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Abstract. The game of chess has long been used as a benchmark for
testing human creativity and intelligence. With the advent of powerful
chess engines, such as Stockfish and Leela Chess Zero (Lc0), endgame
studies have also become a tool for evaluating the capabilities of machine
chess engines. In this work, we conduct a detailed study of Stockfish and
Lc0, two leading chess engines with distinct methods of play, using chess
endgames with varying numbers of remaining pieces. We evaluate the
programs’ move decision errors when using only the raw policy network
as well as when using a small amount of search. We provide insights into
the strengths and weaknesses of Stockfish and Lc0 in handling complex
endgame positions by exploring common mistakes and identifying inter-
esting behaviours of the engines based on the position of the opponent’s
last pawn remaining on the board.

Keywords: Computer Chess · Leela Chess Zero · Stockfish · Chess
Endgame Tablebases.

1 Introduction

Playing chess requires strategic thinking, planning, and decision-making skills.
Endgame studies, which involve analyzing and solving complex chess positions
with a limited number of pieces remaining on the board, have traditionally been
used to test human creativity and intelligence. Endgame studies have also be-
come a tool for evaluating the capabilities of chess engines [9, 12].

Before the widespread adoption of deep neural networks and the emergence
of AlphaZero [18, 19], Stockfish was the leading chess engine. AlphaZero [19]
demonstrated superhuman performance in complex board games - chess, shogi,
and Go. This neural network-based program has exceptional move selection and
state evaluation abilities. Inspired by the success of AlphaZero, Stockfish incor-
porates a neural network known as NNUE (efficiently updatable neural network)
[16] into its traditional chess engine from version 12. However, NNUE is a rela-
tively simple and shallow feedforward neural network, whereas AlphaZero uses
a more complex and deep convolutional neural network (CNN).
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Despite their remarkable performance, these programs are not perfect and
still make mistakes. To better understand how these modern programs learn to
play as well as explore the limits of their playing abilities, we turn to a sample
problem that has known exact solutions - chess endgames. While the full game
of chess has not been solved, exact solutions for endgames with up to seven
pieces have been computed and compiled into endgame tablebases. In this study,
we utilize the open-source programs Leela Chess Zero (Lc0) [1], which follows
the AlphaZero-style approach, and Stockfish [4] to analyze chess endgames and
investigate the gap between strong and perfect play. Additionally, we compare
their respective performance in these endgames. Through this analysis, we aim
to shed light on their playing abilities and provide insights into their strengths
and limitations. We design a comprehensive methodology involving extensive
experiments to address the following research questions:

– How well do these two leading chess engines perform compared to perfect
play?

– Which is easier to predict for the engines? Wins or draws?
– Which engine’s policy networks perform well in evaluation?
– How much do the programs improve after using a small search budget?
– In an interesting board configuration, when only one pawn of the opponent
remains, how much do their performances differ from each other?

2 Related Work

The original AlphaZero paper [19] compared the performance of AlphaZero with
Stockfish for chess in terms of gameplay. The authors compared win-draw-loss
percentage against the baselines in a tournament under the same time settings,
and AlphaZero outperformed Stockfish. However, it’s worth noting that NNUE
had not been introduced into Stockfish at that time.

The work by Haque et al. [9] compares Leela Chess Zero with perfect play
from endgame tablebases. The authors also analyze different case studies of Lc0’s
policy and search, which give more insights into the performance. In our study,
we conduct a detailed analysis with more complex endgames and do further
experiments where the engines tend to make more mistakes.

Two noteworthy papers in the field of comparing game engines or algorithm
performance to perfect play are worth mentioning. Lassabe et al. [12] use genetic
programming to solve chess endgames by combining elementary chess patterns
defined by domain experts. In Romein and Bal [17], the game of awari was
first solved and then used as a basis to measure the performance of two world
champion-level engines from the 2000 Computer Olympiad.

3 Background

3.1 Endgame Tablebases

Chess endgames are sub-problems that occur when only a reduced set of game
pieces remain on the board, and the full rules of chess still apply. The solutions
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are publicly available in databases known as endgame tablebases [14]. Each so-
lution in the tablebase includes the outcome of the game assuming perfect play
from both players, along with the optimal moves for reaching that outcome
and specific metrics such as the number of plies required to achieve the result.
Endgame tablebases hosted online differ in storage size and metrics [11, 13].

Tablebase generators are also available and allow for the creation of custom
endgame tablebases. Among the available options, Syzygy [13] and Gaviota [5]
tablebases are popular and widely used, and they are also free for public access.

3.2 Stockfish

Stockfish is a highly robust open-source chess engine. It takes a position on the
chessboard as input and generates a move as output using an alpha-beta pruning
search algorithm [7]. To cope with the vast search space of chess, Stockfish
employs techniques such as forward pruning and reduction to reduce the search
space [10]. The evaluation function of Stockfish determines whether a leaf node is
favourable for White or Black by evaluating factors such as the current positions
of the pieces, piece activity, game phase, etc.

From version 12, Stockfish uses an efficiently updatable neural network (NNUE)
[16] as its evaluation function. This neural network is capable of predicting the
output of the evaluation function at a moderate network depth. The architecture
of NNUE is shallow, consisting of four layers, and is specifically optimized for
speed on the CPU. NNUE has greatly enhanced the performance of Stockfish,
making it even more powerful in analyzing chess positions and generating strong
moves.

3.3 Leela Chess Zero

Leela Chess Zero (Lc0) is a chess adaptation of the popular Go program Leela
Zero. Both open-source programs aim to replicate the success of AlphaZero in
their respective games [2]. Similar to AlphaZero [19], Lc0 takes a sequence of
consecutive raw board positions as input and utilizes a two-headed network for
policy and value estimation. It uses Monte Carlo Tree Search (MCTS) as a search
algorithm [6] to find the best move. Over time, the Lc0 developers introduced
enhancements that were not present in the original AlphaZero, including addi-
tional auxiliary outputs such as the “moves left” head, which predicts the number
of plies remaining in the current game [8]. Another auxiliary output called the
“WDL head” separately predicts the probabilities of winning, drawing, or losing
the game [3].

The raw network policies of Stockfish and Lc0 are very different from each
other. It is challenging for humans to comprehend what is happening inside these
networks [15]. However, comparing the move decisions of these engines provided
solely by the network can help to understand how well they have learned to
evaluate endgame positions.
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4 Dataset and Evaluation Method

4.1 Dataset Generation and Preprocessing

We follow the dataset generation and preprocessing technique of Kryukov used
[11] in [9]. We first place the kings on the board in all possible cases. Then we
place other pieces one at a time to generate all positions with three, four, and
five pieces. We apply colour swapping, horizontal mirroring, vertical mirroring,
and diagonal mirroring for a more efficient generation. Then we remove illegal
positions such as pawns on promotion ranks, positions where the player to move
can capture the king, etc. We disable castling and en passant captures for all
positions for simplicity. We also set the halfmove clock to 0 and the fullmove
counter to 1. We obtain all unique legal positions of an endgame and append
the syzygy endgame tablebase’s perfect information for each position. Due to
the abundance of five-piece chess endgame positions and limited resources, we
sample 1% of all five-piece positions. We consider a total of four three-piece,
seven four-piece, and six five-piece tablebases for our experiment. The three-
piece tablebases consist of one white queen, rook, knight, or bishop, and both
kings. In four-piece tablebases, we include two pieces for each player to maintain
a balanced power dynamic between the two sides. In the five-piece tablebases,
we position only one pawn for black while white receives any two pieces among
the queen, rook, knight, and bishop.

We generate all the positions as Forsyth-Edwards Notation (FEN) 1 strings
in our datasets. White pieces are represented by capital letters, and black pieces
are represented as lowercase letters in each FEN string. We name our datasets
accordingly. For instance, the dataset KQkp has a white king, a white queen, a
black king, and a black pawn.

We store all positions in a MySQL database and separate the data for each
tablebase into two parts: (i) positions that result in a win and (ii) positions that
result in a draw. We do this separation to analyze deeply if the engines have any
performance variation for winning or drawing positions. We skip losing positions
because they are of no use in identifying mistakes made by the engines.

4.2 Engine settings

For our experiment, we consider the latest versions available at the time of this
work, which are Stockfish 15.12 and Lc0 0.29.03. To fairly compare the engines,
we ensure that they have similar strengths. The highest Elo rating available for
Stockfish at the time of this work is 2850. Therefore, we use this Elo rating for
both engines. Initially, we focus on comparing only the policy. As the backend,
we use CPU for Stockfish since it only runs on CPU. For Lc0, we use cudnn on
a Linux machine equipped with an Nvidia Titan RTX GPU.

1 https://www.chessprogramming.org/Forsyth-Edwards Notation
2 https://stockfishchess.org/blog/2022/stockfish-15-1
3 https://github.com/LeelaChessZero/lc0/releases/tag/v0.29.0
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5 Experimental Results

5.1 Wrong Play Analysis

Table 1 displays the percentage of mistakes made by the raw policies of Stock-
fish and Lc0 when evaluating move decisions for three, four, and one five-
piece endgame tablebases. Mistakes are defined as moves that change the game-
theoretic outcome. When there is a winning move available in the endgame
tablebase, a mistake is counted if the engine suggests its best move that results
in a draw or loss. When there is a drawing move available in the tablebase, a
mistake is counted if the engine suggests a move that results in a loss.

Table 1 shows that Stockfish performs better than Lc0 for the three-piece
tablebases. However, for the four-piece tablebases, Lc0 shows better results than
Stockfish, except for three tablebases: KQkb (win), KPkp (win), and KQkp
(win). Figure 1b illustrates that Lc0 consistently outperforms Stockfish in all
the tablebases, where perfect play results in a draw. Even though Stockfish
shows a lower percentage of mistakes in the winning positions of KQkb, KPkp,
and KQkp tablebases in Figure 1a, Lc0 still demonstrates very competitive re-
sults in those tablebases as well. In our 1% of the total positions for different
five-piece endgame tablebases, Lc0 could only perform better than Stockfish in
KRBkp (draw), KBNkp (win), and KBNkp (draw). Calculating from Table 1, we
find that Stockfish makes an overall 1.47% and 1.67% of errors in winning and
drawing positions, respectively, whereas Lc0 makes 1.32% and 1.07% of errors.

Based on this result, we conduct a study on the Average Centipawn Loss
(ACPL) to gain further insights. A Centipawn4 is 1/100 of a pawn used to
evaluate a chess position. ACPL identifies how much ‘value’ a player loses while
playing a wrong move. An ACPL close to zero indicates a very strong move.
We choose to calculate the ACPL for the 4-piece tablebases of our datasets, as
the results on the three-piece tablebases are almost perfect, and we have limited
data on the five-piece tablebases.

To calculate the ACPL, we divide the mistaken positions of each 4-piece
tablebase into two parts: (a) Positions where Stockfish plays the correct move
but Lc0 plays the wrong move, and (b) Positions where Lc0 plays the correct
move but Stockfish plays the wrong move. We choose this division to assess the
relative strength of the incorrect move compared to the correct one. In (a), we
obtain an ACPL of −408.28 with a standard deviation of 1739.31. In (b), we
obtain an ACPL of 281.71 with a standard deviation of 1476.47. These values
portray that both engines recognize their moves as very weak. However, when
Lc0 plays the wrong move, the ACPL is further from zero compared to the other
case. This suggests that Lc0 evaluates its mistaken position more accurately
than Stockfish in this study.

4 https://chess.fandom.com/wiki/Centipawn
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Table 1: Total number of mistakes by the policy net of Stockfish and Lc0.
#Pieces EGTB W/D Total Positions Stockfish(Policy) Lc0(Policy)

3

KQk
W 18081 19 (0.1%) 173 (0.96%)
D 2896 0 0

KBk D 52234 0 0
KNk D 53806 0 0

KRk
W 21959 0 (0%) 23 (0.1%)
D 2796 0 0

4

KQkb
W 701738 787 (0.11%) 2638 (0.38%)
D 220956 843 (0.38%) 538 (0.24%)

KQkq
W 934428 18038 (1.93%) 14682 (1.57%)
D 1293823 8874 (0.7%) 6714 (0.52%)

KQkr
W 890800 8512 (0.96%) 7057 (0.8%)
D 49184 4745 (9.6%) 2261 (4.6%)

KRkr
W 784918 12759 (1.63%) 1839 (0.23%)
D 1892778 16313 (0.9%) 7311 (0.4%)

KPkp
W 321303 5130 (1.6%) 5857 (1.82%)
D 248509 8411 (3.38%) 3580 (1.44%)

KRkp
W 1110806 39490 (3.56%) 13028 (1.17%)
D 398282 16417 (4.12%) 12508 (3.14%)

KQkp
W 945359 4359 (0.46%) 7762 (0.82%)
D 155352 2284 (1.47%) 1461 (0.94%)

5

KQBkp
W 1050708 4215 (0.4%) 12011 (1.14%)
D 252429 215 (0.08%) 1560 (0.62%)

KQNkp
W 1148101 7136 (0.62%) 11923 (1.04%)
D 265648 513 (0.19%) 2085 (0.78%)

KQRkp
W 931942 2388 (0.26%) 10634 (1.14%)
D 30495 165 (0.54%) 1049 (3.44%)

KRBkp
W 1274054 11684 (0.92%) 16498 (1.29%)
D 339055 4566 (1.35%) 3924 (1.16%)

KRNkp
W 1081372 16086 (1.49%) 19198 (1.78%)
D 282217 5000 (1.77%) 6178 (2.19%)

KBNkp
W 1208553 52401 (4.34%) 40607 (3.36%)
D 410661 30795 (7.5%) 14596 (3.55%)
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(a) In winning positions (b) In drawing positions

Fig. 1: Performance comparison between the raw policies of Stockfish and Lc0 in
the four-piece tablebases

5.2 Improvement Analysis After Incorporating Search

Based on Table 1, we decide to investigate the four-piece tablebases KQkr (draw),
KRkp (win), KRkp (draw), and KRkr (win). This selection is motivated by
the statistically significant performance difference between the two engines. We
search up to 400 nodes with these engines to examine the changes.

(a) Mistakes without search (b) Mistakes with search

Fig. 2: Performance of Stockfish and Lc0 with and without search (400 Nodes)

Figure 2 reflects the improvement in the performance of both engines after
incorporating search. In the four tablebases used here, Lc0 still performs better
than Stockfish even after applying a search of up to 400 nodes. However, incor-
porating search leads to a significant reduction of mistakes for both engines.
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5.3 Engine Behaviour Analysis in Positions with a Single Pawn for
the Weaker Side

We investigate the behaviour of Stockfish and Lc0 using tablebases where there
is only one black pawn and one or more stronger white pieces. We compare the
behaviours of the engines based on the fact whether the black pawn is attacked
or safe. Figure 3 shows examples of two boards; in one, the pawn is under attack,
and in the other, the pawn is on a safe square. We consider only cases where the
result is a win in perfect play. We choose to analyze this behaviour because, in
these endgames, human chess players usually do not miss the chance to capture
this pawn to make the opponent helpless with only the king. We decide to observe
how many mistakes occur in this kind of scenario.

Table 2 displays the total number of correct moves, the percentage of attacked
pawns in those positions, the total number of mistakes, and the percentage of
attacked pawns in those positions for the raw networks of Stockfish and Lc0,
respectively. The results show that Lc0 has a lower percentage of mistakes when
the black pawn is under attack.

Interestingly, for the tablebases KQBkp, KQNkp and KQRkp, the percent-
ages of mistakes are very high for both engines. In positions where the white
can capture the black pawn, such a high rate of mistakes is not expected at
all. Specifically, the performance of Stockfish for KQRkp (87.06%) is a cause for
concern. Here, Stockfish makes almost 90% of its mistakes when the black pawn
is under attack, whereas this percentage is 57.5% for attacked pawns in cases
with no mistakes.

8 0Z0Z0j0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0J0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0o0Z0Z0L
1 Z0Z0Z0Z0

a b c d e f g h

(a) Black pawn is attacked

8 0Z0Z0Z0Z
7 ZKZ0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0ZQZ
3 Z0Z0j0Z0
2 0Z0Z0Z0o
1 Z0Z0Z0Z0

a b c d e f g h

(b) Black pawn is safe

Fig. 3: Example of black attacked and safe pawns (white to play)
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Table 2: Percentages of Mistakes for Attacked and Safe Pawns (Win Only).
Stockfish Lc0

No Mistake Mistake No Mistake Mistake

EGTB Total
Posi-
tions

% of At-
tacked
Pawns

Total
Posi-
tions

% of
At-
tacked
Pawns

Total
Posi-
tions

% of At-
tacked
Pawns

Total
Posi-
tions

% of
At-
tacked
Pawns

KRkp 1071316 29.2 39490 9.95 1097774 28.82 13032 3.4

KQkp 941000 40.5 4359 35.21 937608 40.6 7751 25.21

KQBkp 1046493 52.6 4215 48.6 1038698 52.7 12010 40.84

KQNkp 1140965 48.5 7136 40.72 1136179 48.5 11922 37.61

KQRkp 929554 57.5 2388 87.06 921309 57.7 10633 50.89

KRBkp 1262371 41.3 11683 24.4 1257557 41.5 16497 19.06

KRNkp 1065286 36.5 16086 16.31 1062174 36.6 19198 13.27

KBNkp 1156153 29.07 52401 30.7 1167947 29.5 40607 18.06

6 Conclusion and Future Work

Through this work, we aim to contribute to the fascinating world of chess en-
gines by uncovering new insights. The important findings of this work are - (1)
The Stockfish policy is strictly better than or equal to the Lc0 policy in 3-piece
endgames for predicting a perfect move, (2) The Lc0 policy produces fewer mis-
takes than the Stockfish policy in most four-piece endgames, (3) Lc0 identifies
a weak position better than Stockfish in four-piece endgames, (4) With search,
both engines improve their performance by a significant margin, and the dif-
ference in their performances becomes narrower, (5) Predicting wins is easier
for Stockfish, whereas predicting draws is easier for Lc0, (6) Lc0 makes fewer
mistakes than Stockfish when the opponent’s last pawn is under attack.

As a future research direction, these experiments can be extended to other
endgame tablebases. Increasing the number of pieces and sampling more posi-
tions will lead to a deeper understanding of these engines. Finding more inter-
esting patterns and behaviours in the positions misplayed by the two engines
would also be a significant extension of this study.
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