
SEGClobber - A Linear Clobber Solver

Taylor Folkersen(�)[0009−0004−8147−903X], Zahra Bashir[0009−0000−9491−0694],
Fatemeh Tavakoli[0000−0002−3562−8928], and Martin Müller[0000−0002−5639−5318]

University of Alberta, Edmonton, Canada
{folkerse,zbashir1,tavakol1,mmueller}@ualberta.ca

Abstract. We develop SEGClobber (Simplest Equal Game Clobber),
a solver for the one-dimensional form of Clobber known as linear Clob-
ber. We briefly review previous work on this game and related concepts
about combinatorial game theory. We describe our basic computational
approach, a series of enhancements, and the experimental evaluation.
We experimentally verify two conjectures by Albert et al. about linear
Clobber up to values of n = 50 for (#)n and n = 28 for (#)n. This
greatly exceeds previous computational results for such positions.

Keywords: Linear Clobber · Combinatorial Games · Minimax Search

1 The Game of Clobber and Linear Clobber

Clobber is a two player, partizan, perfect information game, created in 2001 by
Albert et al. [1]. The game can be played on arbitrary graphs, but is traditionally
played on a two-dimensional grid comprised of squares, which can be either
empty, or filled with a black or a white stone belonging to players Black and
White respectively. On a player’s turn, their only legal moves are to move one
of their own stones to clobber (replace) a neighboring opponent stone. A player
unable to move on their turn loses.

Our work focuses on linear Clobber, played on a one-dimensional board. For
example, from the position #_#, Black’s only move is to _ _#, leaving
no more moves, and White’s only move is to #__#, leaving one move for
either player. Clobber is an all-small game: whenever one player has a move, so
does the other player.

Clobber positions can be easily split into independent subproblems called
subgames. Each group of contiguous stones makes up a single subgame. A nice
property of linear Clobber is that positions break into subgames more quickly
than in two-dimensional Clobber, as every move on the inside of a subgame
splits it into two. Reasoning about subgames allows positions to be solved orders
of magnitude faster than traditional full board search, and exploiting this key
concept of combinatorial game theory (CGT) is at the core of our solver.

1.1 Related Previous Work on Clobber

Clobber was invented at the Games-at-Dal meeting 2001. In the standard start-
ing position, black and white stones alternate in a checkerboard pattern. In

2 T. Folkersen et al.

linear Clobber, this is written as (#)n. For example, (#)2 = # #. Al-
bert et al. proved important properties of this game, such as the NP-hardness
of determining wins [1]. They also stated two conjectures:

Conjecture 1. Boards of the form (#)n are first player wins for all n ̸= 3.

Conjecture 2. (#)n = ⌊(n+ 1)/2⌋·↑.

Here, k·↑ represents k copies of the well-known game up, ↑= {0|∗}. At the
time, these conjectures were computer verified up to n = 19 for Conjecture 1
and n = 17 for Conjecture 2 [1]. Using our solver, we verify these conjectures up
to n = 50 and n = 28 respectively. Chen et al. recently proposed a mathematical
proof of Conjecture 1 [3].

Uiterwijk et al. developed an alpha-beta Clobber solver which uses a database
of canonical forms of all endgame positions up to 8 stones [7]. In contrast, our
minimax solver avoids potentially expensive canonical form calculations. The
work described here extends two graduate projects at the University of Alberta:
a final course project [6] and a capstone report [5].

2 Basic Concepts of Combinatorial Game Theory

Our solver applies many ideas from combinatorial game theory (CGT). This
section briefly reviews the most relevant concepts. More detailed explanations
are given in textbooks such as [2].

One of the most important concepts used by our solver is that of a sum
of subgames. A position with empty points such as G = #_ # can be
split into independent subgames, in this case G1 = # and G2 = #. The
overall position is equal in the sense of CGT to the sum of these two subgames:
G = G1 + G2. This implies that with optimal play by both, the sum game has
the same winner as the original game.

In the inverse −G of a game G the roles of both players are swapped. For
example, −G1 = − # = ## . Subtraction is defined by G−H := G+(−H).

The game 0 = {|} is the neutral element in addition: for all games G, G+0 =
G, and G−G = 0. In CGT tradition, Black is also called Left and is associated
with positive values, while White is called Right and prefers negative values. A
move by either player leads to an option, which is another combinatorial game.

2.1 Outcome Classes and Dominance

Games can be partitioned into four outcome classes, shown in Table 1 below,
based on who wins a game G, considering each player to play first. The outcome
class also describes how a game G relates to 0. In the table, the symbol ̸≷ means
“not comparable to” (G is not equal to, nor larger or smaller than 0).

The outcome class of a game G can be determined using two minimax
searches. The relations ≤ and ≥ are defined in the usual way, so G ≤ 0 ⇐⇒

SEGClobber - A Linear Clobber Solver 3

Table 1: Outcome classes and G’s relation to 0.
Outcome Class Winner If Black First Winner If White First Relation To 0
P (previous) White Black G = 0

L (left) Black Black G > 0

R (right) White White G < 0

N (next) Black White G ̸≷ 0

G < 0 or G = 0. Search of the difference game G−H can be used to determine
how two games G and H relate to each other: G−H < 0 ⇐⇒ G < H.

Comparing games in this way enables pruning of dominated moves from
positions, simplifying search. For example, if a game G with Black to play has
two black options G1 and G2, and G1 ≤ G2, then G1 is dominated and Black
can prune it. Similarly, if G1 and G2 are white options, White can remove G2.
Additionally, for Black options if G1 < G2, then G1 is strictly dominated.

Definition 1. For a player P and game G, a move is sensible if it is not strictly
dominated by another of P ’s moves.

Definition 2. A set of nondominated moves for a player P and game G is a
maximal subset of P ’s sensible moves, where no two moves have equal value.

3 Search Techniques

This section describes the search algorithm of SEGClobber and its many com-
ponents and optimisations. Given the current player toplay of a game, the re-
cursive minimax search() function tries to find a winning legal move - a move
to a position where the opponent loses. If toplay has no winning move, then
the opponent wins. A transposition table stores win/loss results and heuristic
values of previously-visited positions, and a pre-computed database provides in-
formation about subgames that dramatically speeds up search. The SEGClobber
source code1 is available under an MIT license.

3.1 A Normal Form for Linear Clobber

To avoid searching equivalent representations of a Clobber game multiple times,
we impose a normal form on games, not to be confused with the canonical
form of combinatorial game theory. The normal form is a unique, equivalent
representation of a linear Clobber board. We exploit several observations about
the properties of Clobber.

We define the shape of a game as the sequence of the lengths of its subgames.
For example, the shape of # _ # ___#_# _ is (3, 4, 1, 2). Subgames
of length 1 have no moves, so they can be omitted. Subgames can also be mir-
rored and/or re-ordered without changing the play of a game. For example,
1 SEGClobber can be downloaded at: https://github.com/tfolkersen/SEGClobber

https://github.com/tfolkersen/SEGClobber

4 T. Folkersen et al.

_ # is equivalent to # _ ##. A single empty square is suffi-
cient to separate subgames.

We define an ordering over subgames of the same length by encoding = 0,
= 1, and interpreting the resulting string as a binary number. We define a
game to be in normal form if all the following five properties hold, and in relaxed
normal form if at least 1, 2, and 4 hold:

1. There are no subgames of length 1
2. All redundant empty squares have been removed
3. Each subgame is greater-or-equal to its mirror image in the ordering above
4. Subgames are sorted in decreasing order of the numbers in the shape
5. Equal length subgames are ordered by the binary number ordering above

3.2 Database: Overview

We precompute and use a database containing all relaxed normal form games of
lengths 2 through 16 inclusive. This covers all 316 = 43, 046, 721 boards of length
16, using only 866, 924 entries on disk, amounting to 42.2 MB. These numbers
could be further reduced by storing only normal form games, and unifying entries
for games and their negatives, but this would make database lookups algorith-
mically slower and more complex. The database contains both single subgames
and sum games with a total length within the limit. A database entry contains
the following information for a game:

– Outcome class (L , R, N , P)
– The nondominated moves for each player
– Lower and upper bounds on the game’s value (see Section 3.5)
– A complexity score (see Section 3.3)
– A link to the simplest equal game (SEG) in the database (see Section 3.4)
– The game’s shape, and its stones encoded in a fixed width binary number
– Index of a simplest (by complexity score) sensible move for each player

Using this data speeds up search dramatically, as shown in the experiments of
Section 4.2. When outcome classes or bounds are known for all subgames, then
the outcome of a position can sometimes be determined without further search.
Dominated moves are removed, pruning branches of the search space. Games are
replaced with simpler games, as determined in part by the complexity score.

3.3 Complexity Score

During minimax search, subgames and sums can be replaced by simpler but
equal games, having a lower complexity score (CS) (with some caveats discussed
in Section 3.4). There are several intuitive choices for CS:

1. CS1: The length (number of stones and empty squares) of G
2. CS2: The number of moves available to each player

SEGClobber - A Linear Clobber Solver 5

3. CS3: The number of sensible moves available to each player

Empirically, CS2 works better than CS1, and CS3 works better than both of
the others. In addition to these primitive complexity scores, we define a fourth,
recursive score CS4 based on CS3:

CS4(G) := CS3(G) +
∑

L∈LO(G)

CS4(L) +
∑

R∈RO(G)

CS4(R) (1)

LO and RO are the sensible Left and Right options of G, and the sum over
an empty set is defined to be 0. This score, which evaluates the whole subtree
below G, is better than the other scores (see experiments in Section 4.2).

3.4 Using Complexity Score

Given two games G1, G2 with G1 = G2 and CS(G1) > CS(G2), we would like to
substitute G2 for G1, however, this must be done with caution so as to avoid caus-
ing substitution cycles during search: Consider the game G = # ### ## .
White’s first available move is to GR = _#### ## . From here, Black’s
third available move is to GRL = _#### # _, with G = GRL = ↓∗.
While G has two sensible moves, GRL has four. G has fewer sensible moves,
but substituting GRL by G results in an infinite loop in the search G → GR →
GRL replace−−−−−→ G . . .

We avoid cycles in two ways. First, for G2 to be eligible to replace G1 during
search, G2 must come before G1 in the order of database entry creation (Section
3.5). This means that G2 cannot be longer than G1 (in terms of the number
of empty squares and stones). Additionally, CS3 and CS4 are based on sensible
moves, rather than nondominated moves (the latter causes cycles). For a game
G, we define its simplest equal game SEG(G) to be an equal game of minimal
complexity score which comes before G in the database ordering. Such a game
may not exist for a given G.

3.5 Database Generation

A subgame database is generated offline, then used for solving problems. This
process uses the SEGClobber solver together with the partial database generated
so far. The order in which games are added to the database has a large impact on
performance. All relaxed normal form games are considered in order of increasing
length, with ties broken first in order of decreasing number of subgames, second
by bit pattern. For example, all games of shape (3, 2, 2), with two empty squares,
are computed before games of shape (9).

Database entry generation takes several passes over the data. The first two are
done only for normal form games: outcome classes are determined, and lower and
upper bounds are found along two scales: Multiples of up in the range [−31↑, 31↑]
and multiples of up plus star in the range [−31↑⋆, 31↑⋆].

6 T. Folkersen et al.

A third, final pass over all games computes missing outcome classes and
bounds, and the nondominated moves for each game G are found. Among equal
sensible moves, only the move leading to the simplest option according to the
CS4 score is kept. The CS4 score is then computed for G. For each player, the
index of a simplest sensible move is found. Last, SEG(G) is found subject to
the rules described in Section 3.4 (if such a game exists).

3.6 Finding a Simplest Equal Game Efficiently

Given G, efficiently finding SEG(G) is non-trivial. For a large database D , com-
paring G to all games coming before it is impractical.

We simplify the work required by defining a partitioning of all games in
the database, according to a 5-tuple of outcome class, and lower and upper
bounds along both scales. Given G’s tuple t, it is only necessary to search the
corresponding partition Pt. At the start of the database generation process,
every Pt is initialized to be the empty set. G is compared to every game in the
current instance of Pt. If no equal game is found, then G is inserted into Pt,
and SEG(G) does not exist. If a match G2 is found, and CS4(G) > CS4(G2),
then SEG(G) = G2 (this is the only case where SEG(G) exists). If instead
CS4(G) < CS4(G2), then G2 is removed from Pt, and G takes its place. Lastly,
if CS4(G) = CS4(G2), then G2 remains in Pt.

3.7 Sum Game Simplification

Each sum game G = G1 + · · · + Gn encountered in minimax search is first
simplified in a multi-step process, which includes replacing groups of subgames
with their SEG, deleting zero games including pairs of games Gi and their
inverses (Gi +−Gi), and normalising the final sum game.

1. Subgames Gi that are not in D (whether not generated yet, or too large),
are set aside temporarily.

2. Zero subgames Gi = 0, identified by database lookup, are deleted.
3. The remaining subgames are sorted in order of decreasing length, and sets

of small subgames are replaced by simpler games as detailed in Section 3.4.
4. Using the string representations of all subgames, some are eliminated: single

subgames containing no moves, and pairs of a game Gi and its inverse −Gi.
This step is also done for the larger subgames set aside in step 1. For example,
even without a database, in the game #_ #_ ##, the pair of inverse
subgames # and ## = − # would be recognised and deleted.

5. Finally, the resulting (sum) game is converted to normal form.

Game Replacement in a Sum Game These steps are done for the smaller
subgames, excluding the too-large subgames outside of D .

1. The sorted games are viewed as a single board (separated by single spaces),
and a sliding window of length 16 is moved over the board.

SEGClobber - A Linear Clobber Solver 7

2. If three or more subgames are within the window, then their sum S is
searched in the database. If SEG(S) is known, it replaces S in G. If SEG(S)
is not known, the rightmost subgame is removed from the window and the
new resulting sum is searched again. This repeats until either SEG is known
for the sum, or the window contains less than 3 subgames.

3. Next, all pairs of subgames are searched in the database, and possibly re-
placed by their SEG.

4. Finally, all single subgames Gi are searched and possibly replaced.

At each step above, games Gi = 0 are removed directly, instead of being
replaced by SEG(Gi) = 0. After each replacement or removal, the new simplified
version of G is used for subsequent replacements, including any new subgames.
New subgames are appended to the right side of G, and the process resumes
without returning to a previous step.

3.8 Transposition Table

A transposition table TT with 4 × 227 entries is used to remember outcomes
of previously solved games, and to store best move information according to a
heuristic for unsolved games. Zobrist hashes [8] are used to represent games and
to index into TT. The Zobrist hash of a game is built from a persistent array Z of
random 64 bit integers, with one random number Z[location][color] encoding
each possible (location, color) pair on a board. In Clobber, the three possible
colors empty, black, and white require three integers per board location. The
hash of a game is the XOR of the Z entries corresponding to all (location, color)
pairs of the board, plus one more code for toplay.

Of the 64 bit code, 27 bits are used to index into TT. The full code is stored in
each table entry to avoid most hash collisions. Each index stores a group of four
entries. A replacement policy keeps the most valuable entries. An entry value for
position p is defined as age× depth2, where depth is the depth of p in the search
tree, and age is a number between 1 for the most recently used entry and 4 for
the least recently used one. A new entry with a lower score replaces one with
largest score among the group of four entries.

3.9 Move-Ordering Heuristic

The heuristic value of a position G is based on move counts. Let Cx be the
number of moves for player x which decrease the remaining move count by more
than 1. Then, the heuristic value h(G) is given by Equation 2.

h(G) := depth× (Ctoplay − Copponent) + Ctoplay (2)

This value is updated, when playing moves, to the maximum of the negative
of the heuristic of each position reached by a single move. The move corre-
sponding to this value is played early in the move ordering in future searches of
this position. A move resulting in a proven loss for the current player is never
considered a best move.

8 T. Folkersen et al.

3.10 Iterative Deepening

Iterative deepening helps guide search and improve move ordering [4]. Each it-
eration is depth-limited, starting with a limit of 1, and increasing by 1 in each
search up to a maximum of 12. Non-decided positions at the depth limit are
evaluated by the heuristic. The final search after reaching the maximum uses
no depth limit. Each search has an additional limit on the number of leaf nodes
that can be reached before the search is stopped. Leaf nodes are positions that
are either at the depth limit, or are solved both without the transposition table
and without a recursive call to search. The first iteration’s limit is sufficient
to play each move at the root position. Starting with the second iteration, the
maximum leaf node count is 3, and is increased by a factor of 3 with every
subsequent search.

3.11 The Search Algorithm of SEGClobber

The recursive minimax search() function implements many algorithmic im-
provements. A given board is first simplified according to the procedure described
in Section 3.7. The board is searched first in the database, then the transposition
table, and if found in neither, then several rules are attempted in order, to try
and solve the position statically or quickly:

1. For every subgame, its outcome class and bounds are looked up in the
database. If the outcome class of every subgame is known, then the win/loss
result is solved in the following cases:
– If all outcome classes are L (R), Black (White) wins.
– toplay wins if one subgame is in N and all others are wins for toplay.

2. If lower and upper bounds of all subgames are known, their sums are com-
puted. If the sum of lower bounds is positive, then Black wins, and if the
sum of upper bounds is negative, then White wins.

3. If Black is to play, and the database identifies a subgame Gi > 0, a separate
search checks if Black can win G−Gi. If yes, since G > G−Gi, Black also
wins G. Similarly, White to play wins G if Gi < 0, and White wins G−Gi.

4. If Gi ∈ N , and the opponent loses G−Gi, then toplay wins G.

The speculative subgame removal in steps 3 and 4 is tried for all possible Gi

where G−Gi has at most 40 squares after simplification. Experimental results
in Section 4.2 show that these smaller, less complex boards can sometimes be
solved much more quickly, and may even be in the database. If the position is
still unsolved, regular moves are generated until a win is found. If this fails and
all options have non-heuristic values, then the position is a loss. Positions at
the depth limit are evaluated by the heuristic. For move generation, first the
known dominated moves are removed. If G contains multiple copies of the same
subgame, then moves are generated only for one copy. The remaining moves are
sorted and generated in the following order:

1. Subgames with unknown outcome, in the middle two quarters of their board

SEGClobber - A Linear Clobber Solver 9

2. The best move according to the heuristic, if known
3. Simplest moves on lost subgames
4. Simplest moves on N positions
5. Remaining moves on lost subgames
6. Remaining moves on N positions
7. Remaining moves on subgames with unknown outcome class
8. Simplest moves on known wins for toplay
9. Remaining moves on known wins for toplay

In each subgame, moves are generated left to right. If search() returns a
heuristic score, the transposition table is updated with the score and best move.

SEGClobber returns a winning move, so search at the root has simplified
logic. Dominated moves are pruned, and a simpler move ordering is used: the
best move according to the heuristic (if known), then other moves from left to
right. Steps which would alter the board are omitted.

4 Experiments

Experiments are run on a server with an Intel Xeon X5670 @ 2.93GHz CPU. We
measure time instead of search node counts, so we run experiments sequentially
to avoid resource contention between multiple SEGClobber instances. For veri-
fying the conjectures, we use a transposition table with 4× 229 entries, which is
approximately 38.65 GB. For our ablation studies, we use a transposition table
with 4× 227 entries (approximately 11.27 GB). The conjecture experiments use
a slightly more compact transposition table entry, saving 3 bytes per entry by
using a smaller integer type for the depth value.

4.1 Extended Verification of Conjectures 1 and 2

We revisit the Conjectures 1 and 2 of [1] discussed in Section 1.1. Figure 1 shows
our computational results for both conjectures, with the time on a logarithmic
scale (with a logarithm base of 10). Each n is solved sequentially, starting with
n = 1, and the transposition table is kept between each n. For both conjectures,
the time to solve n = 1 takes significantly longer than the next few values of n,
due to startup cost.

The left diagram (a) shows the time to prove (#)n as a first player win for
all n ≤ 50 except n = 3. Due to symmetry, we only verify that Black wins when
playing first. A hardcoded move is played at the root node: Black moves the 13th
(from the left) stone to its right. The largest board has 100 stones. Over a wide
range of values from n = 23 to n = 49, the slope is close to linear, and each added
 # pair makes solving about 1.63× as slow. The largest board at n = 50 takes
significanty longer, being 2.98× as slow as n = 49. Our transposition table’s size
may be insufficient starting with n = 50.

Diagram (b) shows our results for (#)n up to n = 28: (#)n − ⌊(n +
1)/2⌋·↑ = (#)n + ⌊(n + 1)/2⌋·↓ is a second player win. The largest board

10 T. Folkersen et al.

(a) Time to solve (#)n for increasing n. (b) Time to prove value of (#)n.

Fig. 1: Scaling studies for (a) solving (#)n as a first-player win (except n = 3),
and (b) for proving that (#)n = ⌊(n+ 1)/2⌋·↑.

has 140 squares: 84 contiguous stones followed by 14 copies of (##). Each
increment to n is about 2.12× as slow as the previous one.

We greatly exceed previous computational results. For perspective, using this
same transposition table size, and with a clean startup with no prior transposi-
tion table data, SEGClobber verifies Conjecture 1 for n = 19 in 0.084 seconds,
and for n = 47 in 40421.63 seconds. With this same setup, Conjecture 2 is
verified for n = 17 in 12.72 seconds, and for n = 26 in 14441.92 seconds.

4.2 Ablation Studies

Figure 2 presents five ablations. Each study used a different set of 100 random
boards with 60-66 stones and no empty squares, and case (d) uses 58. Each
vertical segment of the graph represents the same board. If solving took 120
seconds or more for either of a board’s two runs, then it was excluded and a new
one took its place. SEGClobber was restarted for every run.

Diagram (a) demonstrates that the complexity score CS4 is far superior to
CS3. Speculative subgame removal in (b) shows an improvement on the more
difficult instances. Pruning dominated moves in (c) gives a modest but increasing
gain. Substitution of subgames by their simplest equal game in (d) is a huge gain.
Iterative deepening in (e) can give a noticable improvement, but only on a few
boards. The heuristic evaluation function of Section 3.10 may only be well-suited
to specific board patterns.

5 Conclusions and Future Work

We developed a strong linear Clobber solver and far exceeded previous computa-
tional results. Key elements of this solver are based on combinatorial game theory
concepts, taking advantage of subgame structure. The most effective are building

SEGClobber - A Linear Clobber Solver 11

(a) Using Complexity Score CS3 (b) No speculative subgame removal

(c) No pruning of dominated moves in
database subgames

(d) No simplest equal subgame substitu-
tion

(e) No iterative deepening.

Fig. 2: Ablations - removing one component of SEGClobber.

a database of small sum games, substitution of subgames by their simplest equal
game, an efficient transposition table based on a normal form of games, and
using database information to simplify search by removing dominated moves.

12 T. Folkersen et al.

The main limitations of our solver, to be addressed in future work, are a lack
of parallel search, and the relatively small size of our database. The heuristic
evaluation function may be improved, as it is likely only accurate for specific
board patterns. Future exploration of complexity scores may yield even better
results.

Acknowledgments. We gratefully acknowledge financial support from NSERC, the
Natural Sciences and Engineering Research Council of Canada, and the Canada CIFAR
AI Chair program.

Disclosure of Interests. The authors declare no competing interests for this article.

References

1. Albert, M., Grossman, J., Nowakowski, R., Wolfe, D.: An introduction to Clobber.
Integers 5(2), 12 pp. (2005), article A01, MR2192079

2. Albert, M., Nowakowski, R., Wolfe, D.: Lessons in Play: An Introduction to Com-
binatorial Game Theory. A K Peters, Wellesley, Massachusetts (2007)

3. Chen, X., Folkersen, T., Hasham, K., Hayward, R., Lee, D., Randall, O., Schultz, L.,
Vandermeer, E.: A proof of the 2004 Albert-Grossman-Nowakowski-Wolfe conjecture
on alternating linear Clobber (2025), https://arxiv.org/abs/2509.08985

4. De Groot, A.D.: Thought and Choice in Chess. De Gruyter Mouton (1978)
5. Folkersen, T.: Linear Clobber solver (2022), Capstone report, University of Alberta
6. Tavakoli, F., Folkersen, T., Bashir, Z.: Strong 1-dimensional Clobber (2022), CM-

PUT 655 project report, University of Alberta
7. Uiterwijk, J., Griebel, J.: Combining combinatorial game theory with an alpha -

beta solver for clobber: Theory and experiments. In: BNAIC. Communications in
Computer and Information Science, vol. 765, pp. 78–92. Springer (2016)

8. Zobrist, A.: A new hashing method with application for game playing. Tech. Rep. 88,
Univ. of Wisconsin (1970)

https://arxiv.org/abs/2509.08985

	SEGClobber - A Linear Clobber Solver

