
Learning Partial-Order Macros from Solutions

Adi Botea and Martin Müller and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{adib,mmueller,jonathan}@cs.ualberta.ca

Abstract
Despite recent progress in AI planning, many benchmarks re-
main challenging for current planners. In many domains, the
performance of a planner can greatly be improved by discov-
ering and exploiting information about the domain structure
that is not explicitly encoded in the initial PDDL formulation.
In this paper we present an automated method that learns rel-
evant information from previous experience in a domain and
uses it to solve new problem instances. Our approach pro-
duces a small set of useful macro-operators as a result of a
training process. For each training problem, we build a struc-
ture called a solution graph based on the problem solution.
Macro-operators with partial ordering of moves are extracted
from the solution graph. A filtering and ranking procedure se-
lects the most useful macro-operators, which will be used in
future searches. We introduce a heuristic technique that uses
only the most promising instantiations of a selected macro
for node expansion. We demonstrate our ideas in standard
domains used in the recent AI planning competitions. Our
results indicate an impressive potential to reduce the search
effort in complex domains where structure information can
be inferred.

Introduction
AI planning has recently made great advances. The evolu-
tion of the international planning competition over its four
editions (McDermott 2000; Bacchus 2001; Long & Fox
2003; Hoffmann et al. 2004) accurately reflects this. Suc-
cessive editions introduced more and more complex and re-
alistic benchmarks, or harder problem instances for the same
domain. Still, the top performers could successfully solve
many of the problems each time. However, many hard do-
mains, including benchmarks used in the latest competition,
still remain a great challenge for the current capabilities of
automated planning systems.

In many domains, the performance of a planner can be
improved by inferring and exploiting information about the
domain structure that is not explicitly encoded in the initial
PDDL formulation. In this paper we present an automated
method that learns such implicit domain knowledge and uses
it to simplify planning for new problem instances. This “hid-
den” information that a domain encodes is, arguably, propor-
tional to how complex the domain is, and how realistically

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

this models the world. Consider driving a truck between
two locations. This operation has many details in the real
world. To name just a few, the truck should be fueled and
have a driver assigned. In a detailed planning formulation,
we would define several operators such as FUEL, ASSIGN-
DRIVER, or DRIVE. This representation already contains
implicit information about the domain structure. It is quite
obvious for a human that driving a truck between two re-
mote locations would be a macro-action where we first fuel
the truck and assign a driver (with no ordering constraints
between these two actions) and next we apply the drive op-
erator. In a simpler formulation, we can remove the oper-
ators FUEL and ASSIGN-DRIVER and consider that, in our
model, a truck needs neither fuel nor a driver. Now driving a
truck is modeled as a single action, and the structured detail
described above is removed from the model.

Our method first learns a set of useful macro-operators,
and then uses them in new searches. The learning is based
on several training problems from a domain. In traditional
planning, the main use of the solving process is to obtain the
solution of a given problem instance. We extend this and
use both the search process and the solution plan to extract
new information about the domain structure. We assume
that searching for a plan can provide valuable domain infor-
mation that could be hard to obtain with only static analysis
and no search. For example, it is hard to evaluate before-
hand how often a given sequence of actions would occur in
a solution, or how many nodes the search algorithm would
expand in average in order to discover that action sequence.

For each training problem, we build a structure called a
solution graph starting from the linear solution sequence
that the planner produces. The solution graph contains one
node for each step in the solution. Edges model the causal
effects that a solution step has on subsequent steps of the
linear plan. We analyze a small set of solution graphs to
produce a set of partial-order macro-operators (i.e., macros
with partial ordering of operators) that are likely to be use-
ful in the future. First, we extract a set of macros from the
solution graphs of all training problems. Next, we filter and
sort the set and select for future use only the most promising
macros.

After completing the training, the selected macro-
operators are used to speed up future searches in the same
domain. Using macro-actions at run-time is a challenging

task. In terms of single-agent search, macros could lead to
either reduced search effort or performance overhead, and
the way we balance these is crucial for the overall perfor-
mance of a search algorithm. The potential savings come
from the ability to generate a useful action sequence with
no search. However,, macros can increase both the branch-
ing factor and the processing cost per node. In terms of AI
planning, many instantiations of a selected macro-operator
schema could be applicable to a state, but only a few would
actually be shortcuts towards a goal state. If we consider all
these instantiations, the induced overhead can be larger than
the savings achieved by the useful instantiations. Therefore,
the challenge is to utilize for state expansion only a small
number of “good” macro instantiations.

To address this, we introduce a heuristic technique called
helpful macro pruning, based on the relaxed plan RP (s)
used in FF (Hoffmann & Nebel 2001). In FF, the relaxed
plan is used to heuristically evaluate problem states and
prune low-level actions in the search space (helpful action
pruning). In addition, we use the relaxed plan to prune the
set of macro-instantiations that will be used for node expan-
sion. Since actions of the relaxed plan are often useful in the
real world, we request that a macro-instantiation m will be
used to expand a state s only if m has a minimal number of
actions common with RP (s).

The contributions of this paper include an automated tech-
nique that learns a small set of useful macro-operators in a
domain, and uses them to speedup the search for new prob-
lem instances. We introduce a new structure called a solu-
tion graph that encodes information about the structure of
a given problem instance and its domain, and we use this
structure to build macro-operators. Using macro-operators
in AI planning and search algorithms is by no means a new
idea. In our work, we extend the classical definition of a
macro-operator, allowing a partial ordering of its operators,
and combine the use of macro-operators with modern and
powerful techniques such as the relaxed graphplan compu-
tation implemented in FF and other top-level planners. We
provide experimental results, performance analysis and a de-
tailed discussion of our approach.

The rest of the paper is structured as follows: The next
two sections provide details about how we build a solution
graph, and how we extract and use macro-operators. We
continue with presenting experimental results and evaluat-
ing the performance of our system. We then briefly review
related work and discuss the similarities and differences with
our work. The last section shows our conclusions and future
work ideas.

Solution Graph
In this section, we describe how to build the solution graph
for a problem, starting from the solution plan and exploit-
ing the effects that an action has on the following plan se-
quence. We first set our discussion framework with some
preliminary comments and definitions. Then we present a
high-level description of the method, show how this works
on an example, and provide the algorithm in pseudo-code.

In the general case, the solution of a planning problem is
a partially ordered sequence of steps. When actions have

conditional effects, a step in the plan should be a pair (state,
action) rather than only an action. This allows us to pre-
cisely determine what effects a given action has in the local
context. Our implementation handles domains with condi-
tional effects in their actions and can easily be extended to
partial-order plans. However, for the sake of simplicity, we
assume in the following discussion that the initial solution
is a totally-ordered sequence of actions. When an action oc-
curs several times in a solution, each occurrence is a distinct
solution step.

To introduce the solution graph, we need to define the
causal links in the solution.
Definition 1 A structure (a1, p, a2) is a positive causal link
in the solution if: (1) a1 and a2 are steps in the solution with
a1 applied earlier than a2, (2) p is a precondition of a2 and
a positive effect of a1, and (3) a1 is the most recent action
before a2 that adds p. We write a positive causal link as
a1

+p
−→ a2. A positive causal link is similar to a causal link

in partial-order planning (Nguyen & Kambhampati 2001).
A structure (a1, p, a2) is a negative causal link in the solu-

tion if: (4) a1 and a2 are steps in the solution with a1 applied
earlier than a2, (5) p is a precondition of a2 and a delete ef-
fect of a1, and (6) a1 is the most recent action before a2 that
deletes p. We write a negative causal link as a1

−p
−→ a2.

We write a1→a2 if the there is at least a causal link (either
positive or negative) from a1 to a2:

a1→a2 ⇔ ∃p : a1

+p
−→ a2 ∨ a1

−p
−→ a2.

The solution graph is a graph structure that explicitly
stores relevant information about the problem extracted from
the linear solution. For each step in the linear solution, we
define a node in the solution graph. 1 The graph edges model
causal links between the solution actions. We define an edge
between two nodes a1 and a2 if a1 → a2. An edge has two
labels: The ADD label is the (possibly empty) list of all facts
p so that a1

+p
−→ a2. The DEL label is obtained similarly

from the negative causal links.
Figure 1 shows the solution graph for problem 1 in the

Satellite benchmark. The graph has 9 nodes, one for each
step in the linear solution. Each node contains a numerical
label showing the step in the linear solution, the action name
and arguments, and the complete list of preconditions and
effects. Edges have their ADD labels shown as square boxes,
and DEL labels as circles. Consider the edge from node 0
to node 8. Step 0 adds the first precondition of step 8, and
deletes the third. Therefore, the ADD label of this edge is 1
(i.e., the index of the first precondition), and the DEL label
is 3.

A brief analysis of this graph reveals interesting insights
about the problem and the domain structure. The action se-
quence TURN TO TAKE IMAGE occurs three times (between
steps 3–4, 5–6, and 7–8), which takes 6 out of a total of 9 ac-
tions. For each occurrence of this sequence, there is a graph
edge that shows the causal connection between the actions:

1The one-to-one mapping between solution steps and graph
nodes allows us to use the name of one for the other when this
is not ambiguous.

Figure 1: The solution graph for problem 1 in the Satellite benchmark.

applying operator TURN TO satisfies a precondition of oper-
ator TAKE IMAGE.

Second, the sequence SWITCH ON TURN TO CALIBRATE
(steps 0–2) is important for repeatedly applying macro
TURN TO TAKE IMAGE. This sequence makes true two pre-
conditions for each occurrence of operator TAKE IMAGE.
The graph also shows that, after SWITCH ON has been ap-
plied, we have to apply CALIBRATE, since the latter restores
the fact (CALIBRATED INSTR0) which is deleted by the first.
Finally, there is no ordering constraint between SWITCH ON
and TURN TO, so we have a partial ordering of the actions
of this sequence.

In this paper we propose automated methods to perform
this type of analysis and learn useful information about a
domain. The next sections will focus on this idea.

The pseudo-code of building the solution graph is given
in Figure 2. The methods are in general self explana-
tory, and follow the high level description provided before.
The method findAddActionId(p, id, s) returns the most re-
cent action before the current step id that adds precondi-
tion p. The method addEdgeInfo(n1, n2, t, f, g) creates a
new edge between nodes n1 and n2 (if one didn’t exist)
and concatenates f to the corresponding label type (t ∈
{ADD,DEL}). The data piece nodes(a) that is used in
method buildNodes provides information extracted from the
search tree generated while looking for a solution. For each
transition step a in the tree, nodes(a) is the number of nodes
expanded in the search right before exploring action a. We
further introduce the node heuristic, which will be used to
sort the macros in a domain. Given an instantiated macro
sequence m = a1...ak, the node heuristic is defined as

NH(m) = nodes(ak) − nodes(a1)

and measures the effort to dynamically discover the given
sequence at run-time. As we show in the next section, we
use this piece of data to rank macro-operators in a list.

Macro-Operators
A macro-operator is a structure M = (O,≺, σ) with O a set
of domain operators, ≺ a partial ordering of the elements in
O, and σ a binding for the operators’ variables. A domain
operator can occur several times in O. In this section we fo-
cus on how our approach learns and uses macro-operators.
Our method is a three-step technique: generation, filtering,
run-time instantiation. First, a global set of macros is gener-
ated from the solution graphs of several training problems.
Second, the global set is filtered down to a small set of se-
lected macros, completing the learning phase. Finally, the
selected macros are used to speed up planning in new prob-
lems.

Generating Macro-Operators
We extract macros from the solution graphs of one or more
training problems. Our method enumerates and selects sub-
graphs from the solution graph(s) and builds one macro for
each selected subgraph. Two distinct subgraphs can produce
the same macro. We insert all the generated macros into a
global list that will later be filtered and sorted. The list con-
tains no duplicate elements. When an extracted macro is
already part of the global list, relevant information associ-
ated to that element is updated. For instance, we increment
the number of occurrences, and add the node heuristic of the
extracted instantiation to the node heuristic of the element in
the list.

void buildSolutionGraph(Solution s, Graph & g)
{

buildNodes(s, g);
buildEdges(s, g);

}

void buildNodes(Solution s, Graph & g)
{

for (int id = 0; id < length(s); ++id) {
Action a = getSolutionStep(id, s);
addNode(id, a, nodes(a), g);

}
}

void buildEdges(Solution s, Graph & g)
{

for (int id = 0; id < length(s); ++id) {
Action a = getSolutionStep(id, s);
for (each precondition p ∈ precs(a)) {

idadd = findAddActionId(p, id, s);
if (idadd != NO ACTION ID)

addEdgeInfo(idadd, id, ADD, p, g);
iddel = findDeleteActionId(s, id, p);
if (iddel != NO ACTION ID)

addEdgeInfo(iddel, id, DEL, p, g);
}

}
}

Figure 2: Pseudo-code for building the solution graph.

We present the enumeration and selection process, and
then show how a macro is built starting from a given sub-
graph. Figure 3 presents our method for extracting macros
from the solution graph. It is called with a length l parame-
ter, the length of the macro to build.

The method selectSubgraphs(l, g, subgraphList) finds
valid subgraphs of size l of the original solution graph. This
is implemented as a backtracking procedure that produces
all the valid node combinations and early prunes incorrect
partial solutions.

To describe validation rules, we consider a subgraph sg
with l arbitrary distinct nodes am1

, am2
, ..., aml

. Node ami

is the mi-th step in the linear solution. Assume that the
nodes are ordered according to their position in the linear
solution: (∀i < j) : mi < mj . The conditions that we
impose for sg to be valid are the following:
• The nodes of a valid subgraph are obtained from a se-

quence of consecutive steps in the linear solution by skip-
ping at most k steps, where k is a parameter. Formally,
the following formula should stand for a valid macro:
ml −m1 +1 <= l+k. In our example, consider the sub-
graph with nodes {0, 1, 2, 6}. For this subgraph, l = 4,
ml = 6, and m1 = 0. If k = 2, then the subgraph breaks
this rule, since ml − m1 + 1 = 7 > 6 = l + k.
The main goal of this condition is to greatly speed up
the computation and reduce the number of generated sub-
graphs. Unfortunately, the method might skip occur-
rences of useful macros. However, this seldom happens

void generateAllMacros(Graph g, MacroList & macros)
{

for (int l = MIN LENGTH; l ≤ MAX LENGTH; ++l)
generateMacros(g, l, macros);

}

void generateMacros(Graph g, int l, MacroList & macros)
{

selectSubgraphs(l, g, subgraphList);
for (each subgraph s ∈ subgraphList) {

buildMacro(s, m);
int pos = findMacroInList(m, macros);
if (pos != NO POSITION)

updateInfo(pos, m, macros);
else

addMacroToList(m, macros);
}

}

Figure 3: Pseudo-code for generating the macros.

in practice, as the actions of useful macros are usually
concentrated together in a local sequence.

• We exploit both positive and negative causal links that the
sub-graph edges model. Consider our example in Figure
1. Nodes 2 and 3 do not form a valid subgraph, since
there is no direct link between them, and therefore this
subgraph is not connected. However, nodes 3 and 4 are
connected through a causal link, so our method will val-
idate this sub-graph. In the general case, we require that
a valid subgraph is connected, since we assume that two
separated connected components correspond to two inde-
pendent macros.

• When selecting a subgraph, we may skip a solution step
ar with m1 < r < ml only if ar is not connected to the
current subgraph: (∀i ∈ {1, .., l}) : ¬(ami

→ ar ∨ ar →
ami

).

The method buildMacro(s, m) builds a partially ordered
macro m based on the subgraph s which is given as an ar-
gument. For each node of the subgraph, the corresponding
action is added to the macro. Note that, at this step, actions
are instantiated i.e., they have constant arguments rather than
generic variables. After all actions have been added, we re-
place the constants by generic variables, obtaining a variable
identity map σ. The partial order between the operators of
the macro is computed using the positive causal links of the
subgraph. If a positive causal link exists between two nodes
a1 and a2, then a precondition of the action a2 was made true
by the action a1. Therefore, the action a1 should come be-
fore a2 in the macro sequence. Note that the ordering never
has cycles. The ordering constraints are determined using
a sub-graph of the solution graph, and the solution graph is
acyclic. A graph edge can exist from node a1 to node a2 in
the solution graph only if a1 comes before a2 in the initial
linear solution.

Our method extracts 24 distinct macros from the so-
lution graph shown in Figure 1. The largest contains

all nodes in the solution graph. One macro occurs 3
times (TURN TO TAKE IMAGE), another twice (TURN TO
TAKE IMAGE TURN TO), and all remaining macros occur
once.

Filtering and Ranking
After all training problems have been processed, the global
list of macros is statically filtered and sorted, so that only the
most promising macros will be used to solve new problems.
When the selected macros are used in future searches, they
are further filtered in a dynamic process that evaluates their
run-time performance.

The static filtering is performed using a criterion called
the overlap rule. We remove a macro from the list when
two occurrences of this macro overlap in a given solution
(i.e., the end of one occurrence is the beginning of the other).
To motivate this rule, consider the following sequence in a
solution:

...a1a2...ala1a2...ala1a2...al...

Assume both m1 = a1a2...al and m2 = a1a2...ala1 are
initially part of the list of macros. When m1 is used in the
the search, applying this macro three times could be enough
to discover the given sequence. Consider now using m2 in
the search. We cannot apply this macro twice in a row, since
the first occurrence ends beyond the beginning of the next
occurrence. In effect, the sequence a2...al in the middle has
to be discovered with low-level search. Note that a macro
that contains two instances of a smaller macro (e.g., m3 =
m1m1 = a1a2...ala1a2...al) is still able to generate the
whole sequence with no low-level search. For this reason,
we do not reject a macro that is a double occurence of a small
(i.e., of length 1 or 2) macro. We apply this exception only
to small macros because another important property of the
overlap rule is the capacity to automatically limit the length
of a macro. In our case, a1a2...al is kept in the final list,
while larger macros such as a1a2...ala1 or a1a2...ala1a2 are
rejected. In Satellite, the macro (TURN TO TAKE IMAGE
TURN TO) mentioned before is removed from the list be-
cause of the overlap, but the macro (TURN TO TAKE IMAGE
TURN TO TAKE IMAGE), which is a double occurence of a
small macro, is kept.

We rank the macros according to the total node heuris-
tic TNH(m) associated to each macro m, with ties broken
based on the occurrence frequency. For a generic macro m
in the list, TNH(m) is the sum of the node heuristic values
(NH) for all instantiations of that macro in the solutions of
the training problems. The average node heuristic ANH
is the total node heuristic divided by the number of occur-
rences f , and estimates the average search effort needed to
discover an instantiation of this macro at run-time:

THN(m) = ANH(m) × f(m).

The total node heuristic is a robust ranking method, which
combines into one single rule several factors that can eval-
uate the performance of a macro. First, since TNH is pro-
portional with f , it favors macros that frequently occurred in
the training set, and therefore are more likely to be applica-
ble in the future. Second, TNH directly depends on ANH ,

which evaluates the search effort that one application of the
macro could save.

On the other hand, TNH depends on the search strat-
egy. For instance, changing the move ordering can poten-
tially change the ranking in the macro list. How much the
search strategy affects the ranking, and how a set of macros
selected based on one search algorithm would perform in a
different search algorithm are still open questions for us.

After ranking and filtering the list, we keep for
future use only a few elements from the top of
the list. In our Satellite example, the selected
macros are (SWITCH ON TURN TO CALIBRATE TURN TO
TAKE IMAGE) and (TURN TO TAKE IMAGE TURN TO
TAKE IMAGE).

The goal of dynamic filtering is to correct performance
bottlenecks that a macro could produce. First, a selected
macro m that is never instantiated in search does not affect
the number of expanded nodes, but increases the cost per
node. Second, a macro that is instantiated much more often
than desired can lead the search into subtrees that contain no
goal states. To address these, we accumulate the following
values for each macro m: IN(m) is the number of search
nodes where at least one instantiation of m is used for node
expansion. IS(m) is the number of times when an instantia-
tion of m is part of a solution. The efficiency rate is ER(m)
is IS(M) divided by IN(m). A first implementation of
our dynamic filtering procedure evaluates each macro after
solving a number of problems NP given as a parameter. If
IN(m) = 0 or ER(m) does not exceed a threshold T , we
drop m from the list.

Instantiating Macros at Run-Time
The macros obtained in the learning phase are used to speed
up the search in new problem instances. A classical search
algorithm expands a node by considering low-level actions
that can be applied to the current state. In addition, we add to
the successor list states that can be reached by applying a se-
quence of actions that compose a macro. This enhancement
affects neither the soundness nor the correctness of the orig-
inal algorithm. When the original search algorithm is com-
plete, we preserve this, since we delete no regular successors
that the algorithm generates. The correctness is guaranteed
by our way of applying a macro to a state. Given a state s0

and a sequence of actions M = a1a2...ak, we say that M
is applicable to s0 if ai can be applied to si−1, i ∈ 0, ..., k,
where si = γ(si−1, ai) and γ(s, a) is the state obtained by
applying a to s.

Using macro-actions can lead to either reduced search ef-
fort or performance overhead, and the way we balance these
is crucial for the overall performance of a planner. When
a macro-operator is applied at run-time, the corresponding
sequence of actions is added to the current path with little
effort, since we prune the whole sub-tree that normal search
would expand to discover the given action sequence. On
the other hand, using macros increases the branching factor
of the search space, which could lead to significantly larger
searches.

When a given state is expanded at run-time, many instan-
tiations of a macro could be applicable, but only a few would

actually be shortcuts towards a goal state. If we consider all
these instantiations, the branching factor can significantly
increase and the induced overhead can be larger than the po-
tential savings achieved by the useful instantiations. There-
fore, the challenge is to select for state expansion only a
small number of good macro instantiations.

To determine what a “good” instantiation of a macro is,
we propose a heuristic method, called helpful macro prun-
ing, which is based on the relaxed graphplan computation
that FF (Hoffmann & Nebel 2001) performs for heuristic
state evaluation. For each evaluated state s, FF solves a re-
laxed problem, where the initial state is the currently eval-
uated state, the goal conditions are the same as in the real
problem, and the actions are relaxed by ignoring their delete
effects. This computation produces a relaxed plan RP (s),
and FF returns its length as the heuristic evaluation of the
current state.

We use the relaxed plan to decide what macro-
instantiations to select in a given state. Since actions
from the relaxed plan are often useful in the real world,
we request that a selected macro and the relaxed plan
match partially or totally (i.e., they have common ac-
tions). To formally define the matching, consider a macro
M(v1, ..., vn), where v1, ..., vn are variables, and an instan-
tiation M(c1, ..., cn), with c1, ..., c2 constant symbols. We
define Match(M(c1, ..., cn), RP (s)) as the number of ac-
tions a ∈ M(c1, ..., cn) so that R(a) ∈ RP (s), where R(a)
is the relaxed version of a.

If we require a total matching (i.e., each action of the
macro is mapped to an action in the relaxed plan) then we
will often end up with no selected instantiations, since the re-
laxed plan can be optimistic and miss actions needed in the
real solution. However, a loose matching can significantly
increase the number of selected instantiations, with negative
effects on the overall performance of the search algorithm.
Our solution is to select only the instantiations with the best
matching seen so far for the given macro in the given do-
main. We select a macro instantiation only if

Match(M(c1, ..., cn), RP (s)) ≥ MaxMatch(M(v1, ..., vn)),

where MaxMatch(M(v1, ..., vn)) is the largest value of
Match(M(c′1, ..., c

′

n), RP (s′)) that we have encountered
so far in this domain, for any instantiation of this
macro and for any state. Our experiments show that
MaxMatch(M(v1, ..., vn)) quickly converges to a sta-
ble value. In our example, MaxMatch(SWITCH ON
TURN TO CALIBRATE TURN TO TAKE IMAGE) converges
to 4, and MaxMatch(TURN TO TAKE IMAGE TURN TO
TAKE IMAGE) converges to 3.

Discussion
Desired properties of macros, and trade-offs involved in
combining them into a filtering method are discussed in
(McCluskey & Porteous 1997). The authors identify five
factors that can be used to predict the performance of a
macro set. In the next paragraphs we briefly discuss how
our system deals with each factor.

Our total node heuristic includes the first two factors (“the
likelihood of some macro being usable at any step in solving

any given planning problem”, and “the amount of process-
ing (search) a macro cuts down”). Factor 3 (“the cost of
searching for an applicable macro during planning”) mainly
refers to the additional cost per node in the search algorithm.
At each node, and for each macro-schema, we have to check
if instantiations of the macro-schema are applicable to the
current state, and satisfy the helpful macro pruning rule. We
greatly cut the costs by keeping only a small list of macro-
schemas, but there always is an overhead as compared to
searching with no macros. The average overhead rate can be
obtained by comparing the node speed-up rate vs. the CPU
time speed-up rate in the next section.

We take no special care of factor 4 (“the cost (in terms of
solution non-optimality) of using a macro”). See the next
section for an analysis of how macros affect the quality of
solutions in our benchmarks. Factor 5 refers to “the cost
of generating and maintaining the macro set”. The costs to
generate macros include, for each training problem, solving
the problem instance, building the solution graph, extracting
macros from the solution graph, and inserting the macros
into the global list. Solving the problem instance domi-
nates the theoretical complexity of processing one training
problem. The only maintenance operations that our method
performs are to dynamically filter the list of macros and to
update MaxMatch for each macro-schema, which need no
significant cost.

Experimental Results
Setup
We evaluate our method on the same benchmarks that we
competed in the fourth international planning competition
IPC-4 (Hoffmann et al. 2004): Promela Dining Philoso-
phers – ADL (containing a total of 48 problems), Promela
Optical Telegraph – ADL (48 problems), Satellite – STRIPS
(36 problems), PSR Middle Compiled – ADL (50 prob-
lems), Airport – ADL (50 problems), Pipesworld Notank-
age Nonemporal – STRIPS (50 problems), and Pipesworld
Tankage Nontemporal – STRIPS (50 problems).

We ran the experiments on an AMD Athlon 2 GHz ma-
chine, within the limits of 30 minutes and 1 GB of mem-
ory for each problem. We compare the performance of three
planning systems in terms of expanded nodes and CPU time.
Macro-FF version 1.1 adds to the original FF version 2.3
(Hoffmann & Nebel 2001) several implementation enhance-
ments, but no functionality for macro-operators. Macro-FF
version 1.2, which was used in the competition, extends the
previous version with support for macro-operators. Macro-
FF version 1.3 preserves the implementation enhancements,
but extends the old macro functionality to the model de-
scribed in this paper. Discussing the implementation en-
hancements is not the goal of this paper (see (Botea et al.
2004) for details). Neither is evaluating their impact on the
system performace. We only mention that they were very
useful in domains such as Promela Optical Telegraph (in-
creasing the number of solved problems from 3 to 13 within
the constraints shown before, with no macros used) and PSR
Middle Compiled (improving from 20 to 32 solved prob-
lems, under the same conditions).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45 50

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 4: Experimental results in Promela Dining Philosophers.

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 5: Experimental results in Promela Optical Telegraph.

Analysis
In Figures 4, 5, and 6, the data labeled with “Classical” are
obtained with Macro-FF 1.1, “IPC-4” shows the results for
Macro-FF 1.2, and “PO Macros” corresponds to Macro-FF
1.3. Figures 4 and 5 show the results for Promela Dining
Philosophers and Optical Telegraph. Note that, in the com-
petition, Macro-FF 1.2 won this version of Promela Optical
Telegraph. Using partial-order macros leads to massive im-
provement. For instance, in Dining Philosophers, each prob-
lem is solved within less than 1 second, while expanding less
than 200 nodes. In addition, in both domains, our system
with partial-order macros outperforms by far the top per-
formers in the competition for the same domain versions. In
these domains, using macros significantly increase the cost
per node, but no degradation in solution quality is observed.

Figure 6 summarizes our experiments in Satellite. In
the competition results for this domain, Macro-FF 1.2 and
YAHSP (Vidal 2004b) have tied for the first place (with
better average performance for YAHSP over this problem
set). Macro-FF 1.3 further improves our result, going up

to about one order of magnitude speed up as compared to
classical search. In Satellite, the heuristic evaluation of a
state becomes more and more expensive as problems grow
in size, with interesting effects for the system performance.
First, the extra cost per node that macros induce is greater
for small problems, and gradually decreases for larger prob-
lems since, in large problems, the heuristic evaluation heav-
ily dominates in cost all remaining processing per searched
node. Second, the correlation between the number of ex-
panded nodes and the CPU time varies over the problem set.
For instance, problem 20 is the hardest to solve in terms of
expanded nodes, but takes less time than problems that are
larger in size. The solution quality slightly varies in both
directions, with no significant impact for the system perfor-
mance.

xxxx The largest missing part is analysis of the remaining
domains: PSR, Pipesworld, Airport. I’ll add this later, as I
plan to explore it in the remaining days. xxxx.

An important problem that we want to address is to evalu-
ate in which classes of problems our method works well, and

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 6: Experimental results in Satellite.

in which domains this approach is less effective. We identify
several factors that affect our method performance in terms
of search effort in a domain. The first factor is the efficiency
of helpful macro pruning. This pruning rule controls the set
of macro instantiations at run-time, and greatly influences
the planner performance. An efficient pruning keeps only a
few instantiations that are shortcuts to a goal state (one sin-
gle such instantiation will do). The performance drops when
more instantiations are selected, and many of them lead to
subtrees that contain no goal states. The efficiency of help-
ful macro pruning directly depends on the quality of both the
relaxed plan associated to a state, and the macro-schema that
is being instantiated. Since the relaxed plan is more informa-
tive in Promela and Satellite than in PSR, the performance
of our approach is significantly better in the first domains.

Second, our experience suggests that our method per-
forms better in “structured” domains rather than in “flat”
benchmarks. Intuitively, we say that a domain is more struc-
tured when more local details of the domain in the real world
are preserved in the PDDL formulation. In such domains,
local move sequences occur over and over again, and our
method can catch these as potential macros. In contrast, in a
“flat” domain, such a local sequence is often replaced with
one single action by the designer of the PDDL formulation.

xxxx Third, the search strategy is important too. All three
successful domains use Enhanced Hill Climbing, while PSR
uses Best First Search. I hope I’ll add some last minute com-
ments here, depending on how the results in psr end up.xxxx

Related Work
The related work described in this section falls into two cate-
gories. We first review planning approaches that make use of
the domain structure to reduce the complexity of planning,
and next consider previous work on macro-operators.

An automatic method that discovers and uses the domain
structure has been explored in (Knoblock 1994). In this
work, a hierarchy of abstractions is built starting from the
initial low-level problem description. A new abstract level is
obtained dropping literals from the problem definition at the

previous abstraction level. Refining an abstract plan never
causes backtracking because of changes in the plan struc-
ture. Backtracking is performed only when an abstract plan
has no refinement. (Bacchus & Yang 1994) define a theo-
retical probabilistic framework to analyze the search com-
plexity in hierarchical models. The authors also use some
concepts of that model to improve Knoblock’s abstraction
algorithm. More recently, implicit causal structure of a do-
main has been used to design a domain-independent heuris-
tic for state evaluation (Helmert 2004). These methods ei-
ther statically infer information about the structure of a do-
main, or dynamically discover the structure for each prob-
lem instance. In contrast, we propose an adaptive technique
that learns from previous experience in a domain.

Two successful approaches that use hand-crafted infor-
mation about the domain structure are hierarchical task net-
works and planning with temporal logic control rules. Plan-
ning with hierarchical task networks (Nau et al. 2003) can
be seen as an extension of classical planning where the
search is guided and restricted according to a hierarchical
representation of a domain. Human experts design hierar-
chies of tasks that show how the initial task of a problem
can be decomposed down to the level of regular actions. In
planning with temporal logic control rules, a formula is as-
sociated with each state in the problem space. The formula
of the initial state is provided with the domain description.
The formula of any other state is obtained based on its suc-
cessor’s formula. When the formula associated to a state
can be proven to be false, the subtree of that state is pruned
from the search space. The best known planners of this
kind are TLPlan (Bacchus & Kabanza 2000) and TALPlan-
ner (Kvarnström & Doherty 2001). While efficient, these
approaches also rely heavily on human knowledge, which
sometimes can be expensive or impossible to obtain.

Early work on macro-operators in AI planning includes
(Fikes & Nilsson 1971). As in our approach, macros are
extracted after a problem was solved and the solution be-
came available. (Minton 1985) advances this work by in-
troducing techniques that filter the set of learned macro-

operators. In his approach, two types of macro-operators
are preferred: S-macros, which occur with high frequency
in problem solutions, and the T-macros, which can be use-
ful but have low-priority in the original search algorithm. In
(Iba 1989) macro-operators are generated at run-time using
the so-called peak-to-peak heuristic. A macro is a move se-
quence between two peaks of the heuristic state evaluation.
In effect, such a macro traverses a “valley” in the search
space, and using this later can correct the heuristic evalua-
tor. A macro filtering procedure uses both simple static rules
and dynamic statistical data.

(McCluskey & Porteous 1997) focus on constructing
planning domains starting from a natural language descrip-
tion. The approach combines human expertise and auto-
matic tools, and addresses both correctness and efficiency of
the obtained formulation. Using macro-operators is a major
technique that the authors propose for efficiency improve-
ment. In this work, a state in a domain is composed of local
states of several variables called dynamic objects. Macros
model transitions between the local states of a variable.

As in (Botea, Müller, & Schaeffer 2004b), we describe a
technique to automatically generate and filter a set of macros
to be used for future problems. In this paper, we extend
our previous work in several directions. First, we increase
the applicability from STRIPS domains to ADL domains.
For more details, including a discussion of the trade-offs,
see (Botea et al. 2004). Second, the old method generates
macros based on component abstraction, which is limited to
domains with static predicates in their definition. The cur-
rent method generates macros from the solution graph, in-
creasing the generality of the method. Third, we increase
the size of macros from 2 moves to arbitrary values. Fourth,
we generalize the definition of macros allowing partially or-
dered sequences.

Methods that exploit at search time the relaxed graphplan
associated to a problem state (Hoffmann & Nebel 2001) in-
clude helpful action pruning (Hoffmann & Nebel 2001) and
look-ahead policies (Vidal 2004a). Our helpful macro prun-
ing method has similarities with both. Helpful action prun-
ing considers for node expansion only actions that occur
in the relaxed plan and can be applied to the current state.
Helpful macro pruning applies the same pruning idea for
the macro-actions applicable to a state, with the noticeable
difference that helpful macro pruning doesn’t give up com-
pleteness of the search algorithm.

Look-ahead policies are similar to using macro-operators.
The main idea of a lookahead policy is to execute parts of
the relaxed plan in the real world, as this often provides a
path towards a goal state with no search and few states eval-
uated. This technique heuristically orders the actions in the
relaxed plan and iteratively applies them as long as this is
possible. When the lookahead procedure cannot be contin-
ued with actions from the relaxed plan, a plan-repair method
selects a new action to be applied, so that the loop can be
resumed.

We also execute several actions from the relaxed plan in
the real world, but impose a well defined structure on the ac-
tion sequence. A lookahead policy has no explicit limitation
on how many actions to apply, whereas we are limited to the

length of a macro. A possible extension would be to apply
at a step several macros in a row, and this is an interesting
topic for future work.

Macro-moves were successfully used in single-agent
search problems such as puzzles or path-finding in com-
mercial computer games, usually in a domain-specific im-
plementation. The sliding-tile puzzle was among the first
testbeds for this idea (Korf 1985; Iba 1989). Two of the most
effective concepts used in the Sokoban solver Rolling Stone,
tunnel and goal macros, are applications of this idea (Jung-
hanns & Schaeffer 2001). More recent work in Sokoban
includes an approach that decomposes a maze into a set of
rooms connected by tunnels (Botea, Müller, & Schaeffer
2002). Search is performed at the higher level of abstract
move sequences that rearrange the stones inside a room so
that a stone can be transferred from one room to another.
Hernádvölgyi uses macro-moves for solving Rubik’s Cube
puzzles (Hernádvölgyi 2001). In (Botea, Müller, & Schaef-
fer 2004a), a navigation map is automatically decomposed
into a set of clusters, possibly on several abstraction levels.
For each cluster, an internal optimal path is pre-computed
between any two entrances of that cluster. Path-finding is
performed at an abstract level, where a macro-move crosses
a cluster from one entrance to another in one step. This ap-
proach greatly speeds up the search while producing near-
optimal solutions.

Conclusion
Despite the great progress that AI planning has recently
achieved, many benchmarks remain challenging for current
planners. In this paper we presented a technique that au-
tomatically learns a small set of macro-operators from pre-
vious experience in a domain, and uses them to speed up
search in future problems. We evaluated our method on
standard benchmarks from the fourth international planning
competition, showing significant improvement for domains
where structure information can be inferred.

Exploring our method deeper and improving the perfor-
mance in more classes of problems are major directions for
future work. We also plan to extend our approach in several
directions. Our learning method can be generalized from
macro-operators to more complex structures such as hierar-
chical task networks. Little research has been conducted in
this direction, even though the problem is very important.

Another interesting topic is to use macros in the graphplan
algorithm, rather than the current framework of planning as
heuristic search. The motivation is that a solution graph can
be seen as a subset of the graphplan associated to the initial
state of a problem. Since we learn common patterns that
occur in solution graphs, it seems natural to try to use these
patterns in a framework that is similar to solution graphs.

We also plan to explore how the heuristic evaluation based
on the relaxed graphplan can be improved based on macro-
operators. Our previous work where a STRIPS macro is
added to the original domain formulation as a regular op-
erator suggests that macros could help to improve the evalu-
ation of a state. In this framework, macros are considered in
the relaxed graphplan computation just like any other oper-
ator, and they lead to more accurate evaluations.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence 16:123–191.
Bacchus, F., and Yang, Q. 1994. Downward Refinement
and the Efficiency of Hierarchical Problem Solving. Artifi-
cial Intelligence 71(1):43–100.
Bacchus, F. 2001. AIPS’00 Planning Competition. AI
Magazine 22(3):47–56.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2004. Macro-FF. In Booklet of the Fourth International
Planning Competition, 15–17.
Botea, A.; Müller, M.; and Schaeffer, J. 2002. Using Ab-
straction for Planning in Sokoban. In Proceedings of the
3rd International Conference on Computers and Games
(CG’2002).
Botea, A.; Müller, M.; and Schaeffer, J. 2004a. Near Opti-
mal Hierarchical Path-Finding. Journal of Game Develop-
ment 1(1):7–28.
Botea, A.; Müller, M.; and Schaeffer, J. 2004b. Us-
ing Component Abstraction for Automatic Generation of
Macro-Actions. In Proceedings of the International Con-
ference on Automatic Planning and Scheduling ICAPS-04,
181–190.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 5(2):189–208.
Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proceedings of the International Con-
ference on Automatic Planning and Scheduling ICAPS-04,
161–170.
Hernádvölgyi, I. 2001. Searching for Macro-operators
with Automatically Generated Heuristics. In 14th Cana-
dian Conference on Artificial Intelligence, AI 2001, 194–
203.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. Jour-
nal of Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Edelkamp, S.; Englert, R.; Liporace, F.;
Thiébaux, S.; and Trüg, S. 2004. Towards Realistic Bench-
marks for Planning: the Domains Used in the Classical Part
of IPC-4. In Booklet of the Fourth International Planning
Competition, 7–14.
Iba, G. A. 1989. A Heuristic Approach to the Discovery of
Macro-Operators. Machine Learning 3(4):285–317.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhanc-
ing Single-Agent Search Using Domain Knowledge. Arti-
ficial Intelligence 129(1–2):219–251.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. Artificial Intelligence 68(2):243–302.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence 26(1):35–77.
Kvarnström, J., and Doherty, P. 2001. TALplanner: Tem-
poral Logic Based Forward Chaining Planner. Annals of

Mathematics and Artificial Intelligence (AMAI) 30:119–
169.
Long, D., and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and Analysis. Journal of Arti-
ficial Intelligence Research 20:1–59. Special Issue on the
3rd International Planning Competition.
McCluskey, T. L., and Porteous, J. M. 1997. Engineer-
ing and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence 95:1–65.
McDermott, D. 2000. The 1998 AI Planning Systems
Competition. AI Magazine 21(2):35–55.
Minton, S. 1985. Selectively Generalizing Plans for
Problem-Solving. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence, 596–599.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN Planning Sys-
tem. Journal of Artificial Intelligence Research 20:379–
404.
Nguyen, X., and Kambhampati, S. 2001. Reviving Par-
tial Order Planning. In Nebel, B., ed., Proceedings of the
17th International Joint Conference on Artificial Intelli-
gence (IJCAI-01), 459–466.
Vidal, V. 2004a. A Lookahead Strategy for Heuristic
Search Planning. In Proceedings of the International Con-
ference on Automatic Planning and Scheduling ICAPS-04,
150–159.
Vidal, V. 2004b. The YAHSP Planning System: Forward
Heuristic Search with Lookahead Plans Analysis. In Book-
let of the Fourth International Planning Competition, 56–
58.

