
Factorization Ranking Model for
Move Prediction in the Game of Go

Chenjun Xiao and Martin Müller
Computing Science, University of Alberta

Edmonton, Canada
{chenjun,mmueller}@ualberta.ca

Abstract

In this paper, we investigate the move prediction prob-
lem in the game of Go by proposing a new ranking
model named Factorization Bradley Terry (FBT) model.
This new model considers the move prediction problem
as group competitions while also taking the interaction
between features into account. A FBT model is able
to provide a probability distribution that expresses a
preference over moves. Therefore it can be easily com-
piled into an evaluation function and applied in a mod-
ern Go program. We propose a Stochastic Gradient De-
cent (SGD) algorithm to train a FBT model using expert
game records, and provide two methods for fast compu-
tation of the gradient in order to speed up the training
process. Experimental results show that our FBT model
outperforms the state-of-the-art move prediction system
of Latent Factor Ranking (LFR).

Introduction

Go is an ancient Chinese board game. Two players, Black
and White, take turns to place a single stone on an empty
intersection on a Go board. Stones cannot be moved once
placed, but are removed if surrounded by opponent stones.
Both players’ objective is to surround a larger total area of
the board with their stones than the opponent by the end of
the game. Even though its rules are very simple, Go is an
very complex and deeply strategic game. Due to the fact that
it’s very difficult to construct a suitable evaluation function
(Müller 2002), Go is one of the last classical board games
that have not been mastered by computer programs.

When playing Go, human experts rely heavily on pattern
recognition. Using their strong intuition, they can recognize
promising moves and important regions of a Go board at
a glance, without simulating many thousands of continu-
ations like modern Go programs. Machine learning tech-
niques can be used to acquire pattern knowledge from hu-
man game records. Such move prediction systems can di-
rectly serve as Go playing programs, but more importantly,
they can play the role of an evaluation function to guide the
tree search in an algorithm such as Monte Carlo Tree Search
(MCTS) (Coulom 2006). A fast move prediction system
can estimate all candidate moves and estimate how likely

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each move is to be played by an expert. A selective search
algorithm can then focus on the most promising moves.
Most state-of-the-art computer Go programs rely heavily on
such knowledge (Browne et al. 2012). Using simple features
such as patterns, popular offline training algorithms such as
Minorization-Maximization (MM) (Coulom 2007) and La-
tent Factor Ranking (LFR) (Wistuba and Schmidt-Thieme
2013) produce models that are fast enough to evaluate at ev-
ery node in a MCTS game tree.

Recently, Deep Convolutional Neural Networks (DCNN)
have achieved human-level performance and have outper-
formed traditional techniques for predicting expert moves
(Clark and Storkey 2015; Maddison et al. 2014). How-
ever, well-performing networks are very large, with mil-
lions of weights (Maddison et al. 2014), and even on spe-
cialized hardware their evaluation speed is orders of mag-
nitude slower than traditional techniques. How to best com-
bine DCNN with MCTS is still an open question. Therefore,
it makes sense to continue research on high performance
move prediction algorithms as well.

The current paper proposes and evaluates the Factoriza-
tion Bradley-Terry model for move prediction. In popular
move prediction algorithms for the game of Go, such as
(Coulom 2007; Wistuba and Schmidt-Thieme 2013), each
move in a game is modeled as a group of features which de-
scribe it. Best move selection then becomes a competition
among the groups representing all legal moves in a Go posi-
tion.

The major innovation of the proposed Factorization
Bradley-Terry (FBT) model is to combine the strengths
of the two leading approaches (Coulom 2007; Wistuba
and Schmidt-Thieme 2013), and consider the interaction
between individuals within the same group as part of a
probability-based framework, which is inspired by the Fac-
torization Machine model (Rendle 2010).

The expert move prediction problem is formulated within
this new model. Similar to (Wistuba and Schmidt-Thieme
2013), a Stochastic Gradient Descent (SGD) algorithm is
used to train a model. Two techniques accelerate the train-
ing process: an efficient incremental gradient update, and
a Monte Carlo method for unbiased approximate gradient
computation. The experiments test FBT by varying the size
of data sets as well as the expressiveness of the feature sets.
Results show that FBT outperforms Latent Factor Ranking.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1359

Related Work

The popular high-speed move prediction systems represent
each move as a combination of a group of features, learn
weights for each feature from expert game records by su-
pervised learning, and define an evaluation function based
on the weights which is used to rank moves. Examples in-
clude Bayesian Full Ranking (Stern, Herbrich, and Graepel
2006), Bayesian Approximation for Online ranking (Wis-
tuba, Schaefers, and Platzner 2012)(Weng and Lin 2011),
Minorization-Maximization (MM) (Coulom 2007) and La-
tent Factor Ranking (LFR) (Wistuba and Schmidt-Thieme
2013).

MM is an efficient learning algorithm which is very pop-
ular in Computer Go. Move prediction is formulated as a
competition among all possible moves in a Go position, and
each move is represented as a group of features. A sim-
ple probabilistic model named Generalized Bradley-Terry
model (Hunter 2004) defines the probability of each feature
group winning a competition. The strength of each feature is
estimated by maximizing the likelihood of the expert moves
winning all competitions over the whole (large) training set.

LFR improves the performance of move prediction by
taking pairwise interactions between features into account.
This is modelled using a Factorization Machine (FM) (Ren-
dle 2010), an efficient model especially for sparse interac-
tions, which is widely used in the recommendation commu-
nity (Rendle et al. 2011). Move prediction is considered as
a binary classification problem, with the expert move in one
class and all other legal moves in the other. A drawback of
LFR is that the evaluation it produces does not provide a
probability distribution over all possible moves. This makes
it much harder to combine with other kinds of evaluations.

The successes of LFR and MM highlight two important
aspects: the interactions between features within a group,
and an efficient ranking model to describe the interac-
tions between all possible groups. The Factorization Bradley
Terry model combines these insights: like MM, move pre-
diction is modeled as a competition among all moves using
a Bradley-Terry model. As in LFR, a Factorization Machine
models the interaction between the features of a move.

The Factorization Bradley-Terry Model

The Factorization Bradley-Terry (FBT) model is introduced
for estimating the probability of a feature group win-
ning competitions with other groups, while taking into ac-
count the pairwise interactions between features within each
group. Let k ∈ N

+ be the dimension of the factoriza-
tion. Let F be the set of all possible features. For feature
f ∈ F , let wf ∈ R be the feature’s (estimated) strength, and
vf ∈ R

k be its factorized interaction vector. Here, the in-
teraction strength between two features f and g is modeled
as 〈vf , vg〉 =

∑k
i=1 vf,i · vg,i. The parameter space of this

model is w ∈ R
|F| and v ∈ R

|F|×k.
The idea of using factorized interaction vectors comes

from Factorization Machines (Rendle 2010). The matrix
v ∈ R

|F|×k is a sparse approximation of the full pairwise
interaction matrix Φ ∈ R

|F|×|F|, which is huge for large

|F|. A proper choice of k makes such models especially effi-
cient for generalization under sparse settings (Rendle 2010).
In Computer Go, settings k = 5 and k = 10 are popu-
lar (Wistuba and Schmidt-Thieme 2013). Richer feature sets
and larger training sets might require increasing k for best
performance.

The strength of a group G ⊆ F in FBT is defined as

EG =
∑

f∈G
wf +

1

2

∑

f∈G

∑

g∈G,g �=f

〈vf , vg〉 (1)

In FBT, the popular exponential model (Huang, Lin, and
Weng 2006) is used to model winning probabilities in com-
petition among groups. Given N groups {G1, . . . ,GN}, the
probability that group Gi wins is given by:

P (Gi wins) =
exp(EGi)

∑N
j=1 exp(EGj)

(2)

Move Prediction in Go using the proposed

model

Let S be the set of possible Go positions and Γ(s) be the set
of legal moves in a specific position s ∈ S . The objective
of the move prediction problem is to learn from a training
set to predict expert moves. Features F are used to describe
moves in a given game state. Each move is represented by
its set of active features G ⊆ F . The training set D consists
of cases Dj , with each case representing the possible move
choices in one game position sj .

Dj = { Gi
j | for i = 1, . . . , |Γ(sj)|}

As in MM, the process of choosing a move is modeled
as a competition, using the ranking model defined before.
In this setting, the set of features F is the set of “players”
which compete in groups. Let the winner of the competition
among groups in Dj be G∗

j . From (2), the probability of the
current test case is

P (Dj) =
exp(EG∗

j
)

∑|Γ(sj)|
i=1 exp(EGi

j
)

(3)

Parameter Estimation for FBT

In the proposed FBT model (3), each feature’s strength and
factorized interaction vector is learned from a training set
D = {D1, . . . ,Dn}. This section first poses the learning of
these parameters as an optimization problem, then describes
a Stochastic Gradient Descent (SGD) algorithm for estimat-
ing them, and finally provides two methods for accelerating
the learning process.

Definition of the Optimization Problem

Suitable parameters in FBT can be estimated by maximizing
the likelihood of the training data. For the jth training case
Dj , the negative log loss function is given by

1360

lj = − ln
exp(EG∗

j
)

∑|Γ(sj)|
i=1 exp(EGi

j
)
= −EG∗

j
+ln

|Γ(sj)|∑

i=1

exp(EGi
j
)

(4)
Assuming that competitions are independent, the loss

function becomes simply the sum over all training examples:

L =
1

n

n∑

j=1

lj (5)

The corresponding optimization problem is:

min
w∈R|F|,v∈R|F|×k

L+ λwR(w) + λvR(v) (6)

R is an L2 regularization function to avoid overfitting, and
λw and λv are regularization parameters. The choice of val-
ues is discussed in the Experiments section.

Parameter Learning with Stochastic Gradient
Descent

We propose a SGD algorithm to learn the model parameters.
(1) can be expressed as a linear function with respect to ev-
ery single model parameter θ ∈ w ∪ v (Rendle et al. 2011),
which means that if θ ∈ G,

EG = θhG(θ) + gG(θ) (7)
where both hG(θ) and gG(θ) are independent of the value
of θ, and if θ = ws ∈ w, hG(θ) = 1, if θ = vs,q ∈ v,
hG(θ) = 1

2

∑
t∈G,t �=s vt,q . Note that if s �∈ G, both hG(θ)

and gG(θ) are simply zero. Using these facts, the gradient of
the loss function lj for parameter θ can be written as:

∇jθ =− ∂EG∗
j

∂θ
+

∂ ln
∑|Γ(sj)|

i=1 exp(EGi
j
)

∂θ

=− hG∗
j
(θ) +

∑|Γ(sj)|
i=1 ∂exp(EGi

j
)/∂θ

∑|Γ(sj)|
i=1 exp(EGi

j
)

=− hG∗
j
(θ) +

∑|Γ(sj)|
i=1 exp(EGi

j
)hGi

j
(θ)

∑|Γ(sj)|
i=1 exp(EGi

j
)

(8)

The resulting gradients ∇jθ for updating a parameter θ
are:

−1 +

∑|Γ(sj)|
i=1 exp(EGi

j
)I{s∈Gi

j}
∑|Γ(sj)|

i=1 exp(EGi
j
)

θ = ws, s ∈ G∗
j

−HG∗
j ,q +

∑|Γ(sj)|
i=1 exp(EGi

j
)I{s∈Gi

j}HGi
j
,q

∑|Γ(sj)|
i=1 exp(EGi

j
)

θ = vs,q, s ∈ G∗
j

∑|Γ(sj)|
i=1 exp(EGi

j
)I{s∈Gi

j}
∑|Γ(sj)|

i=1 exp(EGi
j
)

θ = ws, s /∈ Gi
j

∑|Γ(sj)|
i=1 exp(EGi

j
)I{s∈G∗

j }HGi
j
,q

∑|Γ(sj)|
i=1 exp(EGi

j
)

θ = vs,q, s /∈ G∗
j

(9)

with indicator function I and HG,q = 1
2

∑
t∈G,t �=s vt,q .

Remark. The new model (3) can be considered an exten-
sion of the generalized Bradley-Terry model (Hunter 2004),
which applies a Factorization Machine to model the inter-
action between team members when computing a team’s
ability. It is very similar to the conditional exponential
model (Pietra, Pietra, and Lafferty 1997), which is widely
used in computational linguistics. From this standpoint, it
seems like optimization algorithms for solving these models
such as Alternating Optimization (AO) (Rendle et al. 2011),
Maximization-Minimization (MM) (Hunter 2004) (Coulom
2007) and Improved Iterative Scaling (IIS) (Pietra, Pietra,
and Lafferty 1997) might also be suitable for solving (6).
Generally speaking, all of these methods try to solve the op-
timization problem iteratively. At each iteration, to update a
parameter θ, they first construct a sub-optimization problem
according to some functional properties (e.g. Jensen’s in-
equality and the upper bound of logarithmic function), then
find the optimizer as the starting point of the next iteration
by fixing all the other parameters except θ and setting the
derivative of θ to zero. However, when considering the prob-
lem (6), the derivatives of a group Gi

j for θ is

∂exp(EGi
j
)

∂θ
= exp(θhGi

j
(θ))exp(gGi

j
)hGi

j
(θ)

If θ ∈ v, the values hGi
j
(θ) will change with different i

and j, and thus the update of θ ∈ v at each iteration dose
not have a closed form solution. Numerical method such as
Newton’s method is required to compute the update value
for θ, which will introduce further computational complex-
ity. In conclusion, it would be very inefficient to use such
algorithms for problem (6).

Efficient Gradient Computation

The first bottleneck of computing the gradient of the loss
function lj via (8) is calculating exp(EGi

j
) for each i ∈

{1, . . . , |Γ(sj)|}. For one particular group G, a direct com-
putation of exp(EG) is obviously in O(|G|k). However, we
can compute this term once and update it in constant time
when some parameters corresponding to feature s ∈ G have
been changed. Suppose that we update the parameter θ to θ′,
then for a group G, EG = θhG(θ)+gG(θ) should be updated
to

E′
G = θ′hG(θ) + gG(θ) = EG + (θ′ − θ)hG(θ) (10)

Therefore, at the beginning of training we precompute all
EG in the training set once, then update them efficiently
through equation (10) when necessary, which only takes
constant time.

Right now the computational complexity of EG depends
on the complexity of calculating hG(θ). For w, the h term
in (10) is just 1, so the update time is constant. For updating
θ = vs,q ∈ v, the direct computation of the h term in (10)
takes O(k) time. However, it can be updated in constant time
by first precomputing RG,q = 1

2

∑
t∈G vt,q for each group in

the training set, since

1361

hG(vs,q) = RG,q − 1

2
vs,q (11)

After an update of vs,q to v′s,q , RG,q can be updated in
constant time by

R′
G,q = RG,q +

1

2
(v′s,q − vs,q) (12)

Using equations (10) to (12), exp(EG) can be updated in
constant time.

Regarding the space complexity of the fast gradient com-
putation method described above, let γ=maxj∈{1,...,n}|Dj |.
For each group G in Dj , storing one EG and one RG,q for
each factorization dimension 1 ≤ q ≤ k, gives total space
complexity O(nγk).

Approximate Gradient

Another bottleneck of computing the gradient via (8) is
traversing the set of all group. For example, in the move pre-
diction problem in 19× 19 Go, the average value of |Γ(sj)|
is about 200, which implies significant computation cost. A
Monte Carlo approach can address this problem by sampling
an approximate gradient that matches the real gradient in ex-
pectation.

Let P i
j be the probability that Gi

j is the winner of
Dj using model (2). The probability distribution Pj =

(P 1
j , . . . , P

|Γ(sj)|
j) over Dj allows us to construct an unbi-

ased approximate gradient. Consider a mini-batch of groups
created by sampling M groups {G(1), . . . ,G(M)} from Dj

according to the probability distribution Pj . The sampled
approximate gradient of the loss function lj for parameter
θ is:

∇̂jθ = −hG∗
j
(θ) +

1

M

M∑

i=1

hG(i)j
(θ) (13)

We now show that the sampled approximate gradient
matches the gradient (8) in expectation.

Lemma 1. E
Pj
[∇̂jθ] = ∇jθ

Proof.

EPj
[∇̂jθ] =− hG∗

j
(θ) + E

Pj
[
1

M

M∑

i=1

hG(i)j
(θ)]

=− hG∗
j
(θ) +

|Γ(sj)|∑

i=1

P i
jhGi

j
(θ) = ∇jθ

(14)

Experiments

The experiments in this section evaluate FBT and the ap-
proximate gradient computation for the move prediction task
in the game of Go. FBT is compared with the state-of-the-art
move prediction algorithm of Latent Factor Ranking (LFR)
(Wistuba and Schmidt-Thieme 2013).

Setup

The training process is performed on a 2.40GHz machine
with 64GB memory. Both FBT and LFR use the same hy-
per parameters as in (Wistuba and Schmidt-Thieme 2013),
with learning rate α = 0.001 and regularization parame-
ters λw = 0.001, λv = 0.002. The same stopping criteria
for the training process are applied: if an algorithm’s predic-
tion accuracy on a validation set is not increased for three
iterations, the training is stopped and the best-performing
weight set is returned. Three data sets of increasing size,
S1 ⊂ S2 ⊂ S3, are used, which contain 1000, 10000, and
20000 master games respectively. The games are in the pub-
lic domain at https://badukmovies.com/pro games.

The learned model is evaluated on a test set. Test and vali-
dation set contain 1000 games each, and are disjoint from the
training sets and from each other. The prediction accuracy
in all experiments is defined as the probability of choosing
the expert moves over all test cases, not as the average accu-
racy over the 12 game phases used in (Wistuba and Schmidt-
Thieme 2013). That metric gives higher percentages since it
weighs the opening and late endgame more, where the pre-
diction rate is above average.

Choice of Features

When using large patterns, many algorithms can get a high
move prediction accuracy at the beginning of the game
(Wistuba and Schmidt-Thieme 2013). This is because these
moves are often standard opening moves which can be repre-
sented very accurately by large patterns. It is informative to
also compare move prediction algorithms without such large
patterns. Therefore, two different feature sets, the small pat-
tern feature set Fsmall and the large pattern feature set
Flarge are used in all tests. Both sets contain the same non-
pattern features. Fsmall adds only 3 × 3 patterns, while
Flarge includes large patterns. Fsmall helps provide a bet-
ter comparison of FBT and LFR, while Flarge yields a more
powerful move prediction system overall.

The Fsmall features are the same as in the LFR implemen-
tation that is part of the open source Fuego program (En-
zenberger et al. 2010). Large patterns in Flarge were added
for this study. Most features are similar to earlier work such
as (Coulom 2007; Wistuba and Schmidt-Thieme 2013). For
implementation details, see the Fuego code base (Enzen-
berger and Müller 2008 2015).

The simple features used in this work are:

• Pass

• Capture, Extension, Self-atari, Atari Tactical features
similar to (Coulom 2007).

• Line and Position (edge distance perpendicular to
Line) ranges from 1 to 10.

• Distance to previous move feature values are 2,. . . , 16,
≥ 17. The distance is measured by d(δx, δy) = |δx| +
|δy|+max{|δx|, |δy|}.

• Distance to second-last move uses the same metric as
previous move. The distance can be 0.

1362

Table 1: Results for Fsmall: probability of predicting the ex-
pert move with FBT and LFR, for k = 5 and k = 10. Best
results for each method in bold.

Training set FBT5 FBT10 LFR5 LFR10
S1 32.56% 32.82% 30.01% 30.08%
S2 33.18% 33.42% 30.95% 31.63%
S3 33.46% 34.01% 31.13% 31.94%

Table 2: Results for Flarge, same format as Table 1.
Training set FBT5 FBT10 LFR5 LFR10

S1 35.83% 35.96% 34.38% 34.47%
S2 38.26% 38.31% 37.12% 37.34%
S3 38.48% 38.75% 37.56% 37.69%

• Fuego Playout Policy These features correspond to the
rules in the playout policy used in Fuego. Most are simple
tactics related to stones with a low number of liberties.

• Side Extension The distance to the closest stones along
the sides of the board.

• Corner Opening Move Standard opening moves.
• CFG Distance Distance when contracting all stones in a

block to a single node in a graph (Friedenbach 1980).
• Shape Patterns The small pattern set contains all patterns

of size 3 × 3. The large pattern set includes circular pat-
terns with sizes from 2 to 14, harvested as in (Stern, Her-
brich, and Graepel 2006; Wistuba and Schmidt-Thieme
2013). All shape patterns are invariant to rotation, trans-
lation and mirroring.

Expert Move Prediction

To compare the prediction accuracy of FBT and LFR, on
each data set, two different models were trained for each al-
gorithm, setting the dimension of the factorized interaction
vector to k = 5 and k = 10. These methods with a specific k
value are called FBTk and LFRk respectively. All results are
averaged over five runs, since both FBT and LFR randomize
initial parameter values.

Experiment with Fsmall Results for the small pattern set
Fsmall are presented in Table 1. Both methods improve with
larger training sets. For each combination of training set Si

and k, FBT outperforms LFR. The best model learned by
FBT, for k = 10 and S3, outperforms the best LFR model
by 2.07%. Note that the gap between the maximum and min-
imum prediction accuracy of the five runs over all tests of
FBT is 0.64%, which shows that FBT is quite stable and the
performance difference between LFR and FBT is significant.
Prediction accuracy increases with growing k, confirming
the observation in (Wistuba and Schmidt-Thieme 2013).

Figures 1(a) and 1(b) compare the details of the move pre-
diction results of LFR and our method. Figure 1(a) compares
the cumulative probability of predicting the expert’s move
within the top n ranked moves, for S3 with k = 10. While
both methods rank most expert moves within the top 20, the
gap between FBT and LFR grows initially up to about rank

5, then holds steady throughout. Figure 1(b) presents the pre-
diction accuracy per game stage, where each game phase
consists of 30 moves as in (Wistuba and Schmidt-Thieme
2013). FBT outperforms LFR at every stage of the game.

Experiment with Flarge For creating large pattern fea-
tures, pattern harvesting collects all patterns that occur at
least 10 times in the training set. For training sets S1, S2 and
S3, the number of such patterns is 9390, 84660 and 152872
respectively. Following (Wistuba, Schaefers, and Platzner
2012) and (Stern 2008), Figure 1(f) shows the distribution of
largest matches for the different pattern sizes in each game
phase. Large size patterns dominate in the opening (phase
1), then disappear rapidly. Later in the game only small size
patterns are matched. Table 2 shows the prediction accuracy
of FBT and LFR trained with Flarge. Regarding the mar-
gin of error, the gap between the maximum and minimum
prediction accuracy of the five runs over all tests of FBT is
0.82%. Figures 1(c) and (d) show the cumulative prediction
probabilities and the accuracy per game stage. Both FBT and
LFR learn better models with Flarge than with Fsmall, with
huge differences in the opening due to large patterns, and
both methods achieve very high accuracy at the endgame. As
with Fsmall, FBT outperforms LFR on every data set, but the
differences between the two methods are smaller. This can
be expected, especially for the opening stage, where both
algorithms learn the same large-scale patterns for the stan-
dard opening moves. FBT retains its advantage for the mid-
dle game, which is important in practice since many games
are decided there.

Sampling for Approximate Gradient Computation

To evaluate the new online sampling method for approxi-
mate gradient computation, experiments with k = 5 were
run on all the three training sets, varying the number of sam-
ples as m ∈ {5, 10, 20, 30}. In the following, FBT Sm de-
notes approximate FBT with m samples, while FBT with
full gradient computation is labeled FBT full. LFR is also
included. The results are presented in Table 3. The perfor-
mance of FBT S increases with growing number of sam-
ples m, and approaches that of FBT Full. It is especially
notable that FBT S performs better than LFR even with
small number of samples. Regarding the cumulative rank,
FBT S30 achieves 82.26% for top 20 prediction, compared
to 83.54% for FBT Full and 77.81% for LFR (the right-most
data points in Figure 1(a)).

The purpose of using Monte Carlo approximation in the
gradient computation is to accelerate the training process
while still keeping the theoretical soundness and practi-
cal accuracy. Figure 1(e) plots the prediction accuracy of
FBT full and FBT Sm as a function of time for all tested m.
The plot shows the best prediction accuracy achieved so far
on the validation set in 30 seconds intervals, starting from
the same initial parameter value, on a training set of 1000
games with k = 5 using feature set Fsmall. All sampling al-
gorithms finish the training process within 15 minutes, while
FBT Full needs about an hour. FBT S20 and FBT S30 out-
perform FBT Full in the early phases. The performance of
FBT S30 comes very close to FBT Full, while using less

1363

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFR

FBT

(a) Fsmall cumulative rank

0 2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

0.5

LFR

FBT

(b) Fsmall accuracy per game stage

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFR

FBT

(c) Flarge cumulative rank

0 2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

0.5

LFR

FBT

(d) Flarge accuracy per game stage

0 5 10 15 20 25 30 35 40
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Time (1 unit=30 seconds)

V
a

li
d

a
ti
o

n
 A

c
c
u

ra
c
y

FBT_S5

FBT_S10

FBT_S20

FBT_S30

FBT_Full

(e) Accuracy of approximation

1
2

3
4

5
6

7
8

9
10

11
12

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0

0.2

0.4

0.6

0.8

Gamephases
Pattern Shape Size

P
e

rc
e

n
ta

g
e

 M
a

tc
h

e
d

(f) Pattern Size Distribution

Figure 1: Figures (a) and (b): FBT and LFR trained with Fsmall. Figures (c) and (d): results for Flarge. In Figure (a) and (c),
x-axis is the number of ranked moves, while in Figure (b) and (d) x-axis represents the game stage. Figure (e): accuracy of
approximate sampling over time. Figure (f): Distribution of patterns with different size harvested at least 10 times in different
game phases.

Table 3: Move prediction by FBT with different sample size on different size data set, results for LFR and FBT Full shown for
comparison. Bold values highlight best results among sampling methods.

Training set FBT S5 FBT S10 FBT S20 FBT S30 LFR FBT Full
S1 30.04% 30.81% 31.06% 31.78 % 30.01% 32.56%
S3 32.07% 32.90% 32.98% 33.03% 30.95% 33.18%
S3 32.54% 33.01% 33.09% 33.12% 31.13% 33.46%

time to train (15 minutes vs 1 hour). The performance of the
approximate gradient estimators increases with the number
of samples, since the variance is reduced.

Conclusion and Future Work

The new Factorization Bradley Terry (FBT) model, com-
bined with an efficient Stochastic Gradient Decent algo-
rithm, is applied to predicting expert moves in the game of
Go. Experimental results show that FBT outperforms LFR,
the previous state of the art high-speed move predictor.

Future work includes: 1. apply FBT in a MCTS program
such as Fuego. 2. combine FBT with Deep Convolutional
Neural Networks (DCNN) to get a fast accurate move pre-
dictor. For example, in computer vision DCNN has been
used to extract features of pictures and combined with a
traditional classifier in a powerful object detection system
(Girshick et al. 2014). A similar approach might also work
for move prediction problem: use DCNN to extract new fea-

tures, then apply FBT to learn feature weights. Another pos-
sible approach is to automatically switch between FBT and
DCNN, in order to get a high prediction accuracy while still
keeping a low processing time.

Acknowledgements

The authors wish to thank the anonymous referees for their
valuable advice. This research was supported by NSERC,
the Natural Sciences and Engineering Research Council of
Canada.

References

Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2012. A survey of Monte Carlo tree search
methods. IEEE Trans. Comput. Intellig. and AI in Games
4(1):1–43.

1364

Clark, C., and Storkey, A. J. 2015. Training deep convolu-
tional neural networks to play Go. In Bach, F. R., and Blei,
D. M., eds., Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-
11 July 2015, volume 37 of JMLR Proceedings, 1766–1774.
JMLR.org.
Coulom, R. 2006. Efficient selectivity and backup opera-
tors in Monte-Carlo tree search. In van den Herik, J.; Cian-
carini, P.; and Donkers, H., eds., Proceedings of the 5th In-
ternational Conference on Computer and Games, volume
4630/2007 of Lecture Notes in Computer Science, 72–83.
Turin, Italy: Springer.
Coulom, R. 2007. Computing Elo ratings of move patterns
in the game of Go. In Proc. Computer Games Workshop
2007 (CGW2007). 113–124.
Enzenberger, M., and Müller, M. 2008-2015. Fuego. http:
//fuego.sourceforge.net.
Enzenberger, M.; Müller, M.; Arneson, B.; and Segal,
R. 2010. Fuego - an open-source framework for board
games and Go engine based on Monte Carlo tree search.
IEEE Transactions on Computational Intelligence and AI in
Games 2(4):259–270.
Friedenbach, K. J. 1980. Abstraction Hierarchies: A Model
of Perception and Cognition in the Game of Go. Ph.D. Dis-
sertation, University of California, Santa Cruz.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and
semantic segmentation. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, 580–587.
IEEE.
Huang, T.-K.; Lin, C.-J.; and Weng, R. C. 2006. Ranking
individuals by group comparisons. In Proceedings of the
23rd international conference on Machine learning, 425–
432. ACM.
Hunter, D. R. 2004. MM algorithms for generalized
Bradley-Terry models. Annals of Statistics 384–406.
Maddison, C. J.; Huang, A.; Sutskever, I.; and Silver, D.
2014. Move evaluation in Go using deep convolutional neu-
ral networks. CoRR abs/1412.6564.
Müller, M. 2002. Computer Go. Artificial Intelligence
134(1–2):145–179.
Pietra, S. D.; Pietra, V. D.; and Lafferty, J. 1997. Inducing
features of random fields. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 19(4):380–393.
Rendle, S.; Gantner, Z.; Freudenthaler, C.; and Schmidt-
Thieme, L. 2011. Fast context-aware recommendations with
factorization machines. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and development
in Information Retrieval, 635–644. ACM.
Rendle, S. 2010. Factorization machines. In Webb,
G. I.; Liu, B.; Zhang, C.; Gunopulos, D.; and Wu, X.,
eds., ICDM 2010, The 10th IEEE International Conference
on Data Mining, Sydney, Australia, 14-17 December 2010,
995–1000. IEEE Computer Society.
Stern, D.; Herbrich, R.; and Graepel, T. 2006. Bayesian pat-
tern ranking for move prediction in the game of Go. In Pro-

ceedings of the 23rd international conference on Machine
learning, 873–880. ACM.
Stern, D. H. 2008. Modelling Uncertainty in the Game of
Go. Ph.D. Dissertation.
Weng, R. C., and Lin, C.-J. 2011. A bayesian approximation
method for online ranking. The Journal of Machine Learn-
ing Research 12:267–300.
Wistuba, M., and Schmidt-Thieme, L. 2013. Move pre-
diction in Go - modelling feature interactions using latent
factors. In Timm, I., and Thimm, M., eds., KI2013, vol-
ume 8077 of Lecture Notes in Computer Science, 260–271.
Springer.
Wistuba, M.; Schaefers, L.; and Platzner, M. 2012. Com-
parison of bayesian move prediction systems for Computer
Go. In Computational Intelligence and Games (CIG), 2012
IEEE Conference on, 91–99. IEEE.

1365

