Recent Progress in Computer Go

Martin Müller University of Alberta Edmonton, Canada

40 Years of Computer Go

- 1960's: initial ideas
- 1970's: first serious program Reitman & Wilcox
- 1980's: first PC programs, competitions
- 1990's: slow progress, commercial successes
- 2000's: GNU Go strong open source program
- now: Monte-Carlo and UCT revolution, strong 9x9 programs

"Classical" Go Programs

- Goliath (Mark Boon)
- Go Intellect (Ken Chen)
- Handtalk (Chen Zhixing)
- Go++ (Michael Reiss)
- KCC (North Korean team)
- Many Faces of Go (David Fotland)
- GNU Go (international team)

Monte-Carlo Simulation and UCT for Go • 1993 Bernd Brügmann - simulations for Go

- 200x Bouzy and students revive simulations
- 2006 Kocsis and Szepesvari UCT algorithm
 - Sylvain Gelly, Yizao Wang MoGo
 - Remi Coulom Crazy Stone
 - Don Dailey CGOS server, new programs

Classic vs New Go Programs

Classic	New
Knowledge intensive	Search intensive
Problem: heuristic	No (!) heuristic
position evaluation	evaluation
Local goal search	Global search +
	simulations

How Strong?

- almost perfect on 7x7
- amateur Dan level on 9x9
- 5 kyu on 19x19? Similar to top classic program

 Martin Müller vs Valkyria by Magnus Persson Komi 7.5

Games vs Guo Juan 5 Dan

- Aug. 2006 Match CrazyStone vs Guo Juan
 - 7x7 Board, 9 komi
 - CrazyStone white: always wins or jigo
 - Guo white: often wins
- June 2007 Match MoGo vs Guo Juan
 - 9x9 Board, MoGo black, 0.5 komi
 - 9 wins : 5 losses for MoGo

Playing Style

- Monte-Carlo based programs play many strange moves...
- ...but they are very good at winning!
 - only care about winning, not the score
 - play safe when ahead
 - try invasions when behind

"Cosmic" Style Opening

Ruky-MoGoBot-2.sgf moves 16-31

How Does it Work?

- Monte-Carlo Simulations
 - Basic Idea
 - Refinements
- UCT method (Upper Confidence bounds applied to Trees)
 - Building a Game Tree
 - Evaluation

Simulations

- Monte-Carlo simulation
 - Popular in physics
 - Study behavior of complex system by running many random simulations
 - Go: play random game from current position

Simulation - Example

- Random legal move
- Do not fill one point eyes
- Game over after both pass
- Evaluate by Chinese rules

 I for win
 o for loss

valkyria-ExBoss-randomgame.sgf

Simulation-Based Player

- Play many random games
- Win/loss statistics for each possible move
- Play move with highest win percentage
- Fast
 - Over 1 Million moves/sec.
 - Typical 100.000 simulations per move
- Weakness: loves to play threats

Example - Bad Threat

- C1 is a bad threat, if White captures on B1
- Black cannot save F1 stones
- In pure random simulations, C1 works very often!

Refinement of Simulations

- Add Go knowledge
 - Capture/escape from capture
 - Avoid self-atari
 - Simple cutting/blocking patterns
 - Play near last move(s)
- Must be extremely fast to compute

Example of Biased Simulation

Adding Game Tree Search

- Pure simulation is limited
- Weak in tactics
- Classical game-playing uses game tree search
 - minimax, alpha-beta
 - new selective search method UCT

UCT Idea

- Follow "best moves" down the tree
- At leaf, start a simulation
- Add first new move to tree

Image by Sylvain Gelly

What is the "Best" Move

- Where can we gain most valuable information?
 - Move that looks good so far
 - Move that has not been analyzed much yet
- UCT is a compromise
 - Select move where *success rate* + *uncertainty* is highest.

UCT Evaluation

- Classical Minimax:
 - Value = value of position after best move
- UCT:
 - Value = weighted average of moves
 - Weight = number of simulations for that move

Example

- Very selective search
- Concentrates on few promising moves
- approaches minimax value if optimal move(s) get most simulations

Refinements to Tree Search

- RAVE (Gelly & Silver 2007)
- Add Go knowledge
 - Patterns (Coulom 2007)
 - Reinforcement learning (Gelly & Silver 2007)

RAVE - Rapid Action Value Estimation

- UCT needs many samples of all moves slow
- Idea: moves later in simulation also important
 - All moves as first (Brügmann 1993)
 - Win statistics for each move in all games
- Use at beginning
- Phase out gradually

Using Go Knowledge

- Use Go knowledge to initialize value of moves
 - Also phase out gradually
 - Use RLGO evaluation function in MoGo (Gelly & Silver 2007)
 - Can be combined with RAVE
- Learn feature values for pruning and progressive widening of tree (Coulom 2007)

Why Does it Work so Well?

- No theoretical explanation
- Excellent empirical results
- Simulations: good move in random Go is often a good move in Go
- UCT: good moves in random Go are interesting moves to try in search

Future - Scaling Up

- Scales well with increasing computer power
 - No limit in sight Don Dailey's experiment
- Challenge: parallel search
 - Shared memory
 - Computer clusters
 - Bottleneck: update tree, select best line

Summary

- Revolution through Monte-Carlo simulations and UCT
- Strong 9x9 programs
- When will we see strong 19x19?