
MCGS: A Minimax-Based Combinatorial Game
Solver

Taylor Folkersen(�)[0009−0004−8147−903X], Haoyu Du[0009−0006−7710−8513], and
Martin Müller[0000−0002−5639−5318]

University of Alberta, Edmonton, Canada
{folkerse,du2,mmueller}@ualberta.ca

Abstract. In combinatorial games, the most fundamental question is:
who wins? We develop a Minimax-based Combinatorial Game Solver
(MCGS), which can efficiently answer this question for “short” game po-
sitions. MCGS is specialised for solving positions that consist of a sum
of independent subgames. Given a first player, it can find the winner
of a sum of games by search. The algorithms and data structures in
MCGS take advantage of subgame structure. In contrast to previous
approaches, MCGS avoids computing the canonical forms of combina-
torial game theory, which can very quickly become a major bottleneck
for answering win/loss questions. Search improvements based on mini-
max search techniques and on principles of combinatorial games greatly
increase the efficiency of MCGS.
After reviewing the background and some motivational examples, we
introduce the methods used in MCGS, and show first computational re-
sults for popular combinatorial games such as Clobber and NoGo. MCGS
strives for a balance, providing a game-independent general framework
while supporting game-specific optimisations.

Keywords: Combinatorial games · Minimax solver · Sum game

1 Introduction

Many of the most popular board games, such as chess, Go, and checkers, are
two player, perfect information games. Combinatorial Game Theory (CGT) is a
mathematical theory for describing and solving such games. The area was greatly
developed through the books On Numbers and Games [4] and Winning Ways
[2]. In CGT, games are studied as abstract mathematical structures, often with
the normal play convention that the last player able to make a move wins.

A key concept of CGT are sums of games, short sumgames, that consist of
two or more independent subgames. The idea is to play many games together, and
make a move in exactly one of them. A well-known example are Go endgames [3],
which often break down into a sum of independent local endgame areas. Using
the theory, games with sum structure can often be solved very efficiently - much
faster than with traditional full-board minimax search algorithms [10].

We describe MCGS, a Minimax-based Combinatorial Game Solver. Our goal
is to develop and implement general algorithms to solve sumgame positions,

2 T. Folkersen et al.

taking advantage of sum structure and other algorithmic benefits of CGT to
make the search efficient.

In Section 2 we review the background for our work - the underlying concepts
of CGT and minimax search, and closely related previous work. We assume that
the reader has a basic familiarity with Combinatorial Game Theory concepts,
such as those in the first chapter of Winning Ways [2]. Section 3 introduces
the MCGS program, its minimax search engine, and its support for solving
sumgames. This is followed by a discussion of some technical challenges, and
how they were addressed in MCGS. Section 4 shows experimental results and
evaluates the contributions from different solver components. Section 5 concludes
with a discussion of the current limitations of MCGS, and future work to address
them.

2 Basic Concepts of Combinatorial Games

We focus on so-called short (finite and loop-free) combinatorial games [12]. A
short game G between two players Left and Right is defined recursively in terms
of its Left and Right options, G = {GL|GR}, where GL and GR are sets of
games. The game G = {|} where neither player has a move is called 0.

In the sum of two independent subgames G and H, a player can choose to
move to an option in either G or H, while leaving the other game unchanged:
G+H = {G+HL, GL +H |G+HR, GR +H}.

The inverse −G of a game G is obtained by switching the roles of Left and
Right throughout, recursively: −G = {−GR|−GL}. The difference game G−H
is defined as G+ (−H).

In CGT, games are studied independently of which player goes first in any po-
sition. In contrast, the main search of MCGS solves a game G under alternating
play, for a given player (Left or Right) to move first.

Winners, Outcomes and Equality of Games When playing a short game G, either
player can play first, and with best play by both, the first player either wins or
loses. Games are partitioned into four outcome classes accordingly, which can
also be characterised by the relation of games G to 0 [12]:

– L: Left wins G both going first and going second, G > 0

– R: Right wins G in both cases, G < 0

– N : The next (first) player wins both times, G ̸≷ 0 (G is incomparable to 0)
– P: The previous (second) player wins both times, G = 0

Outcomes are used to define equality of games: G = H iff outcome(G +X)
= outcome(H +X) for all short games X. Also, G = H iff G −H = 0, which
provides a search-based way to test equality.

MCGS Combinatorial Game Solver 3

2.1 Minimax Search for Combinatorial Games

Two boolean minimax searches, one for each player going first, determine the
outcome class of G. A single search can restrict a game to two outcome classes
and provide a bound on the value of G, which is sufficient in some applications:
If Right goes first and Left wins, then G ≥ 0 (G > 0 or G = 0). Similarly, if Left
goes first and Right wins, then G ≤ 0 (G < 0 or G = 0).

Besides computing the outcome class, minimax search can also answer other
yes/no questions about a game. For example, G ≥ H holds for two games G and
H iff G−H ≥ 0, which is true iff Left wins G−H with Right going first. This
enables pruning of dominated moves by local search: If a (sub)game has two
Left options L1 and L2, and L1 ≥ L2 is proven by a search, then the dominated
option L2 can be pruned.

2.2 Algorithms for Solving Short Games

Much work has been done on solving specific games by many variants of minimax
search, typically with game-specific enhancements. In contrast, we propose a
general-purpose application to solve sumgames by search. MCGS focuses on
such general algorithms for all short games. More efficient approaches do exist
for specific game classes such as impartial games, where both players always have
the same options. The current MCGS does provide basic support for computing
the nim value of impartial games.

Siegel’s CGSuite [11] is a well-known general-purpose combinatorial games
package, and provides a large number of tools for working with many types of
games in many settings. For short games, CGSuite is built around computing
the canonical form.

2.3 The Canonical Form of Games

The canonical form C(G) of a short game G is a fundamental concept in CGT.
C(G) contains exactly enough information to determine all the outcomes of
G +X for any short game X. A canonical form can be obtained by repeatedly
removing dominated options and reversing reversible moves [12]. For complex
games G, the canonical form must often contain vast amounts of information,
which causes a massive computational bottleneck in a win/loss solver.

As an example, for the empty 1 × 16 NoGo board, CGSuite takes almost 8
minutes on a state of the art machine to compute the massive canonical form with
1201194 stops, a measure for the size of the result. The 1×17 NoGo computation
did not complete within 2 hours and 30 minutes. In contrast, the minimax search
of MCGS can solve the win/loss outcomes of such games quickly, in a combined
total of 1.6 seconds for both players on the 1× 16 board, and in 5.3 seconds on
the 1× 17 board. This is a from-scratch computation, with both databases and
transposition tables switched off. Similar observations for multiple games were
among the main motivations for developing MCGS.

4 T. Folkersen et al.

2.4 Predecessors of MCGS - Solvers for Specific Games

One aim of MCGS is to generalise and apply the lessons learned from building
several successful game-specific solvers. For linear Clobber (Clobber played on
a one-dimensional strip), Folkersen et al. developed an efficient solver that far
advanced the state of the art [7,8,14]. Their SEGClobber solver uses many
techniques inspired by CGT. Recent work on linear NoGo by Du et al. [5,6] found
the outcome class for all empty boards up to 1×39. For the larger boards, CGT-
based techniques [5] reduce the search effort by about two orders of magnitude
over an optimised traditional full-board search [6].

3 Components of MCGS

MCGS version 1.3 is a game-independent search framework for solving sums
of short games, with extra support for games played on one-dimensional strips
or two-dimensional grids. MCGS 1.3 implements the games of Clobber, NoGo,
Kayles, and Elephants and Rhinos, as well as the basic CGT games integer,
dyadic rational, nimber, up-star, and switch. The minimax search engine com-
putes the win/loss result of short games. An additional search engine specialised
for impartial games determines their nim values. A wrapper can create an im-
partial version of any partizan game implemented in MCGS. Search enhance-
ments include game-independent hashing and transposition tables for both single
games and sumgames, and a database generator for creating tables of outcome
classes and other game properties. MCGS features extensive documentation, a
test framework with thousands of tests, and a simple extendible file format to
describe game positions and expected search results. The open source program1

is freely available under an MIT license.

3.1 Search Engine

The goal of MCGS is to efficiently answer the question: Who wins game G, if
player p goes first? The main search engine of MCGS is based on traditional
minimax search, with extensive support for solving sumgames. The monolithic
state of traditional board games such as chess, checkers and Go typically con-
sists of a single game board. In contrast, a combinatorial game is represented
as a sumgame, a set of independent subgames. Search of a sumgame can take
advantage of this split into subgames, which opens many opportunities for sim-
plification and optimisation, resulting in cumulative efficiency gains that often
yield a result orders of magnitude faster than is possible with full-board search.

Hashing and Transposition Table The search engine supports a transposi-
tion table based on a two-part hashing scheme. A local hash code encodes a single
subgame, and is similar to a traditional hash code for a monolithic game state.
1 MCGS can be downloaded at: https://github.com/ualberta-mueller-group/MCGS.

https://github.com/ualberta-mueller-group/MCGS

MCGS Combinatorial Game Solver 5

The main difference is support for differentiating between games that might
have the same board representation but are different games, such as Clobber
and NoGo.

In contrast, a global hash code encodes a whole sumgame, which consists of a
set of subgames. The main challenge is to recognise when two sumgames consist
of the same set of subgames. Our solution is fully general and supports different
game types within the same sum, such as a mixed sum containing NoGo and
Clobber positions, integers, and switches.

Implementation of Local Hashing Local hash codes for each subgame are com-
puted using Zobrist hashing [15]. A random table contains one fixed random 64
bit integer for each possible (location, value) pair, where value is the state of a
location on a game board. The local hash of a subgame G is the XOR of the ran-
dom table values for all (location, value) pairs in G, and a code for the game type
such as Clobber or NoGo, from a separate random table. In order to increase
the number of hash hits, each game can define a game-specific normalisation
operator to convert equivalent representations of a game to one common repre-
sentation. For example, normalisation can mirror or rotate the board, compress
larger blocks of stones into single stones in linear NoGo, and remove redundant
empty spaces in linear Clobber.

Most games use only a small set of possible values to index into the random
tables. For example, the values of Clobber and NoGo locations are empty, black,
and white. MCGS random tables contain random numbers for all 256 distinct 8
bit values. These are further extended to all 128 bit values by splitting them into
8 bit chunks, then computing and XORing bit-rotated codes for these chunks.

Sumgame Normalisation and Global Hash Since the same random table is used
for the local hashes of all subgames, global hashing for a sumgame cannot simply
XOR (⊕) the local hashes together: this would cause hash collisions, as for
example given a sum S = G + G and a local hash function h(G), the codes
h(G) ⊕ h(G) = 0 would cancel. To compute a global hash of a sumgame, we
use a two step process. First, the (normalised) subgames are sorted according
to their game types and lexicographic order, S = G0 + . . . + Gn. This defines
a normal form for the sum. Next, a global hash code is computed from the
corresponding list [h(G0), . . . , h(Gn)] of local hashes. This process uses a separate
global hash random table for the following (location, value) pairs as follows: For
each subgame Gi, its (location, value) pair is (i, h(Gi)), with the index in the
sorted list as location, and the 64 bit local hash as value. The global hash code
for S is computed from an XOR of these codes, and an encoding of the current
player. This two-level re-coding scheme avoids hash collisions even in cases when
a sumgame consists of thousands of copies of the same subgame, or when the
representations of subgames differ only by game type.

Precomputed Subgame Databases Databases augment the search engine
by providing pre-computed information about subgames. This information can
lead to sumgame simplification and earlier search termination.

6 T. Folkersen et al.

A database game generator can be implemented for a game type. It provides a
way to iterate over subgames in order of increasing size, up to some configurable
maximum. The database generation algorithm uses these game generators to
find and store outcome classes of games. Considering games in increasing size
ensures that all smaller subgames already have database entries, which greatly
increases the speed of finding outcome classes. The database is queried by the
pair (game type, local hash).

This solution is efficient while still remaining simple and general, as adding
database support for a game type only requires implementing a database game
generator. A basic generator for strip and grid games is available.

Local and Global Move Generators Every MCGS game type defines a
local move generator, which incrementally produces the valid moves for a given
player in the subgame. A global move generator is used to generate moves in
a sumgame. The global move generator has two optimisations. First, if a sum
contains two or more identical subgames, then it skips moves on all but one of
the copies. Second, it generates the negative incentive moves from rationals and
integers last, after all other moves have been exhausted.

3.2 Game-specific Functions in MCGS

MCGS provides an abstract game class, and a game-independent sumgame class.
A new game is implemented in MCGS as a subclass of game with several game-
specific methods. The abstract subclasses strip and grid simplify the imple-
mentation for games on 1-dimensional (linear) and 2-dimensional (rectangular)
boards. Mandatory game-specific methods are play, undo_move, a move gener-
ator, hashing support, a simple print function, and computing the inverse by
swapping the players’ roles.

Solving efficiency for new games can be increased by adding optional methods
to split a game into subgames after a move, and to normalize a subgame. In
addition to increasing the number of transposition table hits, this allows building
more compact databases which only include normalised single subgames, which
are the only subgames accessed by the search.

Another optional efficiency feature is to update local hashes incrementally
in functions which change the game’s state: play, undo_move, normalize, and
undo_normalize.

3.3 Tracking Changes During Search

MCGS uses stacks to track changes during search in both game and sumgame,
and to implement efficient play and undo_move functions. Data stored includes
the move history, and details of each split into subgames and simplification step.
This enables fast undo of changes, to restore the previous state. A sumgame keeps
a list of current and previous subgames. A flag indicates whether a subgame is
currently active. When a subgame is split into new games after a move, the old

MCGS Combinatorial Game Solver 7

subgame is deactivated and the new, active subgames (if any) are appended. At
undo_move, these changes are rolled back.

3.4 Sumgame Simplification and Optimisation

Simplification steps occur both on the game (Section 3.2) and sumgame level,
both with and without a database. When a move is played, any resulting sub-
games are normalized, including those resulting from a split. A simplification
pass combines basic game types: switches {a|b} are converted to rationals (and
possibly stars) when a ≤ b, and are otherwise normalised to be of the form
m + {c| − c}, by extracting the mean m. Integers and rationals are summed to
a single number. Multiples of ups are also merged, pairs of stars cancel out, and
nimbers are combined using nim addition.

The database enables more powerful optimisations. Subgames with outcome
class P are deactivated. Knowing the outcome classes of all remaining subgames
allows the early termination of search when all outcome classes are wins for the
same player, and when exactly one outcome class is N , and all others are wins
for the current player.

4 Test Sets and Experiments

We describe the test sets used in our experiments, and give scaling results on
linear Clobber, linear NoGo, and Elephants and Rhinos. These tests include
ablation studies on the effectiveness of transposition tables, subgame splitting
and normalisation, and databases. Further experiments study scaling by number
of subgames, and Clobber on 2× n grids.

4.1 Test Sets

We created a total of five test sets: the sets clobber-linear, nogo-linear and
elephants, test scaling on random linear Clobber, linear NoGo, and Elephants
and Rhinos boards. Sets are further grouped into buckets, by number of moves
for the first player in linear Clobber and linear NoGo, and by total number of
stones in Elephants and Rhinos. elephants board lengths are scaled by number
of stones. The set clobber-subgame contains random boards with 24 stones, pre-
split into subgames by inserting 0 to 10 empty spaces in random locations. This
set is grouped by number of subgames. Finally, clobber-2xn contains random
Clobber positions on 2× n grids, grouped by n.

Games are generated with parameters such as board size, random first player,
number of empty spaces, and distribution of stones. Each bucket contains at most
2000 games. Generally, test set instances are selected to be interesting, yet small
enough so most can run to completion even with the weakest solver version in
our ablation studies.

8 T. Folkersen et al.

The full setup of experiments including test sets is in the Github repository
2.

4.2 Setup of Experiments

Experiments are run on a server with Intel Xeon E5-2665 0 @ 2.40GHz CPUs.
The transposition table has 228 entries, taking about 1.3 GB. 26 independent
tests are run concurrently, with a 60 second timeout. For repeatability, we mea-
sure node counts rather than process time, as memory bandwidth is likely a
bottleneck when running so many tests concurrently. A node is one invocation
of the recursive minimax search function.

The database used in some of the experiments contains only normalised
games which cannot be split into more subgames. It includes linear Clobber,
linear NoGo, and Elephants and Rhinos games of lengths up to (and including)
15. It also includes Clobber games that fit within a 2 × 5 rectangle. For move
generators, pruning of moves in duplicate subgames is disabled for all tests.

4.3 Results

Figure 1 shows the scaling performance of MCGS for Linear Clobber, Linear
NoGo, and Elephants and Rhinos. The data is split into buckets along the x-
axis, and each different ablation is drawn with a horizontal offset in order to
improve visibility. The first ablation, shown as the leftmost data point in each
bucket, disables all three optimisations: transposition table (TT), subgame split-
ting and normalisation (SN), and database (DB). The second ablation enables
only the transposition table, and the third additionally enables splitting and
normalisation. The fourth result in each group shows full MCGS, with all three
optimisations enabled. The y-axis shows the natural logarithm of node counts.
The dots are means of the log-transformed data, and the bars show ±1 standard
deviation.

Figure 2 on the top shows the effect of increasing the number of initial sub-
games in the clobber-subgame set. The diagram on the bottom shows scaling
results for clobber-2xn, with an increasing number of columns n on the x-axis.

The transposition table and database both seem to generally increase per-
formance by orders of magnitude. Splitting and normalisation appears to have
varying efficacy for each game, which may be partially explained by differing
rates of positions which can be split or normalised during search. Examining
similar data with a different random seed and bucket sizes of 100, this rate is
100% for clobber-linear, 85% for nogo-linear, and 65% for elephants.

Interestingly, in the clobber-subgame data, the benefit of the database seems
to diminish as the number of subgames increases. This is likely due to the lim-
itations in the current database, which only stores outcome classes, and does
2 MCGS versions 1.4 and later contain an experiments directory containing test sets,

results, and instructions for running the experiments. The MCGS version used for
the experiments in this paper was https://github.com/ualberta-mueller-group/M
CGS/commit/4113a903b24744b901173e5d18f06484887415ba.

https://github.com/ualberta-mueller-group/MCGS/commit/4113a903b24744b901173e5d18f06484887415ba
https://github.com/ualberta-mueller-group/MCGS/commit/4113a903b24744b901173e5d18f06484887415ba

MCGS Combinatorial Game Solver 9

Fig. 1. Scaling of MCGS with the number of moves or stones, on random games of
linear Clobber, linear NoGo, and Elephants and Rhinos.

10 T. Folkersen et al.

Fig. 2. Top: Increasing the number of subgames in linear Clobber. Bottom: Clobber
on a 2× n grid, with n columns.

MCGS Combinatorial Game Solver 11

not use this information for move ordering. For example, if a position consists of
subgames with known outcome classes which don’t determine the result, such as
several subgames with outcome N , it may take many moves to reach a position
where one of the outcome class rules of Section 3.4 can be used to immediately
solve the position. As the number of subgames increases, it becomes increasingly
unlikely that one of these rules can be used.

Many test cases timed out for the weakest solver with all three optimisations
disabled: 266 clobber-linear games with 13 moves, 10 nogo-linear games
with 15 moves, 395 elephants games with 14 stones, 1 clobber-subgame game
with 2 subgames, and 48 clobber-2xn games with 12 columns.

To relate node counts to time, we run a small linear Clobber data set gener-
ated with the same parameters single-threaded. The average speeds for the four
versions tested, using increasingly more components, were 4,189,266 N/s (nodes
per second), 1,719,864 N/s, 727,696 N/s, and 510,238 N/s for full MCGS. While
the speed per node decreases, the node counts are reduced, often by orders of
magnitude.

5 Limitations, Conclusions and Future Work

5.1 Limitations of Current MCGS

The design of MCGS is specialised for win/loss computations for short games
under normal play. This is in contrast to game-specific solutions on one side,
and to the many types of games and computations supported by CGSuite on the
other side. For example, MCGS cannot solve loopy games such as ko situations in
Go. Compared to existing specialised solvers such as [5,7], there is some overhead
due to the generality of MCGS. However, it is much easier to add a new game to
MCGS rather than build a full-featured solver from scratch. A detailed analysis
of the tradeoffs involved is left for future work.

5.2 Conclusions and Future Work

MCGS fills a gap between search engines for monolithic game states and CGT
packages based on canonical form such as CGSuite. Our experiments show the
usefulness of our generic optimisations that come pre-implemented in our frame-
work, including hashing/transposition tables, subgame structure, and databases.
We envision many more improvements for Future versions of MCGS:

– Databases containing sumgames (also see Section 3.1).
– Support for games given in text representation, such as {3|{2|1}}.
– Thermographs for computing temperatures for move ordering, and as bounds

on subgame values [13].
– More efficient algorithms for impartial games [1,9]
– Many more games, such as Amazons and Domineering
– Game-independent and -dependent move ordering heuristics
– Improved pruning during search, as in specialised solvers.

12 T. Folkersen et al.

– An extended database for pruning dominated moves, and substituting groups
of subgames with equal but simpler groups of subgames [8]

– Incentive-based pruning as in Go endgames [10]
– Parallel search for solving large games

Acknowledgments. We gratefully acknowledge financial support from NSERC, the
Natural Sciences and Engineering Research Council of Canada, and the Canada CIFAR
AI Chair program.

Disclosure of Interests. The authors declare no competing interests for this article.

References

1. Beling, P., Rogalski, M.: On pruning search trees of impartial games. Artificial
Intelligence 283, article 103262 (2020)

2. Berlekamp, E., Conway, J., Guy, R.: Winning Ways. Academic Press, London
(1982)

3. Berlekamp, E., Wolfe, D.: Mathematical Go: Chilling Gets the Last Point. A K
Peters (1994)

4. Conway, J.: On Numbers and Games. Academic Press (1976)
5. Du, H., Müller, M.: Solving linear NoGo with combinatorial game theory. In: Com-

puters and Games (CG 2024). LNCS, vol. 15550, pp. 54–65. Springer (2025)
6. Du, H., Wei, T., Müller, M.: Solving NoGo on small rectangular boards. In: Ad-

vances in Computer Games. LNCS, vol. 14528, pp. 39–49. Springer (2023)
7. Folkersen, T.: Linear Clobber solver (2022), Capstone report, University of Alberta
8. Folkersen, T., Bashir, Z., Tavakoli, F., Müller, M.: SEGClobber - a linear Clobber

solver (2025), accepted for ACG 2025
9. Lemoine, J., Viennot, S.: Nimbers are inevitable. Theoretical Computer Science

462, 70–79 (2012)
10. Müller, M.: Decomposition search: A combinatorial games approach to game tree

search, with applications to solving Go endgames. In: IJCAI. pp. 578–583 (1999)
11. Siegel, A.: CGSuite. a computer algebra system for research in combinatorial game

theory (2003–2025), https://www.cgsuite.org
12. Siegel, A.: Combinatorial Game Theory. American Mathematical Society (2013)
13. Song, J., Müller, M.: An enhanced solver for the game of Amazons. IEEE Trans-

actions on Computational Intelligence and AI in Games 7(1), 16–27 (2015)
14. Tavakoli, F., Folkersen, T., Bashir, Z.: Strong 1-dimensional Clobber (2022), CM-

PUT 655 project report, University of Alberta
15. Zobrist, A.: A new hashing method with application for game playing. Tech.

Rep. 88, Univ. of Wisconsin (1970)

https://www.cgsuite.org

	MCGS: A Minimax-Based Combinatorial Game Solver

