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40 Years of Computer Go

• 1960’s: initial ideas

• 1970’s: first serious program - Reitman & Wilcox

• 1980’s: first PC programs, competitions

• 1990’s: slow progress, commercial successes

• 2000’s: GNU Go - strong open source program

• now: Monte-Carlo and UCT revolution, 
         strong 9x9 programs



“Classical” Go Programs

• Goliath (Mark Boon)

• Go Intellect (Ken Chen)

• Handtalk (Chen Zhixing)

• Go++ (Michael Reiss)

• KCC (North Korean team)

• Many Faces of Go (David Fotland)

• GNU Go (international team)



• 1993 Bernd Brügmann - simulations for Go 

• 200x Bouzy and students revive simulations

• 2006 Kocsis and Szepesvari - UCT algorithm

• Sylvain Gelly, Yizao Wang - MoGo 

• Remi Coulom - Crazy Stone

• Don Dailey - CGOS server, new programs

Monte-Carlo Simulation 
and UCT for Go



Classic vs New Go Programs

Classic New

Knowledge intensive Search intensive
Problem: heuristic 
position evaluation

No (!) heuristic 
evaluation

Local goal search Global search + 
simulations



How Strong?

• almost perfect on 7x7

• amateur Dan level on 9x9

• 5 kyu on 19x19? Similar to top classic program



Dec. 2006 - My Wakeup Call

• Martin Müller vs Valkyria by Magnus Persson
Komi 7.5



Games vs Guo Juan 5 Dan
• Aug. 2006 Match CrazyStone vs Guo Juan

• 7x7 Board, 9 komi

• CrazyStone white: always wins or jigo

• Guo white: often wins

• June 2007 Match MoGo vs Guo Juan

• 9x9 Board, MoGo black, 0.5 komi

• 9 wins : 5 losses for MoGo



Examples

guojuan-MoGoBot.sgf, guojuan-MoGoBot-9.sgf 



Playing Style

• Monte-Carlo based programs play many 
strange moves…

• …but they are very good at winning!

• only care about winning, not the score

• play safe when ahead

• try invasions when behind



“Cosmic” Style Opening

Ruky-MoGoBot-2.sgf moves 16-31 



Example: Random Play 
in Decided Games

GNU-StoneCrazy.sgf moves 122-132



How Does it Work?

• Monte-Carlo Simulations

• Basic Idea

• Refinements

• UCT method
(Upper Confidence bounds applied to Trees)

• Building a Game Tree

• Evaluation



Simulations

• Monte-Carlo simulation

• Popular in physics

• Study behavior of complex system 
by running many random simulations

• Go: play random game from current position



Simulation - Example

• Random legal move

• Do not fill one point eyes

• Game over after both pass

• Evaluate by Chinese rules
1 for win
0 for loss

valkyria-ExBoss-randomgame.sgf



Simulation-Based Player
• Play many random games

• Win/loss statistics for each possible move

• Play move with highest win percentage

• Fast

• Over 1 Million moves/sec.

• Typical 100.000 simulations per move

• Weakness: loves to play threats



Example - Bad Threat

• C1 is a bad threat, if 
White captures on 
B1

• Black cannot save 
F1 stones

• In pure random 
simulations, C1 
works very often!



Refinement of Simulations

• Add Go knowledge

• Capture/escape from capture

• Avoid self-atari

• Simple cutting/blocking patterns

• Play near last move(s)

• Must be extremely fast to compute



The MoGo Patterns

Hane/Extend

Cut/Connect

Edge of board



Example of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf



Adding Game Tree Search

• Pure simulation is limited

• Weak in tactics

• Classical game-playing uses game tree search

• minimax, alpha-beta

• new selective search method - UCT



UCT Idea

• Follow “best moves” 
down the tree

• At leaf, start a 
simulation

• Add first new move 
to tree

Image by Sylvain Gelly



What is the “Best” Move

• Where can we gain most valuable information?

• Move that looks good so far

• Move that has not been analyzed much yet

• UCT is a compromise

• Select move where success rate + uncertainty is 
highest.



UCT Evaluation

• Classical Minimax:

• Value = value of position after best move

• UCT:

• Value = weighted average of moves

• Weight = number of simulations for that 
move



Example

• Very selective search

• Concentrates on few 
promising moves

• approaches minimax 
value if optimal move(s) 
get most simulations



Refinements to Tree Search

• RAVE (Gelly & Silver 2007)

• Add Go knowledge

• Patterns (Coulom 2007)

• Reinforcement learning (Gelly & Silver 
2007)



RAVE - Rapid Action Value Estimation

• UCT needs many samples of all moves - slow

• Idea: moves later in simulation also important

• All moves as first (Brügmann 1993)

• Win statistics for each move in all games

• Use at beginning

• Phase out gradually



Using Go Knowledge

• Use Go knowledge to initialize value of moves

• Also phase out gradually

• Use RLGO evaluation function in MoGo
(Gelly & Silver 2007)

•  Can be combined with RAVE

• Learn feature values for pruning and 
progressive widening of tree (Coulom 2007)



Why Does it Work so Well?

• No theoretical explanation

• Excellent empirical results

• Simulations: good move in random Go is often 
a good move in Go

• UCT: good moves in random Go are 
interesting moves to try in search



Future - Scaling Up

• Scales well with increasing computer power

• No limit in sight - Don Dailey’s experiment

• Challenge: parallel search

• Shared memory

• Computer clusters

• Bottleneck: update tree, select best line



Summary

• Revolution through Monte-Carlo simulations 
and UCT

• Strong 9x9 programs

• When will we see strong 19x19?


