
MS-lite: A Lightweight, Complementary Merge-and-Shrink Method

Gaojian Fan, Robert Holte and Martin Müller
University of Alberta, Edmonton, Canada
{gaojian, rholte, mmueller}@ualberta.ca

Abstract

Merge-and-shrink is a general framework for creating ab-
straction heuristics. In this paper we present two new vari-
ations of merge-and-shrink: MS-lite and DM-HQ. MS-lite is
an extremely fast merge-and-shrink that maintains only the
smallest abstractions that preserve local heuristic informa-
tion. MS-lite has complementary strength over other merge-
and-shrink methods due to its efficiency. In addition, we show
that MS-lite has little dependence on merging strategies and
its eager shrinking strategy can lead to better heuristics for
some planning tasks. DM-HQ features a merging criterion
that utilizes information about heuristic quality to make the
merging decisions. Our experiments show that combining
DM-HQ and MS-lite dramatically outperforms the current
state-of-the-art merge-and-shrink method by solving 75 more
tasks on an International Planning Competition (IPC) bench-
mark set of 1499 tasks.

1. Introduction
Merge-and-shrink (Helmert et al. 2014), or M&S for short,
is a general method for creating abstraction heuristics by
transforming the set of atomic transition systems of a plan-
ning task into a single abstraction. The transformations are
carried out with three basic operations: merging, shrink-
ing, and label reduction. Over the years, M&S algorithms
have evolved with the improvements of strategies on how
to perform these operations. Because M&S operations have
to process the transition systems explicitly, it can be an ex-
pensive procedure to build an M&S heuristic for large prob-
lems. To illustrate this issue, Table 1 shows the construction
time of the state-of-the-art M&S method SCC-DFP (Sievers,
Wehrle, and Helmert 2016) on a series of planning tasks with
increasing numbers of atomic transition systems. With each
constant increase in the number of atomic systems, M&S
construction time almost doubles, until it runs out of time of
30 minutes on the last task.

Previous improvements such as (Helmert, Haslum, and
Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011;
Fan, Müller, and Holte 2014; Sievers, Wehrle, and Helmert
2014; 2016)) focus on how to create more informative M&S
heuristics. In the first part of this paper, we focus on effi-
ciently constructing an M&S heuristic of reasonable quality.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Atomic TS 126 169 212 255 298
Constr. Time 157 304 666 1059 (timeout)

Table 1: M&S construction time (in seconds) on a series of
tasks with increasing numbers of atomic transition systems.

size limit MIN 102 103 104 105 106

expan. 396 9,670 21,058 44,643 14,065 9,230

Table 2: Numbers of nodes expanded by A* using M&S
heuristics constructed with different size limits.

We propose MS-lite, a fast M&S method that shrinks every
transition system to its minimal abstraction that preserves
only local heuristic values. Such extreme shrinking gives
MS-lite super efficiency, and even creates better heuristics
on some tasks. As an illustration, Table 2 shows the num-
bers of nodes expanded by A* to solve a small task from
the blocks domain using heuristics created by SCC-DFP un-
der different abstraction size limits. The right half of Table 2
shows the expected behavior: with a larger size limit, M&S
can store more information in an abstraction and produce
a better heuristic, and thus as the size limit increases from
104 to 106, the number of expansions decreases. However,
for size limits below 104, we see an unexpected trend where
number of A* expansions increases with size limits. The ex-
treme case is column “MIN”, where the maximum abstrac-
tion size is the number of distinct heuristic values in each
transition system, which is at most 15 in this example. This
heuristic, which is produced by MS-lite, is far better here
than heuristics created with much larger abstractions.

Our experiments on IPC domains show that MS-lite has
complementary strength to existing M&S methods: it solves
many planning tasks that other M&S methods fail to solve.
This strength is due to both factors: faster construction in
many cases, and better heuristics otherwise. More impor-
tantly, as MS-lite is very easy to compute, it can be com-
bined with other M&S heuristics with little computational
overhead. Such combinations greatly enhance the best pre-
vious M&S methods.

As a second contribution we present a new M&S method
DM-HQ that uses a new merging score based on heuristic
quality to help make merging decisions. DM-HQ has the

Algorithm 1 Merge-and-Shrink

1: P ← {atomic transition systems}
2: while |P| > 1 do
3: T1, T2 ← Choose-Next-Merge (P)
4: Label-Reduction(T1, T2,P)
5: Shrinking(T1, T2)
6: P ← P ∪ {T1 ⊗ T2} \ {T1, T2}
7: return the final system in P

Algorithm 2 Bisimulation-Shrinking(T1, T2)

1: if |T1| × |T2| > size limit then
2: Minimal-h-Preserving-Shrink (T1, T2)
3: Bisimulation-Refinement(T1, T2, size limit)

1
Figure 1: Merge-and-shrink (Algorithm 1) and bisimulation
shrinking (Algorithm 2).

strongest complementarity with MS-lite. Their combination
dramatically outperforms the previously best M&S method
SCC-DFP by solving 75 more tasks on our benchmark set of
1499 tasks.

2. Background
The key notion for merge-and-shrink methods is transition
system, which is defined as a 5-tuple T = 〈S,L, T, s0, S∗〉.
Here, the state space S is a finite set of states, andL is a finite
set of transition labels. Each label l ∈ L is associated with a
cost c(l) ∈ R+

0 . T ⊆ S×L×S is a set of labelled transitions.
s0 ∈ S is the initial state and S∗ ⊆ S is the set of goal states.
A path from a state s to a state s′ in the transition system is
a sequence (s1, l1, s2, l2, ..., sn, ln, sn+1) such that s1 = s,
sn+1 = s′, and 〈si, li, si+1〉 ∈ T for i ∈ {1, 2, ..., n}. The
cost of the path is

∑n
i=1 c(li). The h-value and g-value of a

state s is the cost of a least-cost path from s to a goal state
and from the initial state to s respectively.

An abstraction α for T is a mapping from S to an abstract
state space which induces an abstraction transition α(T) =
〈α(S), L, {(α(s), l, α(t)) | (s, l, t) ∈ T}, α(s0), α(S∗)〉. An
abstraction preserves h-values (g-values) if all the states
mapped to any given abstract state have the same h-value
(g-value).

2.1 Merge-and-Shrink
A merge-and-shrink method transforms a set of atomic tran-
sition systems into a single transition system through re-
peated use of merge, shrink and label reduction opera-
tions. A merge operation transforms two systems T =
〈S,L, T, s0, S∗〉 and T ′ = 〈S′, L, T ′, s′0, S′∗〉 into a new
transition system, called the synchronized product. It is de-
fined by T ⊗T ′ = 〈S×S′, L, T p, 〈s0, s′0〉, S∗×S′∗〉 where
〈〈s, s′〉, l, 〈t, t′〉〉 ∈ T p if and only if 〈s, l, t〉 ∈ T and
〈s′, l, t′〉 ∈ T ′. A shrink operation transforms one transi-
tion system T into another by applying an abstraction to T .
Label reduction maps a label set to another, smaller label set.

Algorithm 1 in Figure 1 illustrates the M&S procedure
used in this paper, i.e., label reduction before shrinking and
shrinking before merging. P is the set of transition systems
maintained by M&S. Initially, it is the set of all atomic sys-
tems. At each iteration M&S chooses two systems from P
to merge (Line 3). After possible label reduction (Line 4)
and/or shrinking (Line 5), the two systems are replaced by
their product transition system (Line 6). The process stops
when there is only one final system left in P . This system
defines the heuristic.

We now give a brief overview of relevant M&S tech-
niques. The size of the synchronized product of two tran-
sition systems is the product of the sizes of the two systems,
which means that the size grows exponentially in the number
of merges. Shrinking is used to keep the sizes under control
and can be passive or active. Passive shrinking is performed
on one or both of the two transition systems, until the prod-
uct of their sizes is smaller than a size limit, while active
shrinking is performed regardless of the size of a transition
system. Passive shrinking strategies include f -preserving
shrinking (Helmert, Haslum, and Hoffmann 2007), which
is targeted at abstractions that preserve both h-values and
g-values, and the state-of-the-art non-greedy bisimulation
shrinking, whose target abstractions are the coarsest bisimu-
lation abstractions (Nissim, Hoffmann, and Helmert 2011).
Algorithm 2 in Figure 1 illustrates the non-greedy bisimu-
lation shrinking. It starts shrinking only when two systems
are too large (Line 1), and first computes the minimal h-
value preserving shrinking of one or both of the two chosen
systems (Line 2), and then tries to refine these h-preserving
abstractions to the coarsest bisimulation abstractions with-
out violating the size limit (Line 3). Non-greedy bisimu-
lation shrinking does not always end up with the coars-
est bisimulation abstractions but are guaranteed to produce
h-preserving abstractions. In contrast, greedy bisimulation
shrinking (Katz, Hoffmann, and Helmert 2012) refines the
abstractions until they are bisimilar or runs out of resources,
and is thus an active shrinking strategy. Label reduction
is used mainly for reducing the bisimulation size (Sievers,
Wehrle, and Helmert 2014).

A merging strategy determines the merge order of transi-
tion systems. A linear merging strategy produces sets con-
taining at most one non-atomic transition system at any
given time. It is often determined by ordering the atomic
transition systems. Examples of orders include causal graph-
goal-level (CGGL) (Helmert, Haslum, and Hoffmann 2007),
level (LVL) and reverse level (RL) (Nissim, Hoffmann, and
Helmert 2011). A merging strategy is non-linear if any
set contains more than one non-atomic transition system.
A non-linear merging order can be precomputed. An ex-
ample is MIASM (stands for Maximum Intermediate Ab-
straction Size Minimizing) (Fan, Müller, and Holte 2014),
which tries to identify merge orders with high MIASM ra-
tio, an evaluation on the amount of free pruning, i.e., re-
moving states that are not on any path from the abstract
initial state to an abstract goal state, that can be done to a
system. A non-linear order can also be determined dynam-
ically by a merge scoring function which assigns a score to
each pair of transition systems in the current set. The candi-

date pair with the best score is merged next. Dynamic MI-
ASM (DYN-MIASM) (Sievers, Wehrle, and Helmert 2016)
is a score-based variation of MIASM which scores candi-
date pairs based on the MIASM ratio. Another score-based
strategy is DFP (Dräger, Finkbeiner, and Podelski 2006;
Dräger, Finkbeiner, and Podelski 2009; Sievers, Wehrle, and
Helmert 2014). The state-of-the-art merging strategy SCC-
DFP uses causal graph information as a general guideline
for merging before using the DFP scores.

The best previous M&S methods use bisimulation shrink-
ing and label reduction before shrinking. They differ in their
merging strategies, and we refer to them by that strategy.
All methods are implemented on top of a recent version of
FastDownward (revision number 10652). CGGL, LVL, RL,
and SCC-DFP are part of this revision and we added imple-
mentations of DYN-MIASM and our new methods to it. We
excluded MIASM since its performance is close to DYN-
MIASM.

2.2 Experimental Settings
Our benchmark domains are the same as in (Sievers, Wehrle,
and Helmert 2016) which includes all IPC domains for opti-
mal planning from 1998 to 2014 that are supported by M&S.
There are tasks which appear in more than one IPC set. For
example, all IPC-2011 woodworking tasks are included in
IPC-2008, and 10 tidybot tasks appear in both the IPC 2011
and 2014. We exclude duplicate IPC tasks in our analysis
to avoid over-counting of coverage differences. 7 unsolv-
able tasks from the mystery domain are also excluded. Our
benchmark contains a total of 1499 tasks from 39 domains.
Experiments are performed on Intel Xeon X5670 CPUs at
2.93GHz using standard limits of 30 minutes time and 2 GB
memory. The size limit for bisimulation shrinking is 50,000
states per abstraction.

3. MS-lite
MS-lite is a M&S method which actively shrinks every tran-
sition system to the minimal h-value preserving abstraction.
All states with the same h-value are combined into a single
state, and the size of the abstraction is equal to the num-
ber of distinct h-values. MS-lite uses no label reduction
and chooses transition systems for merging at random. In
other words, MS-lite instantiates Algorithm 1 with a random
choose at Line 3 and the removal of Line 4, and uses only
Line 2 in Algorithm 2 as its shrinking strategy. What distin-
guishes MS-lite from other M&S methods is its “counterin-
tuitive” shrinking strategy, which shrinks transition systems
as early and as much as possible, as long as the h-values are
preserved. Since MS-lite does not construct a bisimulation
abstraction, the advantage of label reduction is outweighed
by its disadvantage.1 In contrast, existing M&S methods
with bisimulation shrinking tend to shrink as late and as lit-
tle as possible. They retain as much information as possible
for later transition systems.

1In our experiments, label reduction seems to have a large run-
time overhead that is only compensated when bisimulations are
used. In fact, for MS-lite, turning on label reduction does not help
it solve more tasks but reduce the total coverage by 33 tasks.

MS-lite SD CGGL LVL RL DM
(a) Total (1499) 625.5 671 622 605 636 666

(b)

airport (50) 23 18 15 15 18 18
parking (40) 13 6 6 0 6 1
tetris (17) 8 2 0 0 2 1
tidybot (30) 18 1 1 1 1 0

(c) Est. Max Total 719 676.1 652 685.5 725.1
Est. Improv. +48 +54.1 +47 +49.5 +59.1

Table 3: (a) Total coverage of MS-lite, SCC-DFP (SD),
CGGL, LVL, RL and DYN-MIASM (DM). (b) The cov-
erages on domains where MS-lite performs better than the
best (bold numbers) of all others. Number in bracket after
domain name is the total number of tasks in the domain. (c)
The sum of the maximums of per-domain coverages of MS-
lite and an existing M&S, and the increase from the actual
coverage in (a) to the sum.

The observation that MS-lite’s performance is largely in-
dependent of its merging strategy emerged from a small
experiment we undertook during its development. We ran
MS-lite 10 times per task, with a different randomly chosen
merge order on each run. On 35 of 39 test domains, MS-lite
solved exactly the same number of tasks in all 10 random
runs, and among these 35 domains there are 28 domains on
which the numbers of A* expansions and heuristic values on
the initial states are exactly same for all 10 random runs for
all the tasks solved by MS-lite. In the remaining 4 domains,
the coverage difference between the best and the worst of 10
MS-lite runs is only 1. In the coverage and node expansion
results reported for MS-lite later in this paper, we use the
average over 10 runs of MS-lite with the merge order cho-
sen at random. For the coverage data shown in this paper, an
integer indicates that the coverage of all random runs are the
same, and a fractional number indicates there is variance.

MS-lite is extremely efficient by design: it maintains only
minimal h-preserving abstractions and does not spend time
exploring merge choices or reducing labels. In exchange for
efficiency, it gives up a lot of information during shrinking.
The question is: can MS-lite, with such aggressive shrinking,
possibly compete with M&S methods equipped with shrink-
ing, merging and label reduction techniques? The short an-
swer is: no. As expected, MS-lite has a smaller total cover-
age than most existing M&S, shown at Table 3(a) where we
see MS-lite solves 625.5 tasks in total — 45.5 less than the
state of the art M&S method SCC-DFP.

3.1 Complementary Strength
Considering the tiny abstractions MS-lite constructs, it is
surprising that MS-lite can solve 625.5 tasks, more than
methods CGGL and LVL which can use large abstractions
with up to 50,000 states, bisimulation shrinking and label re-
duction. Our per-domain coverage investigation also reveals
where the strength of MS-lite is. Table 3(b) shows the cover-
age of the 4 domains where MS-lite solves more tasks than
the best other M&S (bold numbers). On 4 more domains,
MS-lite matches the coverage of the best other M&S method
(not shown in Table 3).

100 101 102 103
0

20

40

60

80

100 97.6%

88.2%(194, 77.5%)

construction time (in seconds)
(a)

%
o
f
su

c
c
e
ss
fu
l
c
o
n
st
ru

c
ti
o
n
s

SCC-DFP

MS-lite

101 103 105 107

101

103

105

107

SCC-DFP
(b)

M
S
-l
it
e

20 40 60 80 100

20

40

60

80

100

SCC-DFP
(c)

M
S
-l
it
e

u
n
so
lv
ed

M
S
-l
it
e
so
lv
es

Figure 2: (a) The percentages of tasks for which the M&S heuristic constructions are finished within a certain amount of time
(and the 2GB memory limit); (b) Numbers of A* expansions with the MS-lite heuristic (y-axis) and the SCC-DFP heuristic
(x-axis). Failures in M&S construction and search are separated (on the rightmost edge and dashed lines respectively); (c) The
(scaled) heuristic value of the initial state of the MS-lite heuristic (y-axis) and the SCC-DFP heuristic (x-axis). Tasks solved
with the MS-lite heuristic are shown as red dots and tasks unsolved with both heuristics are shown as blue asterisks.

Although MS-lite alone is not a competitive M&S
method, it can be used to enhance another M&S heuris-
tics by taking the maximum of both heuristic values. The
extreme simplicity of MS-lite implies low computational
overhead for building it. To get a first idea of the potential
of using MS-lite to enhance an existing M&S method, we
roughly estimate the total coverage, by taking the maximum
per-domain coverage of MS-lite and the other heuristic. Ta-
ble 3(c) shows the total estimated coverage in row “Est.
Max Total”, and the estimated increase in coverage from
using the better method in each domain in row “Est. Im-
prov.”. The potential increases are large, ranging from +47
for LVL to +59.1 for DYN-MIASM. Of course, the actual
coverage could be higher or lower than these estimates, de-
pending on how complementary the two heuristics are in a
state space, and on the actual overhead of computing and us-
ing two heuristics. We will evaluate the real improvements
in our implementation in the experiments of Section 3.4 .

To understand more about MS-lite’s complementary
strength, we now focus on comparing MS-lite and SCC-DFP
in the following two sections, where we discuss two reasons
why MS-lite excels on some domains.

3.2 Efficient Construction
MS-lite can construct a M&S heuristic very efficiently. In
our test set, it constructs M&S heuristics successfully for
97.6% (1463) of all tasks. It fails on the remaining 36 tasks
by running out of memory during M&S construction. There
are no timeout failures. By comparison, SCC-DFP finishes
constructing a heuristic for 88.2% (1322) of tasks. It runs
out of memory during construction for 42 tasks, including
all the 36 tasks where MS-lite fails. It runs out of time dur-
ing construction on an additional 135 tasks. Thus, with a
2GB limit, the main limitation of SCC-DFP construction is
its running time. Figure 2(a) shows the percentages of tasks
for which MS-lite and SCC-DFP finish constructing their
heuristic (within the 2GB memory limit) as a function of

time. MS-lite finishes within 1 second for 77.5% of all tasks,
indicated by the horizontal dotted line in the figure. It takes
194 seconds per task, indicated by the vertical dotted line in
the figure, for SCC-DFP to build the same number of heuris-
tics. On the 88.2% of all tasks for which both methods finish
the heuristic construction, MS-lite uses at most 26 seconds
per task while SCC-DFP can use up to 1716 seconds.

Of course, the heuristic constructed by MS-lite may be too
poor to solve a task with A* quickly enough. In Figure 2(b),
we compare the number of A* node expansions for MS-lite
and SCC-DFP. We separately show the failures during M&S
construction and during A* search for cases where M&S
construction succeeds. Each planning task is shown as an
asterisk, whose x and y values represent the numbers of A*
node expansions using the SCC-DFP and MS-lite heuristics,
respectively. Failures in the M&S construction are shown
on the rightmost edge of the plot for SCC-DFP and on the
top edge of the plot for MS-lite. Cases where the heuristic
construction finishes but A* fails to solve the task with the
constructed heuristic are shown on the inset dashed lines,
vertical for SCC-DFP and horizontal for MS-lite.

The fact that the majority of points are above the diago-
nal confirms that MS-lite’s heuristic is less informative than
SCC-DFP’s overall. The concentrated distribution of points
close to the leftmost edge, indicated by the shaded area,
shows an exponentially growing number of A* node expan-
sions with the MS-lite heuristic on a series of problems that
are solved easily by SCC-DFP.

However, Figure 2(b) also demonstrates the complemen-
tary strength of MS-lite. The 30 points on the rightmost
edge and below the horizontal dashed line represent tasks
that MS-lite solves while SCC-DFP fails during the heuristic
construction phase. These tasks are from the domains tidy-
bot, tetris, airport and pipesworld where complex tasks have
hundreds or even thousands of atomic transition systems. It
is expensive to build an M&S heuristic with so many atomic
systems as the number of abstractions to construct is linear

in the number of atomic systems. Most of these abstractions
contain tens of thousands of states. By keeping all abstrac-
tions small, MS-lite greatly reduces the computational bur-
den of M&S. Constructing M&S heuristics for more com-
plex tasks becomes feasible, and some of these tasks are easy
enough to be solved with MS-lite heuristics.

3.3 Superior Heuristics for Some Tasks
The efficiency of the MS-lite construction explains the
points on the rightmost edge of Figure 2(b). The points be-
low the diagonal, which both methods solved but MS-lite
was faster, are an unexpected bonus. In one case from visi-
tall, indicated by a red arrow, A* expands only 25 nodes with
MS-lite’s heuristic, but almost 300,000 with SCC-DFP’s. In
addition to these cases, the 19 points on the vertical dashed
line represent tasks for which both methods construct their
heuristics but only MS-lite solves the problem. Did SCC-
DFP spend too many resources for constructing its heuristic,
leaving too few resources for A* to find a solution? A look
at the heuristic values of the initial states shows that it is
more likely that MS-lite creates better heuristics than SCC-
DFP for these tasks. The points on the vertical dashed line
in Figure 2(b) correspond to tasks from 4 domains: visitall,
parking, blocks, and mystery. In Figure 2(c), we compare the
initial heuristic values on all tasks from these 4 domains. We
highlight the 19 tasks that are only solved by MS-lite as red
dots while the tasks unsolved by both are shown as blue as-
terisks. For clarity, we scale the heuristic values to fit in the
range [0, 100]. Heuristic values from the same domain are
scaled with the same factor. Since in Figure 2(c), many more
points lie above the diagonal line, MS-lite creates better ini-
tial heuristics for most of the tasks from these 4 domains.
On the 19 tasks solved only by MS-lite, its initial heuristic
values are at least 33% larger, indicated by the dashed line,
than those of SCC-DFP. On tasks from visitall (points in the
shaded stripe), the initial heuristic values of MS-lite grow
about 30 times faster than those of SCC-DFP as the tasks
scale up.

MS-lite shrinks an abstraction whenever possible, while
passive shrinking is applied only when abstractions become
too large to merge. How can MS-lite with its active shrink-
ing produce better heuristics than SCC-DFP that use passive
shrinking? In the following, we show such an example in de-
tail. The example is abstracted from a task in the IPC domain
blocks.

Figure 3 shows the three atomic transition systems T1, T2,
and T3 used in this example. To prevent the diagrams from
becoming unnecessarily complex there is one operator not
shown in any of the transition systems, X−1, the inverse of
operator X . Other than X−1, all operators applicable to a
state are shown, so the absence of an edge indicates that an
operator is not applicable to a state. For example, operator
X is not applicable to state e in T2.

We consider a fixed merge order (T1 ⊗ T2) ⊗ T3 but two
alternatives for the shrinking strategy. The first alternative
is MS-lite’s active h-preserving shrinking. The second alter-
native is passive and late h-preserving shrinking that occurs
when using non-greedy bisimulation shrinking and the size
limit is smaller than the bisimulation size. In this small ex-

a
A

b c
B

X,Y X,Y X,Y

d X e

A,B,Y

f X,Y g

A,B A,B

(T1)

(T2)

(T3)

(T1)

(T2)

(T3)

Figure 3: Three atomic transition systems, T1 (top), T2 (mid-
dle), and T3 (bottom). Goal states are indicated with double
circles. The initial states are shaded.

ag
A

bg cg
B

X,Y

af
A

bf cf
B

X,Y X,Y

Figure 4: The synchronized product T1 ⊗ T3.

ae
A

be ce
B

Y Y Y

X

ad bd cd

X X

Figure 5: The synchronized product T1 ⊗ T2.

ae,
ad

A
be ce,

bd
B,X

X,Y Y Y
X cd

Figure 6: The result of h-preserving shrinking, σ(T1 ⊗ T2).

aeg,
adg

A beg ceg,
bdg

B cdg

aef,
adf bef cef,

bdf cdf

X X

B A

X,Y Y Y

Figure 7: The synchronized product σ(T1 ⊗ T2)⊗ T3.

ample, we set size limit to 4 to force a late h-preserving
shrinking. We will see that a larger heuristic value for the
initial state is produced by the first alternative than by the
second alternative.

Alternative 1: MS-lite’s active shrinking applies σ before
every merge. Because T3 = σ(T3) and T1 = σ(T1), the final
product is σ(T1 ⊗ σ(T2))⊗T3. Since σ(T2) is a single state
with a self-loop labelled by all the operators, the synchro-
nized product T1 ⊗ σ(T2) and its abstraction σ(T1 ⊗ σ(T2))
are isomorphic to T1 itself. Figure 4 shows the synchro-
nized product T1⊗T3 which is isomorphic to the final result
σ(T1 ⊗ σ(T2))⊗ T3. The shortest path from the initial state
to a goal state is of length 3.

Alternative 2: |T1|, |T2| and |T3| are less than the size
limit 4, so no shrinking on the atomic systems. The synchro-
nized product T1⊗T2 is shown in Figure 5. Since T1⊗T2 has
6 states, it needs to be shrunk before merging with T3. The
result of the minimal h-preserving shrinking of this product,
σ(T1 ⊗ T2), is shown in Figure 6. The key difference be-
tween this and Figure 5 is the transition from the initial state
to state be using operator X . This was not possible before
this shrinking occurred, it was introduced into the transition
system by combining state bd with the initial state ce. This
does no immediate harm, since the mapping is h-preserving,
but it has ramifications when this transition system is merged
with T3, where operator X plays a crucial role. With size
limit 4, we cannot refine the combined initial state (ce, bd).
The result, the synchronized product σ(T1 ⊗ T2) ⊗ T3, is
shown in Figure 7. The shortest path from the initial state to
the goal is only length 2.

The key observation here is that the late h-preserving
shrinking σ(T1 ⊗ T2), which combines bd with ce, can be
more harmful than the early h-preserving shrinking σ(T2),
which essentially combines be with bd and ce with cd but
keeps bd and ce separate in T1⊗σ(T2). Of course, when size
limits are large enough to allow a complete bisimulation re-
finement the problem would be resolved. However, in prac-
tice partial bisimulation refinements are more common and
they are not guaranteed to reverse every harmful combina-
tions induced by late h-preserving shrinking. For this exam-
ple, even if we have size limit 5, the bisimulation refinement
process will refine the combined goal state in Figure 6 but
still fail to split combined initial state because states closer to
the goal has higher priority in bisimulation refinement pro-
cess.

3.4 MS-lite enhanced M&S heuristics
We conclude this section with an experiment on a method we
call lite-enhanced M&S, in which we combine MS-lite with
a base M&S heuristic by taking the maximum of both. To re-
duce the effect of build failures, we build the MS-lite heuris-
tic first and limit the time and memory given to the base
heuristic as follows: if MS-lite finishes building its heuris-
tic within the standard 30min/2GB limit, then we attempt to
build the base heuristic within 15min/1.5GB2 limits. If this
attempt fails, we simply use the MS-lite heuristic by itself
for the A* search. Setting tighter limits for the base M&S
reduces coverage if there are hard tasks that are only solv-
able with a high quality base M&S heuristic, but improves

base method SCC-DFP DYN-MIASM
original 671 666
losses -1 -2
gains +48.8 +59.0

lite-enhanced 718.8 723.0

Table 4: Coverage of the base M&S heuristic (row “origi-
nal”) and its lite-enhanced variant (row “lite-enhanced”).

coverage for tasks that are solvable only with MS-lite, as
discussed in Section 3.2. We run each lite-enhanced M&S
5 times per task, and measure the average coverage of these
runs. We test the lite-enhanced variants of SCC-DFP and
DYN-MIASM.

Table 4 compares the total coverages of SCC-DFP and
DYN-MIASM with and without MS-lite enhancement. Row
“lite-enhanced” shows the coverage of lite-enhanced ver-
sions of SCC-DFP and DYN-MIASM. Row “# losses” gives
the number of tasks solved by the base M&S alone, but not
by the enhanced variant. Row “# gains” gives the number
of tasks solved by the lite-enhanced method, but not by the
base method alone. There are only 1 and 4 domains where
the coverage of random runs differ for enhanced SCC-DFP
and DYN-MIASM respectively, and the difference between
the best and worst runs is only 1. DYN-MIASM enhanced
with MS-lite outperforms the previously best M&S method,
unenhanced SCC-DFP, and solves a few more tasks than en-
hanced SCC-DFP.

4. A Merging Score on Heuristic Quality
The goal of M&S is to construct a final heuristic of high
quality. In this section, we present a second new M&S
method called DM-HQ that uses heuristic quality informa-
tion for the merge decision making (HQ stands for “Heuris-
tic Quality”). DM-HQ is a variant of DYN-MIASM that
uses an additional heuristic quality scoring function to help
choose better merging candidates. Both DYN-MIASM and
our new scoring function are product-dependent: they re-
quire computing synchronized products of merge candidates
(all pairs of transition systems in the current set) before mak-
ing merging decisions. The two methods extract different in-
formation from a synchronized product. DYN-MIASM eval-
uates a merge candidate by the number of states not on any
path from the abstract initial state to an abstract goal state.
These states can be pruned in the synchronized product of
the candidate. This measure says nothing about the quality
of the heuristic of the synchronized product, and our new
scoring function focuses on such information.

4.1 Heuristic Guided Scoring Function
The generic form of our new scoring function is:

score(T1, T2) = IQ(Tp, T1, T2) (1)

2In theory, we can use any memory limit smaller than 2GB,
but in our implementation, we can only check memory usage pe-
riodically and need to keep a margin of reserve memory to avoid
termination of the planner during the base M&S construction.

where T1 and T2 are the transition systems of a merge can-
didate, and Tp is the new transition system one would get if
T1 and T2 are chosen to merge next, after possibly shrinking
them first. Q is a heuristic quality evaluator and I is an im-
provement evaluator. In the following, we discuss why we
design our scoring function in this form and what evaluation
functions we chose for Q and I.

How to Evaluate Heuristics? There are many possible
ways to evaluate a heuristic. For example, one could use the
average heuristic values of a set of sampled states, or an es-
timation of the search effort when using the heuristic. Like
DYN-MIASM, our scoring function depends on the prod-
uct transition system Tp produced by merging and possi-
bly shrinking T1 and T2 for each candidate. This makes the
whole M&S process very time-consuming. To avoid addi-
tional computational overhead, we simply use the heuristic
value of the initial state as the heuristic quality evaluator.
The initial heuristic is often a reasonable indicator of the
number of A* expansions, although it may not be as accu-
rate as other evaluators. Q0(T) denotes the initial heuristic
value hT (s0), where hT is the abstraction heuristic defined
by transition system T .

Why Evaluate Improvements? score(T1, T2) aims to
measure an “improvement of heuristic quality”, rather than
measuring heuristic quality alone (i.e., score(T1, T2) is not
defined to be just Q(Tp)). If we use an evaluation of heuris-
tic quality of the product transition system directly, we may
end up with a merge strategy that always prefers to merge
large transition systems, whose product gives a high-quality
heuristic simply due to its large size. This tendency to merge
large transition systems may result in a linear merge strat-
egy where a dominant transition system keeps drawing other
transition systems in. It seems an unfair bias to directly com-
pare small and large transition systems produced in an M&S
process. Instead of evaluating the heuristic quality of a prod-
uct directly, we evaluate the improvement of heuristic qual-
ity that results from merging two transition systems.

How to Evaluate Improvement? Since we evaluate
heuristic quality by heuristic Q0 scores, we can evalu-
ate the heuristic quality improvement by how much the
heuristic values increase after merging. Note that be-
fore computing Tp, shrinking T1 and T2 may be needed.
Since this shrinking is always h-preserving, Q0(Tp) ≥
max(Q0(T1),Q0(T2)). There are several ways to define
how much of an increase Q0(Tp) represents over Q0(T1) and
Q0(T2). We considered three evaluators: I+Q0

(Tp, T1, T2) =
Q0(Tp)−(Q0(T1)+Q0(T2)), Imax

Q0
(Tp, T1, T2) = Q0(Tp)−

max (Q0(T1),Q0(T2)) and Imin
Q0

(Tp, T1, T2) = Q0(Tp) −
min (Q0(T1),Q0(T2)). Our experiments show that M&S us-
ing scoring function I+Q0

solves 661 tasks in total, better than
618 for Imax

Q0
and 648 for Imin

Q0
, and slightly worse than DYN-

MIASM and SCC-DFP.
Next, we integrate evaluators into DYN-MIASM by us-

ing them for tie breaking after DYN-MIASM. Since the
two scoring functions are both product-dependent, I+Q0

intro-
duces little computational overhead to DYN-MIASM. We

only need to do the expensive product-generation compu-
tation once. DYN-MIASM with I+Q0

tiebreaker has a total
coverage of 681, which is better than 636 and 674 for DYN-
MIASM with Imax

Q0
and Imin

Q0
respectively. We denote DYN-

MIASM with I+Q0
tiebreaker by “DM-HQ”. Figure 8(a) com-

pares the number of expansions of DM-HQ and SCC-DFP.
DM-HQ solves 36 tasks on which SCC-DFP fails, but it also
fails on 26 tasks that SCC-DFP solves. In balance, DM-HQ
solves 10 more tasks than SCC-DFP.

4.2 Lite-enhanced DM-HQ
The results in Table 4 show that MS-lite is more complemen-
tary to DYN-MIASM than to SCC-DFP. This strong com-
plementarity is inherited by DM-HQ. Figure 8(b) compares
the numbers of expansions of MS-lite and DM-HQ.

The plot is quite similar to Figure 2(b). There are 65 tasks
solved by MS-lite but not by DM-HQ. Do those 65 tasks
cover any of the 26 tasks solved by SCC-DFP but not by
DM-HQ? Our final experiment on lite-enhanced DM-HQ
provides an affirmative answer. Table 5 shows the cover-
age of SCC-DFP, and increases/decreases of coverage of
DM-HQ, lite-enhanced SCC-DFP and lite-enhanced DM-
HQ with respect to SCC-DFP. Overall, lite-enhanced DM-
HQ solves 75.2 more tasks than the previous state-of-the-art
M&S method SCC-DFP. As shown in Section 3.4, enhanc-
ing SCC-DFP with MS-lite already improves coverage by
47.8. Lite-enhanced DM-HQ solves an additional 27.4 tasks.
Figure 8(c) compares the number of expansions of lite-DH
and SCC-DFP. The commonly solved tasks distribute simi-
larly to those in Figure 8(a) implying the strength of DM-HQ
over SCC-DFP remains after the lite-enhancement. We also
see fewer points on the top edge and horizontal dashed line
and more points on the rightmost edge and vertical dashed
line, showing the enhancement from MS-lite.

Table 5 lists all domains where any of the three new
M&S methods solves a different number of tasks than
SCC-DFP. To illustrate that DM-HQ and MS-lite comple-
ment each other well regarding their strengths over SCC-
DFP, we divided these domains into 3 groups. In group
(a), lite-enhanced DM-HQ has better coverage than DM-
HQ. In group (b), DM-HQ gains no coverage improve-
ment from lite-enhancement but outperforms SCC-DFP. In
group (c), SCC-DFP solves more tasks than DM-HQ, and
lite-enhancement does not improve DM-HQ. Within each
group, domains are sorted in decreasing order of cover-
age improvement. For example, on parking in (a), DM-HQ
solves 5 fewer tasks than SCC-DFP, but enhanced DM-HQ
solves 7 more than SCC-DFP, so the total difference is +12
which is larger than the corresponding value +10 for vis-
itall. Group (a) contains most of the domains where DM-
HQ performs worse than SCC-DFP. 19 tasks from those do-
mains are solved by SCC-DFP but not DM-HQ. However,
lite-enhanced DM-HQ solves many more tasks than SCC-
DFP. Group (b) contains most domains where DM-HQ out-
performs SCC-DFP by itself, and we see no improvement
from lite-enhancement on DM-HQ. The total coverage im-
provement of DM-HQ over SCC-DFP from those domains
is 35 tasks.

101 103 105 107

101

103

105

107

SCC-DFP
(a)

D
M

-H
Q

101 103 105 107

101

103

105

107

DM-HQ
(b)

M
S
-l
it
e

101 103 105 107

101

103

105

107

SCC-DFP
(c)

li
te
-D

H

Figure 8: Expansion plots as in Figure 2(b) except comparing different M&S heuristics: (a) DM-HQ heuristic (y-axis) vs.
SCC-DFP (x-axis), (b) MS-lite heuristic (y-axis) vs. DM-HQ (x-axis), and (c) lite-enhanced DM-HQ (y-axis) vs. unenhanced
SCC-DFP (x-axis).

Domains SCC-DFP DM-HQ Lite-SD Lite-DH

(a)

tidybot (30) 1 -1 +16 +16.4
parking (40) 6 -5 +7 +7
visitall (33) 12 +1 +9 +11
tetris (17) 2 -1 +6 +6
blocks (35) 26 -5 +2 +2
pipesworld (100) 31 -6 +2 +1
airport (50) 18 0 +4.8 +4.8
mystery (23) 16 -1 +1 -0.2
scanalyzer (30) 13 -1 0 -0.8

(b)

floortile (40) 6 +9 0 +9
elevators (30) 13 +7 0 +7
sokoban (30) 26 +4 0 +4
woodworking (30) 19 +3 0 +3
hiking (20) 13 +2 -1 +2
rovers (40) 6 +2 0 +2
transport (60) 17 +2 0 +2
nomystery (20) 18 +2 0 +1
logistics (63) 25 +1 0 +1
openstacks (80) 30 +1 0 +1
trucks (30) 7 +1 0 +1
depot (22) 6 +1 +1 +1

(c)

gripper (20) 20 -1 0 -1
miconic (150) 78 -1 0 -1
parcprinter (30) 26 -1 0 -1
tpp (30) 8 -1 0 -1
pegsol (35) 35 -2 0 -2
Changes (1089) 478 +10 +47.8 +75.2
Others (410) 193 0 0 0
Total (1499) 671 681 718.8 746.2

Table 5: Coverage of SCC-DFP and the increases/decreases
of DM-HQ over SCC-DFP (column “DM-HQ”), lite-
enhanced SCC-DFP over SCC-DFP (column “Lite-SD”)
and of lite-enhanced DM-HQ over SCC-DFP (column “Lite-
DH”). “Others” summarizes the 13 domains for which all
four systems have the same coverage.

5. Conclusions and Future Work
In this paper, we have presented two new M&S methods,
MS-lite and DM-HQ. MS-lite maintains only the smallest
heuristic preserving abstractions. The “minimalism” of MS-
lite avoids expensive shrinking, merging and label reduction
operations, allowing very efficient construction of heuristics
even for complex tasks. MS-lite’s strengths are complemen-
tary to other M&S methods: not only its superior construc-
tion efficiency, but also its better heuristics on some tasks.
We demonstrate in an example that the active shrinking of
MS-lite can result in better heuristics than normal passive
shrinking. More importantly, the efficiency of MS-lite makes
it perfect for enhancing other M&S heuristics by using the
maximum of both heuristics for search because there is little
overhead for constructing the MS-lite heuristic. Such MS-
lite enhancement improves the coverage of SCC-DFP and
DYN-MIASM by a large number of tasks. As another con-
tribution, we presented DM-HQ, a variant of DYN-MIASM
that uses a measure of heuristic quality improvement as a
tiebreaker for its merging decisions. DM-HQ and MS-lite
complement each other better than other M&S methods.
Our experiments show that lite-enhanced DM-HQ dramati-
cally outperforms the previous state-of-the-art M&S method
SCC-DFP.

5.1 Future Work
The results in this paper suggest several directions for
follow-up investigations. The main ones are:
• In our experiments, the merge order used by MS-lite

rarely affects its performance. Theoretical analysis is
needed to determine the cause, ideally providing neces-
sary and/or sufficient conditions under which merge-order
independence is guaranteed.

• Our experiments show that in some cases MS-lite pro-
duces superior heuristics compared to more sophisticated
M&S methods. Further analysis is needed to understand
under what conditions this can happen.

• MS-lite creates transition systems with one state per h-
value. It might be possible to create a superior heuristic
by being just slightly less aggressive in the amount of
shrinking. For example, one could allow a small constant
number K > 1 of states per h-value, creating a narrow
two-dimensional structure instead of a one-dimensional
one. Another possibility is to shrink a transition system to
its coarsest f -preserving abstraction.

• There were some tasks where even MS-lite was not ef-
ficient enough to construct a heuristic within the given
memory limit. These cases need to be studied with the
aim of producing an ultra-lite M&S method.

• The success of the combination of MS-lite and MS-HG is
due to their complementarity: MS-lite works well on com-
plex domains that do not require especially good heuris-
tics, while MS-HG works well on low-complexity do-
mains that require good heuristics. This suggests MS-
lite might work even better in conjunction with an M&S
method that produced superior heuristics to MS-HG even
if its construction time was significantly larger.

References
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Proceedings of Model Checking Software, 13th Interna-
tional SPIN Workshop, volume 3925, 19–34.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merg-
ing strategies for merge-and-shrink based on variable inter-
actions. In Proceedings of the 7th Annual Symposium on
Combinatorial Search, 53–61.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–16:63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to relax
a bisimulation? In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling, 101–
109. AAAI.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 1983–1990.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-

ings of the 28th AAAI Conference on Artificial Intelligence,
2358–2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analysis
of merge strategies for merge-and-shrink heuristics. In Pro-
ceedings of the 26th International Conference on Automated
Planning and Scheduling, 294–298.

