Recent Progress in Computer Go

Martin Müller
University of Alberta
Edmonton, Canada
40 Years of Computer Go

- 1960’s: initial ideas
- 1970’s: first serious program - Reitman & Wilcox
- 1980’s: first PC programs, competitions
- 1990’s: slow progress, commercial successes
- 2000’s: GNU Go - strong open source program
- now: Monte-Carlo and UCT revolution, strong 9x9 programs
“Classical” Go Programs

- Goliath (Mark Boon)
- Go Intellect (Ken Chen)
- Handtalk (Chen Zhixing)
- Go++ (Michael Reiss)
- KCC (North Korean team)
- Many Faces of Go (David Fotland)
- GNU Go (international team)
Monte-Carlo Simulation and UCT for Go

- 1993 Bernd Brügmann - simulations for Go
- 200x Bouzy and students revive simulations
- 2006 Kocsis and Szepesvari - UCT algorithm
 - Sylvain Gelly, Yizao Wang - MoGo
 - Remi Coulom - Crazy Stone
 - Don Dailey - CGOS server, new programs
Classic vs New Go Programs

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge intensive</td>
<td>Search intensive</td>
<td></td>
</tr>
<tr>
<td>Problem: heuristic position evaluation</td>
<td>No (!) heuristic evaluation</td>
<td></td>
</tr>
<tr>
<td>Local goal search</td>
<td>Global search + simulations</td>
<td></td>
</tr>
</tbody>
</table>
How Strong?

- almost perfect on 7x7
- amateur Dan level on 9x9
- 5 kyu on 19x19? Similar to top classic program
Dec. 2006 - My Wakeup Call

- Martin Müller vs Valkyria by Magnus Persson
 Komi 7.5
Games vs Guo Juan 5 Dan

- Aug. 2006 Match CrazyStone vs Guo Juan
 - 7x7 Board, 9 komi
 - CrazyStone white: always wins or jigo
 - Guo white: often wins

- June 2007 Match MoGo vs Guo Juan
 - 9x9 Board, MoGo black, 0.5 komi
 - 9 wins : 5 losses for MoGo
Examples

guojuan-MoGoBot.sgf, guojuan-MoGoBot-9.sgf
Playing Style

- Monte-Carlo based programs play many strange moves...
- ...but they are very good at winning!
 - only care about winning, not the score
 - play safe when ahead
 - try invasions when behind
“Cosmic” Style Opening

Ruky-MoGoBot-2.sgf moves 16–31
Example: Random Play in Decided Games

GNU-StoneCrazy.sgf moves 122–132
How Does it Work?

- Monte-Carlo Simulations
- Basic Idea
- Refinements
- **UCT** method
 (Upper Confidence bounds applied to Trees)
 - Building a Game Tree
 - Evaluation
Simulations

- Monte-Carlo simulation
 - Popular in physics
 - Study behavior of complex system by running many random simulations
 - Go: play random game from current position
Simulation - Example

- Random legal move
- Do not fill one point eyes
- Game over after both pass
- Evaluate by Chinese rules
 1 for win
 0 for loss
Simulation-Based Player

- Play many random games
- Win/loss statistics for each possible move
- Play move with highest win percentage
- Fast
 - Over 1 Million moves/sec.
 - Typical 100,000 simulations per move
- Weakness: loves to play threats
Example - Bad Threat

- C1 is a bad threat, if White captures on B1
- Black cannot save F1 stones
- In pure random simulations, C1 works very often!
Refinement of Simulations

- Add Go knowledge
 - Capture/escape from capture
 - Avoid self-atari
 - Simple cutting/blocking patterns
 - Play near last move(s)
- Must be extremely fast to compute
The MoGo Patterns

Hane/Extend

Cut/Connect

Edge of board
Example of Biased Simulation
Adding Game Tree Search

- Pure simulation is limited
- Weak in tactics
- Classical game-playing uses *game tree search*
 - minimax, alpha-beta
 - new selective search method - UCT
UCT Idea

- Follow "best moves" down the tree
- At leaf, start a simulation
- Add first new move to tree

Image by Sylvain Gelly
What is the “Best” Move

• Where can we gain most valuable information?
 • Move that looks good so far
 • Move that has not been analyzed much yet

• UCT is a compromise
 • Select move where success rate + uncertainty is highest.
UCT Evaluation

- Classical Minimax:
 - Value = value of position after best move

- UCT:
 - Value = weighted average of moves
 - Weight = number of simulations for that move
Example

- Very selective search
- Concentrates on few promising moves
- Approaches minimax value if optimal move(s) get most simulations
Refinements to Tree Search

- RAVE (Gelly & Silver 2007)
- Add Go knowledge
 - Patterns (Coulom 2007)
 - Reinforcement learning (Gelly & Silver 2007)
RAVE - Rapid Action Value Estimation

- UCT needs many samples of all moves - slow
- Idea: moves later in simulation also important
 - All moves as first (Brügmann 1993)
 - Win statistics for each move in all games
- Use at beginning
- Phase out gradually
Using Go Knowledge

- Use Go knowledge to initialize value of moves
- Also phase out gradually
- Use RLGO evaluation function in MoGo (Gelly & Silver 2007)
- Can be combined with RAVE
- Learn feature values for pruning and progressive widening of tree (Coulom 2007)
Why Does it Work so Well?

- No theoretical explanation
- Excellent empirical results
- Simulations: good move in random Go is often a good move in Go
- UCT: good moves in random Go are interesting moves to try in search
Future - Scaling Up

- Scales well with increasing computer power
- No limit in sight - Don Dailey’s experiment
- Challenge: parallel search
 - Shared memory
 - Computer clusters
- Bottleneck: update tree, select best line
Summary

• Revolution through Monte-Carlo simulations and UCT
• Strong 9x9 programs
• When will we see strong 19x19?