
Using Component Abstraction for Automatic Generation of Macro-Actions

Adi Botea and Martin Müller and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{adib,mmueller,jonathan}@cs.ualberta.ca

Abstract

Despite major progress in AI planning over the last few
years, many interesting domains remain challenging for cur-
rent planners. This paper presents component abstraction, an
automatic and generic technique that can reduce the complex-
ity of an important class of planning problems. Component
abstraction uses static facts in a problem definition to decom-
pose the problem into linked abstract components. A local
analysis of each component is performed to speed up plan-
ning at the component level. Our implementation uses this
analysis to statically build macro operators specific to each
component. A dynamic filtering process keeps for future
use only the most useful macro operators. We demonstrate
our ideas in Depots, Satellite, and Rovers, three standard do-
mains used in the third AI planning competition. Our results
show an impressive potential for macro operators to reduce
the search complexity and achieve more stable performance.

Introduction
AI planning has recently achieved significant progress in
both theoretical and practical aspects. The last few years
have seen major advances in the performance of planning
systems, in part stimulated by the planning competitions
held as part of the AIPS series of conferences (McDermott
2000; Bacchus 2001; Long & Fox 2003). However, many
hard domains still remain a great challenge for the current
capabilities of planning systems.

In this paper we present component abstraction, a tech-
nique for reducing planning complexity by decomposing a
problem into linked components. Our method is automatic,
uses no domain-specific knowledge, and can be applied to
domains that use static facts for problem definition. A fact
is static if it is true in all states of the problem search space.
The problem decomposition uses static facts to define ab-
stract components. Components with equivalent structure
are assigned to the same abstract type.

For each abstract type we create macro operators that can
speed up planning at the component level. A macro operator
has the same formal definition as a normal operator, being
characterized by a set of variables (parameters), a set of pre-
conditions, a set of add effects, and a set of delete effects.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Integrating our abstraction approach into a stan-
dard planning framework. Abstraction includes component
abstraction and macro generation.

We build a macro operator as an ordered sequence of oper-
ators linked through a mapping of the operators’ variables.
Applying a macro operator is semantically equivalent to ap-
plying all operators that compose the macro, respecting the
macro’s variable mapping. The preconditions and the effects
of a macro operator are obtained using a straightforward set
of rules that we describe in the fourth section. We generate
the macros using a forward search in the space of macro op-
erators. A set of heuristic rules is used to prune the search
space and generate only macros that are likely to be useful.
For best performance, we dynamically filter the initial set of
macros to keep for future use only the most effective ones.

Figure 1 shows how our method can be integrated into a
standard planning system. The resulting framework is plan-
ner independent and uses standard PDDL, with no need for
language extensions. We use the domain definition and one
or more problem instances as input for component abstrac-
tion and macro generation. The best macro operators that
our method generates are added as new operators to the ini-
tial PDDL domain formulation, enhancing the initial set of
operators. Once the enhanced domain formulation is avail-
able in standard PDDL, any planner could be used to solve
problem instances.

In contrast, using a standard framework might result in
reduced efficiency. If better performance is sought, the us-
age of component abstraction and macro operators could be
encoded inside the search algorithm of a certain planner, for
the price of increased engineering effort.

Motivation
Using Static Facts for Component Abstraction. Com-
plex real life domains often have static relationships between
features present in the domain definition. Humans can ab-

stract features connected through static relationships in one
more complex funtional unit. A robot that a big hammer has
been installed on could be considered one component with
both mobility capabilities and maintanence skills. Such a
component becomes a permanent part of our representation
of the world, provided that no action can invalidate the static
relation between the robot and the hammer (with the risk of
misrepresenting the reality, we assume the robot never con-
siders the action of auto-hammering).

Early introduced standard planning domains did not make
extensive use of static facts. Since such domains are some-
times an oversimplified representation of the real world,
many specific constraints, including static relationships be-
tween domain features, are abstracted away from the do-
main definition. More recently developed planning bench-
marks have increased complexity, and static facts are used
as part of their formulation. Consider Depots, a domain
created as a combination of Blocks and Logistics. In De-
pots, low-level features such as a depot, a hoist, and a pallet
can act like a permanent component with unitary behaviour
and multiple capabilities such as loading, unloading, or stor-
ing crates. The goal of component abstraction is to auto-
matically identify such permanent components, treat them
as unitary functional units, and simplify planning through a
component analysis process.

Using Macro-Actions. When AI planning is seen as
heuristic search, a search space that originates from the ini-
tial state of a problem can be defined. Given a state in the
search space, its successors are generated considering all ac-
tions that can be applied in the current state. A simple but
useful standard model measures the size of a search space
by two parameters: the branching factor B and the search
depth D. In this model, the size grows exponentially with
D, and if B > 2, most of the search effort is spent on the
deepest level achieved. The goal of using macro actions is
to reduce D for the price of slightly increasing B, obtaining
a significant overall reduction of the search space.

Contributions
This sub-section briefly summarizes the main contributions
of the paper.
• We present a new type of automatic abstraction for AI

planning, based on static relationships that link atomic
problem constants.

• We use component abstraction to automatically generate
macro actions that speed up planning at the component
level. We present techniques for both building and filter-
ing macros.

• We provide a performance analysis of our technique based
on experiments in the standard domains Depots, Rovers,
and Satellite. We show that a small number of macros can
greatly simplify hard problem instances.
The rest of this paper is structured as follows: The next

section reviews related work. The third section presents the
component abstraction, the fourth presents the domain en-
hancement using macro operators, and the fifth section dis-
cusses our experimental results. The last section contains

conclusions and further work ideas.

Related Work
Abstraction is a frequently used technique to reduce problem
complexity in AI planning. Automatically abstracting plan-
ning domains has been explored by Knoblock (Knoblock
1994). His approach builds a hierarchy of abstractions by
dropping literals from the problem definition at the previ-
ous abstraction level. Bacchus and Yang define a theoreti-
cal probabilistic framework to analyze the search complex-
ity in hierarchical models (Bacchus & Yang 1994). They
also use some concepts of that model to improve Knoblock’s
abstraction algorithm. In this work, the abstraction consists
of problem relaxation. In our approach, abstraction means
to identify closely related atomic features and group them
into abstract components.

Long et al. use generic types and active preconditions
to reformulate and abstract planning problems (Long, Fox,
& Hamdi 2002). As a result of the reformulation, sub-
problems of the initial problem are identified and solved by
using specialized solvers. Our approach has similarities with
this work. Both formalisms try to cope with domain-specific
features at the local level, reducing the complexity of the
global problem. The difference is that we could reformulate
problems as a result of component abstraction, whereas in
the cited work reformulation is obtained by identifying var-
ious generic types of behavior and objects such as mobile
objects.

Component abstraction has similarities with topological
abstraction. The first paradigm uses several types of static
facts for problem decomposition, whereas the second uses
only one class of static facts, corresponding to the pred-
icate that models topological relationships in the problem
space. As we show in the third section, these methods are
also different in a significant way, using different types of
static predicates for abstraction. (Botea, Müller, & Scha-
effer 2003) uses topological abstraction as a basis for hier-
archical planning and proposes a PDDL extension for sup-
porting this. Using topological abstraction to speed up plan-
ning in a reinforcement learning framework has been pro-
posed in (Precup, Sutton, & Singh 1997). In this work, the
authors define macro actions as offset-casual policies. In
such a policy, the probability of an atomic action depends
not only on the current state, but also on the previous states
and atomic actions of the policy. Learning macro actions in
a grid robot planning domain induces a topological abstrac-
tion of the problem space.

In single-agent search, macro-moves can be considered
as simple plans and are arguably the most successful plan-
ning idea to make its way into games/puzzle practice.
Macro moves have successfully been used in the sliding-
tile puzzle (Korf 1985). Two of the most effective con-
cepts used in the Sokoban solver Rolling Stone, tunnel
and goal macros, are applications of this idea (Junghanns
1999). Hernádvölgyi uses macro-moves for solving Rubik’s
Cube puzzles (Hernádvölgyi 2001). While these methods
are application-specific, our approach is generic, building
macros with no prior domain-specific knowledge.

(AT PALLET0 DEPOT0) (CLEAR CRATE1)
(AT HOIST0 DEPOT0) (CLEAR CRATE0)
(AT PALLET1 DISTRIBUTOR0) (CLEAR PALLET2)
(AT HOIST1 DISTRIBUTOR0) (AT TRUCK0 DISTRIBUTOR1)
(AT PALLET2 DISTRIBUTOR1) (AT TRUCK1 DEPOT0)
(AT HOIST2 DISTRIBUTOR1) (AVAILABLE HOIST0)

(AVAILABLE HOIST1)
(AVAILABLE HOIST2)
(AT CRATE0 DISTRIBUTOR0)
(ON CRATE0 PALLET1)
(AT CRATE1 DEPOT0)
(ON CRATE1 PALLET0)

Figure 2: Initial state of a Depots problem.

Component Abstraction in Planning
Component abstraction is a generic technique that decom-
poses a planning problem into linked components, based on
PDDL formulations of the problem and the corresponding
domain. For a domain, abstracting different problems may
produce different components and abstract types, according
to the size and the structure of each problem. Local analy-
sis of components can be used to reduce complexity of the
initial problem.

Component abstraction is a two-step procedure. First, we
identify static facts in the problem definition. A fact is an
instantiation of a domain predicate, i.e., a predicate whose
parameters have been instantiated to concrete problem con-
stants. A fact f is static if f is part of the initial state of the
problem and no operator can delete it. Second, we use static
facts to build the problem components. An abstract compo-
nent contains problem constants linked by static facts.

We use problem 1 in the Depots test suite used in the third
planning competition (Long & Fox 2003) as a running ex-
ample. Figure 2 shows the initial state of the problem. In
Depots, stacks of crates can be built on the top of pallets us-
ing hoists that are located at the same place as the pallets. A
place can be either a depot or a distributor. Trucks can trans-
port crates from one place to another. For more information
on the competition, including the complete definition of the
domains cited in this paper, see (Long & Fox 2003) or visit
the url http://www.cis.strath.ac.uk/˜derek/
competition.html.

Identifying Static Facts
We use the set of the domain operators O to decompose the
predicate set P into a partition P = PF ∪PS , corresponding
to fluent and static predicates respectively. Assume that we
represent an operator o ∈ O as a structure

o = (V (o), P (o), A(o), D(o)),

where V (o) is the variable set, P (o) is the precondition set,
A(o) is the set of add effects, and D(o) is the set of delete
effects. A predicate p is fluent if p is part of an operator’s
effects (either positive or negative):

p ∈ PF ⇔ ∃o ∈ O : p ∈ A(o) ∪ D(o).

Otherwise, we say that p is static (p ∈ PS).
Before we determine fluent and static predicates, we have

to address the issue of hierarchical types. Instances of the
same predicate in a domain with hierarchical types can be
both static and fluent. Consider again the Depots domain,
which uses such a type hierarchy. Type LOCATABLE has
four atomic sub-types: PALLET, HOIST, TRUCK, and CRATE.
Type PLACE has two atomic sub-types: DEPOT and DIS-
TRIBUTOR. In effect, predicate (AT ?L - LOCATABLE ?P -
PLACE), that tells whether object ?L is located at ?P, corre-
sponds to eight predicates expressed at the atomic type level.
Here we show two such predicates, one static and one fluent.
Predicate (AT ?P - PALLET ?D - DEPOT) is static, as there is
no operator that adds, deletes, or moves a pallet. Predicate
(AT ?C - CRATE ?D - DEPOT) is fluent. For instance, opera-
tor LIFT deletes a fact corresponding to this predicate.

To address the issue of hierarchical types, we use a ground
domain formulation where types have the lowest level in the
hierarchy. We expand each predicate into a set of ground
predicates whose arguments have ground types, i.e., types
at the lowest level in the hierarchy. Similarly, we define
ground operators, whose variable types are expressed at the
lowest hierarchical level. Component abstraction and macro
generation are done at the ground level. After we build the
macros, we restore the type hierarchy of the domain. Sim-
ilar macro operators with ground types are merged into one
macro operator with hierarchical types, achieving a compact
macro representation.

After determining fluent and static predicates, all facts
corresponding to static predicates are considered static facts.
In Figure 2, we show the static facts of our Depots example
in the left side of the picture, and the fluent facts in the right
side. Note that a static fact models the relationship between
either a hoist or a pallet and its location.

In our implementation, we ignore static predicates that
are unary or have variables of the same type. The latter
can model topological relationships and lead to large com-
ponents. See the next subsection for a discussion.

Building Abstract Components
Abstract components contain constants linked by static
facts. Table 1 shows a first example of abstract components,
based on our Depots sample problem. We obtain three ab-
stract components, each containing a pallet, a hoist, and ei-
ther a depot or a distributor. In this example, the decomposi-
tion is straightforward, since the components do not commu-
nicate to each other through static facts. For instance, there
are no static facts that place the same hoist at two different
locations.

However, in general, the graph of constants linked by
static facts can contain only one connected component. This
often happens in domains such as Satellite or Rovers. Con-
sider the Rovers domain, where predicates (STORE OF ?S
- STORE ?R - ROVER), (ON BOARD ?C - CAMERA ?R -
ROVER), (SUPPORTS ?C - CAMERA ?M - MODE), (CAL-
IBRATION TARGET ?C - CAMERA ?O - OBJECTIVE), and
(VISIBLE FROM ?O - OBJECTIVE ?W - WAYPOINT) are
static. Assume that we want to build the components of the
Rovers problem partially shown in Figure 3. If we use all

Comp. Constants Facts
DEPOT0 (AT PALLET0 DEPOT0)

C0 HOIST0 (AT HOIST0 DEPOT0)
PALLET0

DISTRIBUTOR0 (AT PALLET1 DISTRIBUTOR0)
C1 HOIST1 (AT HOIST1 DISTRIBUTOR0)

PALLET1
DISTRIBUTOR1 (AT PALLET2 DISTRIBUTOR1)

C2 HOIST2 (AT HOIST2 DISTRIBUTOR1)
PALLET2

Table 1: Abstract components built for the Depots example.

(STORE OF STORE0 ROVER0) (VISIBLE FROM OBJ0 POINT0)
(STOREI OF STORE1 ROVER1) (VISIBLE FROM OBJ0 POINT1)
(ON BOARD CAM0 ROVER0) (VISIBLE FROM OBJ0 POINT2)
(ON BOARD CAM1 ROVER1) (VISIBLE FROM OBJ0 POINT3)
(SUPPORTS CAM0 COLOUR) (VISIBLE FROM OBJ1 POINT0)
(SUPPORTS CAM0 HIGH RES) (VISIBLE FROM OBJ1 POINT1)
(SUPPORTS CAM1 COLOUR) (VISIBLE FROM OBJ1 POINT2)
(SUPPORTS CAM1 HIGH RES) (VISIBLE FROM OBJ1 POINT3)
(CALIBRATION TARGET CAM0 OBJ1)
(CALIBRATION TARGET CAM1 OBJ1)

Figure 3: Partial initial state of a Rovers problem. We show
only the static facts that can be used for component abstrac-
tion.

static facts to create the components, we end up with one big
component. To avoid this, we use a more general method for
problem decomposition, which we describe below. First we
show how the method works in the Rovers sample problem.
Next we provide the formal description, including pseudo-
code.

Detailed Example. Table 2 shows how component ab-
straction works in the sample Rovers problem. The method
starts building components from a randomly chosen domain
type, which in our example is CAMERA. The steps summa-
rized in the table correspond to the following actions:

• Step 0. We create one abstract component for each con-
stant of type CAMERA: COMPONENT0 contains CAM0,
and COMPONENT1 contains CAM1. Next we iteratively
extend the components created at Step 0. One extension
step uses a static predicate that has at least one variable
type already encoded into the components.

• Step 1. We choose predicate (SUPPORTS ?C - CAM-
ERA ?M - MODE), which has a variable of type cam-
era. First we check if static facts based on this predi-
cate keep the existing components separated. These static
facts are (SUPPORTS CAM0 COLOR), (SUPPORTS CAM0
HIGH RES), (SUPPORTS CAM1 COLOR), and (SUPPORTS
CAM1 HIGH RES). The test fails, as constants COLOUR
and HIGH RES would be part of both components. We
therefore do not use this predicate for component exten-
sion (we say we invalidate the predicate).

• Step 2. Similarly, we invalidate predicate (CALIBRA-
TION TARGET ?C - CAMERA ?O - OBJECTIVE), which
would add constant OBJ1 to both components.

• Step 3. We analyse predicate (ON BOARD ?C - CAMERA
?R - ROVER) and use it for component extension. The
components are expanded as shown in Table 2, Step 3.

• Step 4. We consider predicate (STORE OF ?S - STORE
?R - ROVER), whose type ROVER has previously been en-
coded into the components. This predicate extends the
components as presented in Table 2, Step 4.

After Step 4 is completed, no further component extension
can be performed. There are no other static predicates using
at least one of the component types to be tried for further
extension. At this moment we evaluate the quality of the
decomposition. In this example we assume that the decom-
position is good and stop the process. Otherwise, we would
restart the decomposition process from another domain type.

Algorithm. Figure 4 shows our component abstraction
method in pseudo-code. The procedure iteratively tries to
build the components starting from a domain type t ran-
domly chosen. At the beginning, each constant of type t be-
comes the seed of an abstract component. The components
are greedily extended by adding new facts and constants,
so that no constant is part of two distinct components. If a
good decomposition is found starting from t, the procedure
returns. Otherwise, we reset all the internal data structures
(e.g., Open, Closed, the validation flag for predicates, and
the abstract components) and restart the process using an-
other randomly picked initial type.

Method extendComponents(p) extends the components
using static facts based on predicate p. Each fact f based on
p becomes part of a component. Assume f uses constants c1

and c2. If c1 is part of component C1 and c2 is not assigned
to a component yet, then c2 and f become part of C1 too. If
neither c1 nor c2 are part of a previously built component, a
new component, that contains f , c1, and c2, is created.

We evaluate the quality of a decomposition according to
the size of the built components. We measure the size as the
number of the ground types used in a component. In our ex-
periments we limited the size range of components between
2 and 4. The lower limit is trivial, since an abstract compo-
nent should put together at least two ground types connected
by a static predicate. The upper limit was heuristically set so
that the abstraction does not end-up building one large com-
ponent. These relatively small values are also consistent to
our goal of limiting the size and the number of the generated
macro operators. We discuss this issue in more detail in the
next section.

Component Abstraction vs Topological Abstraction.
Our decomposition method can consider only a subset of
the static predicates to participate in the process of building
abstract components. Given a static predicate p, we use the
same validation rule for all facts based on p. If p is consid-
ered for abstraction, then each static fact based on p will be
part of an abstract component. If p is ignored, then no static
fact based on p can be part of an abstract component.

This choice is useful for building components that con-

Step Current Validated COMPONENT0 COMPONENT1
Predicate Predicate Constants Facts Constants Facts

0 CAM0 CAM1
1 (SUPPORTS NO CAM0 CAM1

?C - CAMERA ?M - MODE)
2 (CALIBRATION TARGET NO CAM0 CAM1

?C - CAMERA ?O - OBJECTIVE)
3 (ON BOARD YES CAM0 (ON BOARD CAM1 (ON BOARD

?C - CAMERA ?R - ROVER) ROVER0 CAM0 ROVER0) ROVER1 CAM1 ROVER1)
4 (STORE OF YES CAM0 (ON BOARD CAM1 (ON BOARD

?S - STORE ?R - ROVER) ROVER0 CAM0 ROVER0) ROVER1 CAM1 ROVER1)
STORE0 (STORE OF STORE1 (STORE OF

STORE0 ROVER0) STORE1 ROVER1)

Table 2: Building abstract components for the Rovers example.

bool componentAbstraction() {
for (each type t) {

resetAllStructures();
pushToQueue(Open, t);
for (each constant ci with type t)

Ci = createComponent(ci);
while (!emptyQueue(Open)) {

t1 = popFromQueue(Open);
pushToQueue(Closed, t1);
for (each static predicate p that uses t1)

if (predConnectsComponents(p)) {
setPredicate(p, INV ALID);
continue;

}
else{

setPredicate(p, V ALID);
extendComponents(p);
for (each type t2 used in p)

if (!(t2 ∈ Open ∪ Closed))
pushToQueue(Open, t2);

}
}
if (evaluateDecomposition() == OK)

return true;
}
return false;

}

Figure 4: Component abstraction in pseudo-code.

tain constants of different types (e.g., a place, a pallet, and
a hoist). In contrast, this rule does not work if we want to
cluster constants modelling the topology of a problem. In
topological abstraction, the goal is to cluster a set of sim-
ilar constants, representing locations. Locations are con-
nected by symmetrical facts corresponding to a predicate
p that models the neighborhood relationship. Topological
clustering would consider some of these facts for building
the components and ignore others. In effect, we would not
apply the same validation rule to all facts corresponding to
p.

Abstract Types. After building components, we iden-
tify components with identical structure and assign them
to the same abstract type. Consider a component c =
(C(c), F (c)), where C(c) is the set of constants and F (c)
is the set of static facts that compose c. Note that a fact f ∈
F (c) is a predicate whose variables have been instantiated
to constants from C(c): f(c1, ..., ck) ∈ F (c), ci ∈ C(c).

We say that two components c1 and c2 have identical
structure if:

• |C(c1)| = |C(c2)|;

• |F (c1)| = |F (c2)|;

• there is a permutation p : C(c1) → C(c2) such that

– ∀f(c1

1
, ..., ck

1
) ∈ F (c1) : f(p(c1

1
), ..., p(ck

1
)) ∈ F (c2);

– ∀f(c1

2
, ..., ck

2
) ∈ F (c2) : f(p−1(c1

2
), ..., p−1(ck

2
)) ∈

F (c1);

The abstract type of a component is obtained from the
component structure by replacing each constant with a
generic variable having the same type as the constant. In
the Rovers example both components belong to the same
abstract type. In the Depots example shown in Table 1, we
define two abstract types: one for c0, and one for c1 and c2.
For an abstract type we perform a local analysis to reduce
the problem complexity. In this paper we show how the lo-
cal analysis can be used to generate macro operators. This
is only one possible way to exploit component abstraction.
Other ideas will briefly be discussed in the Future Work sec-
tion. Generating macro operators is discussed in detail in the
next section.

Creating and Using Macro-Operators
A macro-operator m is formally equivalent to a normal op-
erator: it has a set of variables V (m), a set of preconditions
P (m), a set of add effects A(m), and a set of delete effects
D(m). We enhance the initial domain formulation adding
macro-operators to the initial operator set.

A new macro-operators is built as a linear sequence of
operators. The variable set V (m) is obtained from the vari-
able sets of the contained operators together with a variable
mapping showing how the initial sets overlap. The operator

bool addOperatorToMacro(o, m, vm) {
for (each precondition p ∈ P (o)) {

if (p ∈ D(m))
return false;

if (not p ∈ A(m) ∪ P (m))
P (m) = P (m) ∪ {p};

}
for (each delete effect d ∈ D(o)) {

if (d ∈ A(m))
A(m) = A(m) − {d};

D(m) = D(m) ∪ {d};
}
for (each add effect a ∈ A(o)) {

if (a ∈ D(m))
D(m) = D(m) − {a};

A(m) = A(m) ∪ {a};
}
return true;

}

Figure 5: Adding operators to a macro.

sequence and the variable mapping completely determine a
macro. Knowing what variables are common to two opera-
tors further determines what predicates are common in the
operators’ precondition and effect sets.

The macro precondition and effect sets are initially empty.
Adding a new operator o to a macro m modifies P (m),
A(m), and D(m) as shown in Figure 5. Parameter o is an
operator, m is a macro, and vm is a variable mapping. The
variable mapping is used to check the identity between oper-
ator’s predicates and macro’s predicates. We assume that the
decision whether the operator should be added to the macro
is made before calling this function. The function shown in
Figure 5 rejects (i.e., returns false) only operators that try
to use as precondition a false predicate. See the next sub-
section for more insights about selecting an operator to be
added to a macro. In Figure 6 we show the complete defini-
tions of a macro operator (UNLOAD DROP, from Depots)
and the operators that compose it.

Macro operators are obtained in a two-step process. First,
an extended set of macros is built and next the macros are
filtered in a quick training process. Since analysis based on
empirical evidence shows that the extra information added
to a domain definition should be quite reduced, the meth-
ods that we describe next tend to minimize the number of
macros and their “size” (i.e., number of variables, precon-
ditions and effects). The static macro generation uses many
constraints for pruning the space of macro operators, and
discards “large” macros. Furthermore, the dynamic filtering
keeps only two macros for solving future problems.

Macro Generation
We build macro operators for an abstract type by perform-
ing a forward search in the space of macro operators. Macro
operators built for an abstract type t should perform local
processing for components of type t. We build such an op-
erator m based on the structure of t: m uses at least one

(:action UNLOAD DROP
:parameters

(?h - hoist ?c - crate ?t - truck ?p - place ?s - surface)
:precondition

(and (at ?h ?p) (in ?c ?t) (available ?h)
(at ?t ?p) (clear ?s) (at ?s ?p))

:effect
(and (not (in ?c ?t)) (not (clear ?s))
(at ?c ?p) (clear ?c) (on ?c ?s))

)
(:action UNLOAD

:parameters
(?x - hoist ?y - crate ?t - truck ?p - place)

:precondition
(and (in ?y ?t) (available ?x) (at ?t ?p) (at ?x ?p))

:effect
(and (not (in ?y ?t)) (not (available ?x)) (lifting ?x ?y))

)
(:action DROP

:parameters
(?x - hoist ?y - crate ?s - surface ?p - place)

:precondition
(and (lifting ?x ?y) (clear ?s) (at ?s ?p) (at ?x ?p))

:effect
(and (available ?x) (not (lifting ?x ?y)) (at ?y ?p)
(not (clear ?s)) (clear ?y) (on ?y ?s))

)

Figure 6: PDDL definition of macro UNLOAD DROP and
the operators that compose it.

static predicate of t (as precondition), and the corresponding
variables.

The root state of the search represents an empty macro
with no operators. A search step appends an operator to the
current macro, with a mapping between the operator vari-
ables and the macro variables. The search is selective, as
it includes a set of rules for pruning the search tree and for
validating a built macro operator. Validated macros can be
seen as goal states in our search space. The purpose of the
search is to enumerate many valid macro operators rather
than stopping after finding one such “goal state”.

Pruning is performed according to the following rules:

• The negated precondition rule does not allow adding op-
erators with a precondition that matches one of the cur-
rent delete effects of the macro operator. This rule avoids
building incorrect macros where a predicate should be
both true and false.

• The repetition rule requires that operators that generate
cycles cannot be added to a macro. A macro with cycle
either is useless (when an empty effect set is produced) or
can be written in a shorter form (eliminating the cycle).
We say that we have a cycle in a macro when the effects
of the first k1 operators are the same as for the first k2

operators, with k1 < k2. In particular, if k1 = 0 then the
first k2 operators have no effects on a problem state.

• The chaining rule states that, if operators o1 and o2 are
consecutive in a macro, o2 should use as precondition a

positive effect of o1. This is motivated by the idea that the
action sequence of a macro should have a coherent and
unitary meaning.

• The locality rule states that a macro action cannot change
at the same time two distinct abstract components.

• Finally, we impose a maximal length for a macro.

Macro operators built in the search are evaluated according
to the size rule. We discard “large” macros, i.e., macros with
many preconditions, effects, and variables. Large macros
are less likely to help with the search. First, a large macro
can add a significant overhead per node in the planner’s
search. Second, a large number of elements is a hint that the
macro might not be useful, as the operators do not “chain”
well.

Macro Filtering
The goal of filtering is to reduce the number of macros and
use only the most efficient ones for solving problems. Two
main reasons support the need for a dynamic filtering algo-
rithm. First, adding more operators to a domain increases the
cost per node in the planner’s search. Operators whose over-
head is larger than the possible benefits should be discarded.
Second, some of the generated macro operators might con-
tain mutex predicate tuples as part of their preconditions or
effects. If used in the domain formulation, macro operators
containing mutexes are never instantiated as possible macro
actions (moves), but increase the cost per node.

The problem of dynamic macro filtering was not hard,
since we only wanted to obtain the top few elements from
a relatively small set of macro operators. Therefore, we
could use a method that was simple, fast to implement, and
used no planner internal information. We essentially count
how often a macro operator is instantiated as an action in the
problem solutions found by the planner. The more often a
macro has been used in the past, the greater the chance that
the macro will be useful in the future. The technique turned
out to be efficient, since the filtering process quickly con-
verges to a small set of useful macros. We spent no effort to
find a “better” scoring heuristic or tune the values of method
parameters before we ran the experiments reported in this
paper.

Macro operators have weights that estimate their effi-
ciency. Initially, all macro weights are set to 0. Each time
a macro is present in a plan, we increase its weight by the
number of occurrences of the macro in the plan plus a bonus
of 10. We use the first problems in a domain for a training
process. For these problems, we allow the domain to use all
macro operators, giving each macro a chance to participate
in a solution plan and increase its weight. After the training
is over, we allow only the 2 best macro operators to be part
of the domain definition. Our experiments showed that us-
ing such a small number of macro operators balances well
the benefits and the additional cost per node that macro op-
erators generate. In the domains that we used, only one or
two macros that our technique generates are helpful for re-
ducing the search. However, all operators added to a domain
generate additional cost per node in the planner.

Even if the method based on action counting worked well
in our first experiments, designing a better algorithm for
learning macro weights is one of our main interests for the
future. To update the weight of a macro m, we would com-
pare the search effort for solving a problem using the ini-
tial domain formulation to the search effort for solving the
same problem with m added to the domain operator set. We
plan to use a comparison formula that should consider the
variation from one domain formulation to the other for pa-
rameters such as number of expanded nodes, search time,
or maximal search depth. This algorithm would use more
CPU time for training, since we solve one training problem
several times, once with no macros added to the domain for-
mulation, and once for each macro considered for weight
update.

Experimental Results
Experimental Setup
The implementation of our planning framework keeps the
abstraction separated from the rest of the solving process.
The result of abstraction is a new PDDL formulation of the
domain, where the initial set of operators has been enhanced
with the selected macro operators. The enhanced domain
file can next be used by a planner to solve problem instances,
with no need for further problem abstraction.

We developed our tools for component abstraction and
macro generation based on FF, version 2.3 (Hoffmann &
Nebel 2001). This helped us perform quicker development,
since we used the input parser and the internal data struc-
tures provided by FF. For solving planning problems, we
used FF too. However, our method is planner independent
and any general purpose planner could be used in our exper-
iments.

We measured the performance of our technique on De-
pots, Satellite, and Rovers, three standard domains used in
the third planning competition. These domains use static
facts, making them suitable for our approach. Each domain
exhibits interesting features: Depots uses hierarchical types,
and Satellite and Rovers require a more general technique
for component abstraction. The planning competition had
several tracks (i.e., Numeric, Strips, etc.), each with the ap-
propriate domain definition. In our experiments we used the
Strips domain representation. We limited the experiments
to Depots, Satellite, and Rovers because other competition
domains were either not available in a Strips version, or not
suitable for component abstraction. We consider that a do-
main is suitable for component abstraction if it uses static
facts that do not model the domain topology.

For Depots we used the same test-suite of 22 problems
as in the competition. This set includes problems which
are difficult in the initial domain formulation, allowing us to
show the advantages of using macro operators. For Rovers
and Satellite, the problems used in the competition are easily
solved by FF in the initial domain formulation, and there is
not much room for performance improvement. For this rea-
son, we extended the test set for each of these two domains
with 20 problems, obtaining test sets of 40 problems each.
We used the same problem generator as for the competition.

The generator takes as parameters the number of objects of
each type, the number of goals, and the value of the random
seed.

In Satellite, each of the additional 20 problems was gener-
ated with the same parameters as problem 20 from the initial
test-suite, except for the random seed parameter. In Rovers,
problems generated with similar parameters as problem 20
are also easy. For this reason we generated the additional
problems on two difficulty levels. Problems in the range
21—30 have the same parameters as problem 20, except for
the random seed. Problems 31—40 are more difficult. We
have increased the number of rovers, objectives, cameras,
and goals to 15 each and preserved the initial value of 25 for
the number of waypoints. In effect, we obtain larger data
sets containing both easy and hard problems in the origi-
nal domain definion, allowing us to make a more complete
performance analysis. For each data set, the first 5 itera-
tions run with all macros in use (“training mode”), while the
rest of the problems were solved using a reduced number of
macros (“solving mode”).

Analysis
Tables 4, 5 and 6 summarize the results for Depots, Rovers
and Satellite respectively. We show the running time mea-
sured in seconds (Time), the number of expanded nodes
(Nodes), and the solution length for each problem (Length).
The timings were obtained on a machine with a 2 GHz AMD
Athlon processor and 1 GByte of memory. The number of
expanded nodes evaluates the search complexity in each do-
main formulation. For each main column (i.e., Time, Nodes,
and Length), C shows the data corresponding to the classical
domain formulation. For the columns Time and Nodes, M
represents the results obtained when the macro enhancement
domain formulation was used. The times reported for the en-
hanced formulation do not include the effort for component
abstraction and macro generation. This processing is fast
and can be amortized over many problems. For the macro
enhanced formulation, we report two numbers for the solu-
tion length, each being relevant in a different way. A counts
each macro action as one step in the solution plan. The dif-
ference between C and A is yet another measure of how
using macro operators reduces the search complexity. G is
the solution length at the ground level, where each macro is
mapped to the corresponding sequence of actions. Compar-
ing G to C is useful to evaluate how the solution quality is
affected by our approach.

In Satellite, problems 27 and 38 could not be solved using
the original domain formulation within a time interval of 30
minutes. Our method produced the macros shown in Table 3.
These macros have an important contribution to the search
space reduction, except for CALIBRATE TAKE IMAGE.
In Satellite, an instrument can be calibrated once, then used
many times for taking pictures. For this reason, that macro
is usually applied once at the beginning of a plan.

The data show huge variations in problem difficulty when
the original domain formulation is used, especially for De-
pots and Satellite. With the macro enhanced domain defi-
nition, the performance is much more stable. The difficulty
level of hard problems can be reduced by several orders of

Domain Macro operators
Depots UNLOAD DROP

LIFT LOAD
Rovers SAMPLE ROCK DROP

SAMPLE SOIL DROP
Satellite TURN TO TAKE IMAGE

CALIBRATE TAKE IMAGE

Table 3: Macro operators generated for our test domains (af-
ter dynamic filtering).

Time Nodes Length
C M C M C A G

1 0.00 0.00 20 12 10 7 11
2 0.01 0.01 33 25 15 10 16
3 0.03 0.05 318 123 37 18 30
4 648.42 0.54 173342 534 30 20 34
5 40.65 0.33 220433 403 72 37 59
6 620.98 10.05 789227 3848 91 48 81
7 0.02 0.03 148 77 27 17 25
8 1280.33 0.14 174031 142 44 26 45
9 1.63 0.84 2356 260 75 37 65

10 110.29 0.05 41784 45 29 15 25
11 0.36 1.95 574 716 63 43 67
12 10.04 6.11 5008 614 94 40 66
13 0.04 0.10 79 53 26 17 27
14 0.25 0.26 427 66 37 17 29
15 45.83 19.00 22421 2076 85 56 90
16 0.05 0.28 108 73 28 20 31
17 1.73 1.54 1600 178 38 19 29
18 1.83 5.23 533 199 60 42 65
19 0.42 0.68 430 85 47 25 40
20 29.92 14.58 6927 555 98 49 78
21 0.74 3.72 104 77 32 23 35
22 95.61 148.64 4524 1176 102 62 97

Table 4: Summary of results for Depots.

magnitude. For example, using macro actions for problem
8 in Depots reduces the running time by a factor of 10,000
and expanded nodes by a factor of 1,000.

Next we focus our discussion in two directions: perfor-
mance on hard problems and performance on easy problems.
Because of the huge variation in terms of time and nodes be-
tween problems, it does not make sense to talk about “over-
all average” speed up or tree size. For a comprehensive the-
oretical and empirical analysis of the problem complexity in
current benchmark domains for AI planning, see (Hoffmann
2001; 2002).

Our analysis for hard problems shows an impressive po-
tential of macro actions for reducing problem complexity in
terms of running time and expanded nodes. In this context,
the main lesson that we have learned is that a very small
number of macros can greatly simplify a hard problem.

For problems that FF solves easily there is little room for
improvement. On average, our method reduces the number
of expanded nodes, but the total running time can be greater.

Time Nodes Length
C M C M C A G

1 0.00 0.00 14 10 10 8 11
2 0.00 0.01 10 8 8 7 9
3 0.00 0.01 20 15 13 10 13
4 0.01 0.01 9 8 8 7 10
5 0.01 0.01 53 27 22 20 24
6 0.01 0.01 189 81 38 33 40
7 0.01 0.01 37 23 18 16 21
8 0.01 0.02 96 43 28 24 29
9 0.02 0.02 125 114 33 30 36

10 0.03 0.02 199 62 37 31 39
11 0.02 0.02 92 81 37 33 41
12 0.01 0.01 35 29 19 19 22
13 0.05 0.03 327 157 46 38 47
14 0.02 0.02 71 55 28 26 31
15 0.05 0.05 281 322 42 38 46
16 0.06 0.03 468 132 46 38 46
17 0.08 0.05 246 160 49 45 53
18 0.15 0.16 307 254 42 39 46
19 1.20 0.68 1144 607 74 65 74
20 3.83 1.51 2176 898 96 82 97
21 0.60 0.28 313 138 46 43 51
22 1.07 0.56 1275 521 88 80 93
23 0.39 0.26 327 229 60 55 63
24 0.80 0.36 481 198 61 55 66
25 1.03 0.46 639 302 58 55 64
26 0.99 0.61 828 465 71 59 71
27 0.71 0.47 756 409 53 51 59
28 0.80 0.58 398 281 64 58 68
29 1.65 0.56 1078 341 91 74 92
30 40.88 8.67 6788 1771 155 122 145
31 38.17 12.16 4404 1454 141 110 139
32 40.15 6.92 6615 1147 137 111 138
33 66.04 15.82 6841 2079 142 132 154
34 21.30 5.06 2604 655 114 94 117
35 23.20 6.14 1984 562 88 78 97
36 21.60 10.10 2441 1175 106 89 106
37 13.35 1.96 2124 375 110 88 110
38 11.02 4.59 1056 449 76 69 84
39 34.01 7.41 3899 961 113 102 122
40 47.91 11.64 5875 1514 127 110 129

Table 5: Summary of results for Rovers.

Time Nodes Length
C M C M C A G

1 0.01 0.00 15 15 9 9 9
2 0.00 0.00 24 24 13 13 14
3 0.00 0.01 19 19 11 11 12
4 0.01 0.00 27 27 18 18 19
5 0.00 0.01 28 28 16 16 17
6 0.01 0.01 47 47 20 20 22
7 0.02 0.02 54 54 22 22 24
8 0.00 0.02 54 54 28 28 30
9 0.03 0.03 73 73 35 35 38

10 0.05 0.05 87 87 35 35 39
11 0.08 0.08 91 91 34 34 37
12 0.16 0.17 91 91 43 43 45
13 0.72 1.81 243 141 61 37 66
14 0.23 1.30 84 82 42 27 46
15 0.74 2.18 182 150 52 35 56
16 1.02 3.60 180 100 53 36 59
17 0.99 1.59 152 59 48 33 53
18 0.14 0.38 75 25 35 22 38
19 0.83 2.85 365 124 73 42 73
20 14.41 3.74 5889 138 107 57 102
21 168.55 26.67 65387 961 119 77 131
22 1077.47 5.19 290657 111 89 53 93
23 59.15 8.65 26970 333 118 63 106
24 88.02 7.27 44890 407 115 75 131
25 0.94 5.05 517 324 105 73 132
26 13.07 8.77 4605 272 97 62 111
27 – 3.97 – 175 – 47 84
28 6.09 8.77 2734 332 118 65 111
29 62.49 26.70 25616 961 98 76 133
30 1.02 13.61 436 468 77 65 110
31 3.62 5.04 1350 169 86 54 96
32 494.15 5.81 169783 200 107 66 117
33 42.76 4.48 15057 160 112 61 107
34 88.47 9.22 28012 267 95 61 110
35 118.80 5.28 35330 133 66 48 83
36 2.28 6.87 733 216 90 57 99
37 45.83 4.69 17134 187 98 63 110
38 – 9.37 – 292 – 61 104
39 27.12 5.95 11981 314 133 70 118
40 1.40 2.53 671 148 77 50 86

Table 6: Summary of results for Satellite.

The explanation is that adding operators to a domain induces
additional cost per node. Since, for small problems, the
time extra cost per node can exceed the node savings, reduc-
ing the overhead becomes important. We believe that most
of the overhead comes from computing the node heuristic
evaluation. FF computes the heuristic in an automatic and
generic way, by solving a relaxed problem where operators
do not have delete effects. This computation is performed
in a GRAPHPLAN framework. We didn’t explore how to
reduce the overhead in GRAPHPLAN, but we believe that
this could be possible, since a macro action and the actions
that compose it encode similar information. The issue of ex-
tended cost per node may not be present for planners that use
application specific heuristics, which are usually cheaper to
compute.

Our experience also suggests that the cost per node
quickly increases with the number and the “size” of macros
added as new operators. We evaluate the size of a macro by
the number of preconditions, effects, and variables. This is
one of the reasons for using only a small number of macros
in an enhanced domain formulation.

In Rovers, the results contain not only fewer expanded
nodes, but also better times in the enhanced domain formu-
lation for most of the problems, including the easy ones. The
ratio between running time and number of expanded nodes
remains about the same, suggesting that, in this domain, the
macro operators do not generate significant extra cost per
node.

Conclusion and Future Work
We presented component abstraction, a generic and auto-
matic technique for decomposing a planning problem into
linked components. We used component abstraction to build
macro operators that speed up planning at the component
level. We explored our technique in standard planning do-
mains, showing that a small set of macro operators added to
a domain definition can help in reducing complexity of hard
problem instances and achieving more stable performance.

We have many ideas to explore in the future. We plan to
extend macro generation for domains without static predi-
cates, exploiting the advantages of macro actions on more
general classes of problems. We could use problem solu-
tions as a basis for generating macro actions. A plan can be
represented as a directed graph, where nodes are actions and
edges model the relative order between actions in the solu-
tion. A macro action can be generated as a linear path in the
solution graph.

We also want to extend our component analysis, aiming to
obtain a better set of operators for a component. This means
not only adding new operators, but also removing or chang-
ing existing operators. The model could either guarantee the
completeness or use heuristic rules to minimize the failures
caused by the incompleteness.

We are interested in building a tool for automatic refor-
mulation of abstracted problems. The challenge is to ex-
press an abstracted problem in standard PDDL, with no need
for language capabilities to support hierarchical planning.
Several constants and static facts that compose an abstract
component would be replaced in the problem formulation

by one object corresponding to the abstract component. The
initial operators would be replaced by new operators cor-
responding to abstract components, resulting in a simpler,
more compact, and more scalable problem definition. This
might also reduce the cost per node in the planner’s search.

References
Bacchus, F., and Yang, Q. 1994. Downward Refinement
and the Efficiency of Hierarchical Problem Solving. Artifi-
cial Intelligence 71(1):43–100.
Bacchus, F. 2001. AIPS’00 Planning Competition. AI
Magazine 22(3):47–56.
Botea, A.; Müller, M.; and Schaeffer, J. 2003. Extending
PDDL for Hierarchical Planning and Topological Abstrac-
tion. In Proceedings of the ICAPS-03 Workshop on PDDL,
25–32.
Hernádvölgyi, I. 2001. Searching for Macro-operators
with Automatically Generated Heuristics. In 14th Cana-
dian Conference on Artificial Intelligence, AI 2001, 194–
203.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. Jour-
nal of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 453–458.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In Proceedings of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-02). 379-387.
Junghanns, A. 1999. Pushing the Limits: New Develop-
ments in Single-Agent Search. Ph.D. Dissertation, Univer-
sity of Alberta.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. Artificial Intelligence 68(2):243–302.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence 26(1):35–77.
Long, D., and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and Analysis. Journal of Artifi-
cial Intelligence Research 20:1–59.
Long, D.; Fox, M.; and Hamdi, M. 2002. Reformulation in
Planning. In Koenig, S., and Holte, R., eds., Proceedings of
the 5th International Symposium on Abstraction, Reformu-
lation, and Approximation, volume 2371 of Lecture Notes
in Artificial Intelligence, 18–32.
McDermott, D. 2000. The 1998 AI Planning Systems
Competition. AI Magazine 21(2):35–55.
Precup, D.; Sutton, R.; and Singh, S. 1997. Planning
with Closed-loop Macro Actions. In Working notes of
the 1997 AAAI Fall Symposium on Model-directed Au-
tonomous Systems, 1997.

