after each move the total number of tokens in the whole game

must be a prime number.

The legal moves in a heap in Prime-Nim clearly depend on the state of all

heaps. For example, in the 12 pebble starting position of Fig. 1, the legal moves

are to move to a total of 11 pebbles by removing any single pebble, or to move

to 7 pebbles my clearing the 5 pebble heap. All other normal Nim moves would
violate the global prime number context condition. Let �n denote a heap of n



192 M. M€uuller / Information Sciences 154 (2003) 189–202
pebbles, and let P be the predicate that tests that the global sum of all pebbles is

prime. Then the conditional moves in Prime-Nim are as follows:
�n ¼ f�0P ; �1P ; . . . ; �ðn� 1ÞP j � 0P ; �1P ; . . . ; �ðn� 1ÞPg
For example, consider the CCG sum �5 þ �3 þ �4 of Fig. 1. The moves of

each player in the subgame �3 are f�2Primeð5þ2þ4Þ; �1Primeð5þ1þ4Þ, �0Primeð5þ0þ4Þg,
which simplifies to f�2true, �1false, �0falseg and further to f�2g. In another sum,

such as �3 þ �6, the set of legal moves from �3 would be different:
f�2Primeð2þ6Þ; �1Primeð1þ6Þ; �0Primeð0þ6Þg ¼ f�2false; �1true; �0falseg ¼ f�1g:
3.2. Isolated and embedded views of a CCG

A single CCG can be viewed as an abstract entity by itself. However, to

relate it to a real game, the embedded view of a CCG as part of a global game is
more useful.

In the isolated view, a CCG is a function that maps tuples consisting of a

local game state and the boolean values of all context conditions occurring in

the game to the set of successor states that are legal for the given combination

of local game state and context condition values. The isolated view completely

describes the behavior of a CCG under all possible combinations of context

condition values.

In the embedded view of a CCG, the current value of all context conditions
and therefore the set of currently legal moves are defined at each move of the

global game as functions of the global game state.

3.3. Differences between CCG and combinatorial games

A very important point to note is that while we have chosen a notation that

looks similar to classical combinatorial game theory, the rules for simplifying

combinatorial games usually do not apply to CCG because the context con-

ditions fundamentally alter the way that a sum of such games can be played.

Each CCG is played in the context of a sum of other CCG, which are part of
the overall game position. As play progresses, the truth status of context

conditions can change during play, so the set of legal moves in a single CCG

can change even if that subgame itself does not change.

Most properties of independent combinatorial games are lost in CCG. There

is no group structure, the inverse of a game does not exist, and decomposability

is lost: for a CCG in isolation, without the other games that constitute its

context, not even the legal moves can be determined.

A few properties are still valid even in CCG, such as commutativity and
associativity. 0 is still a neutral element, so Gþ 0 ¼ G for any CCG G. How-

ever, some games that simplify to 0 as combinatorial games may not simplify as



M. M€uuller / Information Sciences 154 (2003) 189–202 193
CCG because they provide context for other games. An example are ko threats

in Go.

3.3.1. Example: cyclic CCG

In games such as Go, a subgame can contain cycles even if position repe-

tition in the global game is forbidden. Fig. 2 shows an example in Go called ko.

A simple ko position such as A ¼ f1jBg, B ¼ fAj0g can be described by a CCG
by indicating the context condition K in which the move from A to B is legal,

and the context condition K 0 in which the move from B to A is legal, as follows:

A ¼ f1jBKg, B ¼ fAK 0 j0g.

3.4. Pruning moves with dominated context condition in a CCG

We will call a context condition C1 more specific than context condition C2 if

C1 logically implies C2. The empty context condition, which is always true, is

the least specific context condition.

If one move requires a more specific context condition than another, but

leads to the same CCG, it is dominated. If BC and BD are both options in a
game and context condition D is more specific than C, then move BC PBD.

Fig. 3 shows an example in Go. Assume that the purpose of the game is to

occupy all local liberties of the three connected white stones. Taking the liberty

at �A� first depends on the ko context condition, whereas taking another liberty
Fig. 2. Ko.

Fig. 3. Pruning a move with dominated context condition.



194 M. M€uuller / Information Sciences 154 (2003) 189–202
at �B� first is always legal and just as good. Otherwise, both moves are equiv-

alent. The move B dominates A because it has an empty context condition.
4. Application to Go

Go is a ‘‘mostly local’’ game, and was the prime motivation for developing

CCG. We study some examples of context conditions in Go, and develop the

notion of liberty count games (LCG) in order to study capturing races which

occur as subgames of Go.
4.1. Examples of context conditions in Go

An important context condition for local analysis in the game of Go deals

with the question whether blocks of stones on the boundary of a local region

can be captured. This depends on a global context condition, which we will call

L0, that indicates whether a specific block has 0 liberties on the rest of the

board. For example, in Fig. 4 the local game for a one point eye of a single

white block can be described by the following CCG: E1 ¼ f0L0jg. This can be

read as follows: Black can move to 0 if and only if condition L0 is true, that is if
White does not have any liberties elsewhere. (We assume the system knows that

White does not have a sensible move, so we left the set of right options empty.

We also assume that capturing the whole white block ends the local game.)
4.2. Liberty count games

Like classical combinatorial games, CCG exactly describe the set of legal

moves. However, they do not contain enough information to determine the

number of liberties of blocks. This number is needed in order to compute the
L0-context conditions, if one part of a Go position is used as context of an-

other. Therefore we introduce LCG, which keep such information in addition

to legal move information.

A liberty count game is defined over a set of blocks in a region and consists

of two parts: a CCG that describes the possible moves of each player, and a
Fig. 4. L0-context condition of a local game.



M. M€uuller / Information Sciences 154 (2003) 189–202 195
liberty counting function Lðb; gÞ that returns the number of liberties of block b
in a CCG g. A liberty counting function does not have to be defined for all

blocks of a region. In semeai, typically this function will be defined only for the

subset of essential blocks [7]. The remaining blocks are considered nonessential
and not considered directly in the model, for example the stones inside a

nakade shape that can be freely sacrificed. However, even those blocks are

implicitly included in the model, because they affect the liberty count of es-

sential blocks as well as the set of legal moves.

In general, the set of blocks involved in a region can change during play, by

creating new blocks and by merging or capturing old ones. We assume that no

new essential blocks are created during play, that merged blocks assume the

identity of all constituent blocks, and that the liberty count function returns 0
for a captured block. In general, capturing an essential block finishes a semeai

and all LCG associated with that block.
4.3. Pruning dominated moves in a LCG

It is possible to define a partial order of LCG by recursively testing whether

the liberty counts in one game always dominate the other. Domination means

that own blocks have at least the same number of liberties, while opponent

blocks have the same or less. Given such a partial order, moves that lead to a

worse LCG are dominated and can be pruned. Examples would be filling own

liberties or eyes, or failing to extend liberties where that is possible.
5. Capturing races in Go

A semeai in the game of Go can be defined informally as ‘‘a race to capture
between two adjacent groups that cannot both live’’. Fig. 5 shows two simple

cases. Earlier work [7,8] contained more formal definitions of semeai, and

described nine different classes. Semeai of classes 0, 1 and 2 can be detected and

evaluated statically, without search. The other classes cover semeai that can be
Fig. 5. Two simple semeai.



196 M. M€uuller / Information Sciences 154 (2003) 189–202
resolved by search, potential semeai, and unclear situations which might end

up as a race to capture.

We only seek to determine the win/loss/seki outcome of a semeai. We do not

consider other issues here, such as maximizing the score, computing the
combinatorial game value, or determining whether winning a semeai is bene-

ficial in the overall context of a game [7].
5.1. Describing semeai instances

Perhaps surprisingly, identification of semeai in a given Go position requires

the same preliminary analysis as for the endgame [6]: identification of safe

blocks and territories, followed by a partition of the rest of the board into

connected components called local games. Each local game, consisting of

empty points, plus possibly unsafe stones of either player, can potentially be-

come a semeai. This holds even if the area is currently completely empty or
contains stones of only one player.
5.2. Classification of blocks and empty points

Classification of points in a local game is a first step in identifying semeai. In

each local game, we recognize the following types of blocks of stones and

empty points:

Essential block: A block of black or white stones which must be saved from

capture. Capturing an essential block immediately decides a semeai.

Nonessential block: Block which can be captured without losing the semeai.

An example of a nonessential block is a small block contained in the oppo-

nent�s eye.
Unknown block: Contains all remaining blocks that cannot be classified as

either essential or nonessential blocks. Saving or capturing such blocks has

some priority as a heuristic, but it does not necessarily decide the semeai.

Outside liberty: An empty point that is a liberty of an essential block of one

player, but not a liberty of an essential opponent block. An outside liberty is

called plain if it is also adjacent to a safe opponent block, so the opponent can

fill the liberty without making additional approach moves.

Shared liberty: Common liberty of essential blocks of both Black and White.
Eye: An area completely surrounded by essential blocks of one player. The

area can contain nonessential blocks of either player. A plain eye has only one

surrounding block, and all empty points inside are adjacent to that block. This

definition is broader than the usual one, and includes cases where the sur-

rounded region will end up as more or less than one eye.

Unknown area: Area that cannot be classified as outside liberties, shared

liberties, or eye.



Fig. 6. Basic nakade shapes.

Table 1

Eye status and liberties

Size

0 1 2 3 4 5 6 7

Status 0 1 1 1 4 5 6 7

Liberties 0 1 2 3 5 8 12 17

M. M€uuller / Information Sciences 154 (2003) 189–202 197
5.3. Eye status and liberty count

An eye area is called a nakade if the opponent can fill all but one of its points

by one of the basic nakade shapes shown in Fig. 6.

In semeai, small eyes with size from 1 to 3 behave in the same way, while
larger eyes are stronger both in terms of providing more liberties than their size

and in having an advantage in semeai against smaller eyes. We model this

behavior by an eye status. For each eye size, Table 1 shows the status and the

number of liberties. For 06m < n6 7, a n point nakade shape filled by m
opponent stones is equivalent to ðn2 � 3nÞ=2 þ 3 � m outside liberties. A

nakade shape is unsettled if it has not yet been reduced to only one eye, and the

defender can still make two eyes there.

5.4. A general semeai algorithm

The following steps are a general outline of a semeai solving algorithm.

1. Board partition: Find safe blocks of stones and territories. Partition the rest

of the board into connected components, called local games.

2. Semeai identification: Investigate which local games are semeai candidates

by the following substeps.

2.1. Eye recognition: Subdivide each local game into regions surrounded by
stones of a single player. Test each such region whether it is a plain eye

for that player.



198 M. M€uuller / Information Sciences 154 (2003) 189–202
2.2. Liberty regions: After finding blocks and eye regions, divide the rest of

a local game into liberty regions surrounded by stones of both players.

Classify liberty regions as outside liberties, shared liberties, or un-

known.
2.3. Block classification: Classify blocks as essential blocks, nonessential

blocks, and unknown blocks.

2.4. Semeai safety test: For each color, determine if winning the semeai

would ensure the safety of all essential blocks.

2.5. Semeai classification: Determine which semeai class the local game be-

longs to.

3. Static evaluation: For semeai of classes 0 to 2, statically evaluate the semeai

to find its status and its combinatorial game evaluation.
4. Search: For semeai of classes 3 or higher, use search to find the outcome.

5. Move generation for semeai play: Using the results of search or static eval-

uation, generate moves to play each semeai on the board. Use exact combi-

natorial game values when available, and a heuristic temperature estimate

otherwise.

CCG can be used as an abstract representation of play in a local region that

is part of a semeai. In some states nonlocal information is required to deter-

mine whether a move is possible. For example, the last liberty in an eye can be
taken only as the last overall liberty of a block surrounding the eye.

5.5. Examples of LCG and contexts in Go

5.5.1. Plain outside and shared liberties

The game Gn ¼ ðPn; LÞ consisting of a single Black block b with n plain

outside liberties can be defined by P0 ¼ 0, Pnþ1 ¼ fjPng and Lðb; PnÞ ¼ n. Sim-

ilarly, a plain shared liberty region between Black block b and White block w is

defined by the LCG Gn ¼ ðSn; LÞ with S0 ¼ 0, Snþ1 ¼ fSnjSng and Lðb; SnÞ ¼
Lðw; SnÞ ¼ n.

5.5.2. Two-eyed group

A two-eyed single-block group g can be described by the LCG E2 ¼ ð0; LÞ
with Lðg; 0Þ ¼ 2.
5.5.3. Large eyes

The reason that large eyes are so valuable in semeai is their ability to provide

extra liberties late in a fight, and force the opponent to fill shared liberties first.

A characteristic of the different eyes is how many moves are left after the liberty

count goes down to 1 for the first time. This is the crucial point since it contains

the conditional move 0L0. Fig. 7 shows such a sequence, starting from a seven
point eye.



Fig. 7. Seven point nakade filling sequence.

Fig. 8. Seven point eye vs six point eye. 11 at e, 13 at d, 15 at h, 17 at g, moves from 20 at b, c, f, e,

14, h, a, d, 16, 18, a, g, c, d, 16, e, b, 14, a, g, h, d, 16, b, a, e, 16.

M. M€uuller / Information Sciences 154 (2003) 189–202 199
Figs. 8 and 9 show the liberty counts during two long semeai sequences, each
involving a seven point eye. In Fig. 8, initially Black has a six point eye con-

taining two white stones and five outside liberties, while White has a seven

point eye containing six black stones and three outside liberties. There are two

shared liberties. The figure shows Black�s failed attempt to capture White. Up

to move 6, both remove outside liberties. With moves 7 and 9, Black fills the

shared liberties since there are no other liberties that can be played. White is in

atari and must capture with 10, reducing the area to a six point eye. After move

13, both have no outside liberties and a six point eye containing two opponent
stones. In this balanced situation the first player can win by one move. In this

case it is White. Both players� liberty count sequences are in lockstep from now

on, and White remains one move ahead until capture.



Fig. 9. Seven point eye vs no eye. 16 at b, 18 at 4, 20 at a, 22 at c, 24 at 2, 25 at 6, 26 at b, 28 at c, 30

at a, 32 at 2, 33 at 4, 34 at b, 36 at c, 38 at a, 39 at 2, 40 at b, 42 at c.

200 M. M€uuller / Information Sciences 154 (2003) 189–202
Fig. 9 pits a seven point eye against an eyeless group with many liberties. Up

to 7, Black fills outside liberties and White fills Black�s eye space. From 8 to 14,
White fills the four shared liberties.
5.5.4. Protected liberties

Protected liberties have properties halfway between outside liberties and

eyes. Protected liberties can be occupied directly only if L0 holds, but require

one or more approach moves otherwise.

Fig. 10 shows a protected liberty of the block X . The CCG are G4 ¼
fL3j0L0;G3g, G3 ¼ fL2j0L0;G2g, G2 ¼ fL1j0L0;G1g, and G1 ¼ fj0g. The liberty

count function is LðX ;GÞ ¼ 1 for G 2 fG1; . . . ;G4g, LðX ; LnÞ ¼ n and

LðX ; 0Þ ¼ 0.
x x x

xx

Fig. 10. Protected liberty.



Fig. 11. Semeai test problem D, from [8].

M. M€uuller / Information Sciences 154 (2003) 189–202 201
5.6. Bounds

Instead of computing an exact LCG, it may be easier to determine the

winner of a semeai by using bounds. As a trivial example, having any com-

bination of n outside liberties is at least as good as having n plain liberties, but

it may be better because the opponent may need extra approach moves and/or

the player may have eye-making potential in the region.

Example: Fig. 11 shows problem D from Fig. 14 of [8], which was solved

there by the search method of partial order bounding. We will show how to

solve problem D statically by using bounds. Black has three outside liberties
and an eye status of 5 with one opponent stone inside. Because there are no

shared liberties, this is equivalent to a plain liberty filling sequence of 10 moves.

White has eight plain liberties on the right and bottom, but White�s eye space is

unsettled on the left side. However, White has two nonplain liberties there, so

White can win going first. In this case, creating an eye would be a fatal mistake

for White. However, in other circumstances where Black does not have a large

eye and where there are shared liberties, creating an eye would be the only good

move.
In terms of partial order evaluation, we extend the evaluation of LCG by

defining new games representing upper and lower bounds on real games as

proposed in [8].
6. Related work

Ko fights in Go are an example where local play crucially depends on

nonlocal context. The combinatorial game technique of thermography [2] has

been extended to handle ko fights [1,9]. However, this approach still aims at

abstracting away the specific context of a game and analyzes local positions in

idealized abstract contexts such as rich environments.

Another case of nonlocal context described by Cazenave is the automatic

generation of databases of Go patterns with external conditions [3]. These
external conditions describe when a pattern for eye shape or life and death is



202 M. M€uuller / Information Sciences 154 (2003) 189–202
valid and can be used by a program. Many Go programs use similar hand-

generated patterns with external conditions, mainly concerning the number of

liberties of blocks on the pattern boundary.

In his dissertation, M€aaser [5] develops a model of local combinatorial games
that contain global threats, which lead to an immediate win in any sum of local

games. This could be modeled in a CCG framework by making all moves

depend on a test for the execution of the global threat.
7. Summary and future work

We introduced the concepts of CCG and LCG as tools for the local analysis

of semeai. We have shown how to integrate nonlocal aspects such as the total

liberty count and ko status into such a framework as context conditions, and

have given some examples to demonstrate that this work is a generalization of

our previous work on semeai [7,8].
Future work includes working out the details of an implementation and of

the local search process, and researching the overall strategy for selecting ap-

propriate local analyses in complex semeai situations. CCG could be applied to

other subproblems of Go, especially to endgame analysis, and to other games,

such as Amazons.
References

[1] E. Berlekamp, The economist�s view of combinatorial games, in: R. Nowakowski (Ed.), Games

of No Chance: Combinatorial Games at MSRI, Cambridge University Press, 1996, pp. 365–405.

[2] E. Berlekamp, J. Conway, R. Guy, Winning Ways, Academic Press, London, 1982, Revised

version published 2001–2002 by AK Peters.

[3] T. Cazenave, Generation of patterns with external conditions for the game of Go, in: H.J. van

den Herik, B. Monien (Eds.), Advances in Computer Games 9, Maastricht and Paderborn,

2001, pp. 275–293.

[4] J. Conway, On Numbers and Games, Academic Press, London/New York, 1976.

[5] F. M€aaser, Divide and Conquer in Game Tree Search: Algorithms, Software and Case Studies,

PhD thesis, ETH Zurich, 2001.

[6] M. M€uuller, Decomposition search: A combinatorial games approach to game tree search, with

applications to solving Go endgames, in: IJCAI-99, 1999, pp. 578–583.

[7] M. M€uuller, Race to capture: Analyzing semeai in Go, in: Game Programming Workshop in

Japan �99, IPSJ Symposium Series, vol. 99(14), 1999, pp. 61–68.

[8] M. M€uuller, Partial order bounding: A new approach to evaluation in game tree search, Artificial

Intelligence 129 (1–2) (2001) 279–311.

[9] W. Spight, Extended thermography for multiple kos in Go, in: H.J. van den Herik, H. Iida

(Eds.), Computers and Games. Proceedings CG�98, Lecture Notes in Computer Science, 1558,

Springer Verlag, 1999, pp. 232–251.


	Conditional combinatorial games and their application to analyzing capturing races in Go
	Introduction
	Combinatorial game theory
	Conditional combinatorial games
	Example: Prime-Nim
	Isolated and embedded views of a CCG
	Differences between CCG and combinatorial games
	Example: cyclic CCG

	Pruning moves with dominated context condition in a CCG

	Application to Go
	Examples of context conditions in Go
	Liberty count games
	Pruning dominated moves in a LCG

	Capturing races in Go
	Describing semeai instances
	Classification of blocks and empty points
	Eye status and liberty count
	A general semeai algorithm
	Examples of LCG and contexts in Go
	Plain outside and shared liberties
	Two-eyed group
	Large eyes
	Protected liberties

	Bounds

	Related work
	Summary and future work
	References


