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Abstract. Recently, Factorization Bradley-Terry (FBT) model is intro-
duced for fast move prediction in the game of Go. It has been shown that
FBT outperforms the state-of-the-art fast move prediction system of La-
tent Factor Ranking (LFR). In this paper, we investigate the problem
of integrating feature knowledge learned by FBT model in Monte Carlo
Tree Search. We use the open source Go program Fuego as the test plat-
form. Experimental results show that the FBT knowledge is useful in
improving the performance of Fuego.

1 Introduction

The idea of Monte Carlo Tree Search (MCTS) [2] is to online construct a search
tree of game states evaluated by fast Monte Carlo simulations. However in games
with large state space, accurate value estimation by simple simulation cannot
be easily guaranteed given limited search time. The inaccurate estimation can
mislead the growth of the search tree and can severely limit the strength of the
program. Thereby, it’s reasonable to incorporate the domain knowledge of the
game to serve as a heuristic information that benefits the search.

In Computer Go [10] research, knowledge is usually represented by features,
such as shape patterns and tactical features. A move prediction system applies
machine learning techniques to acquire the feature knowledge from professional
game records or self played games. Selective search algorithm can then focus on
the most promising moves evaluated by such system [1]. For example, [3] proposes
Minorization-Maximization (MM) to learn feature knowledge offline and uses it
to improve random simulation. [7] considers feature knowledge as a prior to initial
statistical values when a new state is added to the search tree. AlphaGo [12]
incorporates supervised learned Deep Convolutional Neural Networks (DCNN)
as part of in-tree policy for move selection, and further improve the network with
reinforcement learning from games of self-play to get a powerful value estimation
function. The integrated system becomes the first program to ever beat the
world’s top Go player.

Recently, [15] introduces Factorization Bradley-Terry (FBT) model to learn
feature knowledge which became the state-of-the-art fast move prediction algo-
rithm. The major innovation of FBT model is to consider the interaction between
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different features as part of a probability-based framework, which can be consid-
ered as a combination of two leading approaches: MM [3] and LFR [14]. However,
it’s still not clear whether the feature knowledge learned by this model is useful
to improve the strength of the MCTS framework. We investigate this problem
in this paper by integrating FBT based knowledge in the open source program
Fuego [5].

The remaining of this paper is organized as follows: Section 2 describes the
idea of FBT model for move prediction in Go. Section 3 discusses how to inte-
grate FBT based knowledge within MCTS framework. Section 4 describes the
feature knowledge and move selection scheme in current Fuego and provides the
experimental results. Section 5 gives a conclusion of this work and discusses the
possible future work.

2 Factorization Bradley-Terry Model for Move Prediction
Problem

We briefly describe how FBT model works for move prediction problem in the
game of Go. In most popular high-speed move prediction systems, each move
is represented as a combination of a group of features. Weights for each feature
are learned from expert game records by supervised learning algorithms, and an
evaluation function based on the weights is defined to rank moves.

Specifically, let S be the set of possible Go positions, Γ (s) be the set of legal
moves in a specific position s ∈ S, and F be the set of features which are used
to describe moves in a given game state. Each move is represented by its set of
active features G ⊆ F . The training set D consists of cases Dj , with each case
representing the possible move choices in one game position sj , and the expert
move is specified as G∗j .

Dj = { Gij | for i = 1, . . . , |Γ (sj)|}

Most high-speed move prediction systems usually differ from the method of
predicting G∗j from Dj as well as the model of the strength of G. In MM [3], the
strength of a group G is approximated by the sum of weights of all features within
the group. Prediction of G∗j is formulated as a competition among all possible
groups. A simple probabilistic model named Generalized Bradley-Terry model
[8] defines the probability of each feature group winning a competition. While in
another efficient move prediction algorithm called Latent Factor Ranking (LFR)
[14], the strength of a group is modelled using a Factorization Machine (FM),
which also takes pairwise interactions between features into account besides the
sum of all features’ weights. Prediction of G∗j is simply formulated as a binary
classification problem, with G∗j in one class and all other groups in the other.
LFR outperforms MM in terms of move prediction accuracy. But the evalua-
tion function LFR produces does not provide a probability distribution over all
possible moves, which makes it much harder to combine with other kinds of
knowledge.
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FBT model takes advantage of both MM and LFR: it considers the interac-
tion between features within a group, and produce the evaluation function in a
probability-based framework. In FBT, the strength of a group G ⊆ F is defined
in a same way as in LFR

EG =
∑
f∈G

wf +
1

2

∑
f∈G

∑
g∈G,g 6=f

〈vf , vg〉

where wf ∈ R is the (estimated) strength, and vf ∈ Rk is the factorized interac-
tion vector, of a feature f ∈ F . The interaction strength between two features f
and g is modeled as 〈vf , vg〉 =

∑k
i=1 vf,i · vg,i, where k is the pre-defined dimen-

sion of the factorization. In Computer Go, setting k = 5 and k = 10 are most
popular [14]. Richer feature sets might require larger k for best performance.
With the definition of EG , FBT then applies the Generalized Bradley-Terry
model for each test case Dj ,

P (Dj) =
exp(EG∗j )∑|Γ (sj)|

i=1 exp(EGi
j
)

Suitable parameters in FBT are estimated by maximizing the likelihood of
the training data, using a Stochastic Gradient Decent (SGD) algorithm. [15] also
provides two techniques to accelerate the training process: an efficient incremen-
tal implementation of gradient update, and an unbiased approximate gradient
estimator. Details of these two techniques as well as the induction of parameter
update formula can be found in [15].

3 Integrating FBT Knowledge in MCTS

As suggested before, a move prediction system can provide useful initial recom-
mendations of which moves are likely to be the best. Selective search with proper
exploration scheme, such as MCTS, can further improve upon these recommen-
dations with online simulation information. One favourable property of FBT
model is to produce a probability based evaluation. Intuitively, it’s a probability
distribution of which move is going to be selected by a human expert under a
game state. Therefore, it seems very straightforward to incorporate FBT knowl-
edge as part of exploration, since we should explore more on moves which are
most favoured by human experts.

We apply a variant of PUCT [11] formula which is used in AlphaGo [12] to
integrate FBT knowledge in MCTS. The idea of this formula is to explore moves
according to a value that is proportional to the predicted probability but decays
with repeated visits as in original UCT style [9]. When a new game state s is
added to the search tree, we call a pre-trained FBT model to get a prediction
PFBT (s, a), which assigns an exploration bonus EFBT (s, a) for each move a ∈
Γ (s). In order to keep sufficient exploration, we set a lower cut threshold λFBT ,
where for all a ∈ Γ (s) if PFBT (s, a) < λFBT then simply let EFBT (s, a) = λFBT ,
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otherwise EFBT (s, a) = PFBT (s, a). At state s during in-tree move selection, the
algorithm will select the move

a = argmaxa′(Q(s, a′) + cpuctEFBT (s, a′)

√
lg(N(s))

1 +N(s, a′)
) (1)

where Q(s, a) is the accumulated move value estimated by online simulation,
cpuct is a exploration constant, N(s, a) is the number of visit time of move a in
s, and N(s) =

∑
iN(s, i).

4 Experiments

We use the open source program Fuego [5] as our experiment platform to test if
FBT knowledge is helpful for improving MCTS. We first introduce the feature
knowledge in current Fuego system, then introduce the training settlement for
the FBT model and the setup for the experiment, and finally present the results.

4.1 Feature Knowledge for Move Selection in Fuego

Prior Feature Knowledge The latest Fuego (svn version 2017) applies fea-
ture knowledge to initialize statistical information when a new state is added to
the search tree. A set of features trained with LFR [14] is used where interaction
dimension is set at k = 10. Since the evaluation LFR produces is a real value
indicating the strength of the move without any probability based interpreta-
tion, Fuego designed a well-tuned formula to transfer the output value to the
prior knowledge for initialization. It adopts a similar method as suggested in [7],
where the prior knowledge contains two parts: Nprior(s, a) and Qprior(s, a). This
indicates that MCTS would perform Nprior(s, a) simulations to achieve an esti-
mate of Qprior(s, a) accuracy. Let VLFR(s, a) be the evaluation of move a ∈ Γ (s),
Vlargest and Vsmallest be the largest and smallest evaluated value respectively.
Fuego uses the following formula to assign Nprior(s, a) and Qprior(s, a),

Nprior(s, a) =

{
cLFR∗|Γ (s)|

SA ∗ VLFR(s, a) if VLFR(s, a) ≥ 0

− cLFR∗|Γ (s)|
SA ∗ VLFR(s, a) if VLFR(s, a) < 0

(2)

Qprior(s, a) =

{
0.5 ∗ (1 + VLFR(s, a)/Vlargest) if VLFR(s, a) ≥ 0

0.5 ∗ (1− VLFR(s, a)/Vsmallest) if VLFR(s, a) < 0
(3)

where SA =
∑
i |VLFR(s, i)| is the sum of absolute value of each move’s evalu-

ation. When a new game state is added to the search tree, Fuego will call the
method showed above to initialize the state’s statistical information by setting
N(s, a)← Nprior(s, a) and Q(s, a)← Qprior(s,a).
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Fig. 1. Distribution of patterns with different size harvested at least 10 times in dif-
ferent game phases.

Greenpeep Knowledge Another kind of knowledge Fuego also has as part
of in-tree move selection policy is called Greenpeep Knowledge. It uses a pre-
defined table to get a probability based knowledge Pg(s, a) about each move
a ∈ Γs. Then the knowledge is added as a bias for move selection according to
the PUCT formula [11]. The reason why Fuego does not use LFR knowledge
to replace Greenpeep knowledge might be that LFR cannot produce probability
based evaluation. Details can be found in the Fuego source code base [4].

Move Selection in Fuego In summary, Fuego adopts the following formula
to select moves during in-tree search,

a = argmaxa′(Q(s, a′)− cg√
Pg(s, a′)

×

√
N(s, a′)

N(s, a′) + 5
) (4)

where cg is a parameter controlling the scale of the Greenpeep knowledge, .
Q(s, a′) is initialized according to equation (2) and (3), and further improved
with Monte Carlo simulation and Rapid Action Value Estimation (RAVE). Note
that formula (4) does not have the UCB style exploration term, since the ex-
ploration constant is set to zero in Fuego. The only exploration comes from
RAVE. Comparing formula (4) with (1), we could consider the FBT knowledge
PFBT (s, a) as a replacement of the Greenpeep knowledge Pg(s, a), but with a
different way to be added as a bias and different decay function.
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Fig. 2. Experimental Results: FBT-FuegoNoLFR vs FuegoNoLFR.

4.2 Training Settlement for FBT Model

We train a FBT model with interaction dimension k = 5 using 10000 master
games download from the public domain at https://badukmovies.com/pro_

games. The prediction accuracy of this model is 38.26%. The parameters of the
training algorithm including learning rate and regularization parameters are set
at the same as described in [15]. We also apply the same stopping criteria that
the training process is stopped and the best performing weight set is returned if
the prediction accuracy on a validation set does not increase for three iterations.

The simple features used in this work are listed below. Most features are the
same as suggested in [15]. We only use large pattern as the shape pattern for
this experiment. All patterns are harvested as in [13, 14]. Figure (1) shows the
distribution of harvested largest matches for the different pattern sizes in each
game phase. The implementation of the tactical features is part of the Fuego
program [5], details can be found in the Fuego code base [4]. Note that current
Fuego includes the same set of tactical features. But it uses small shape patterns
instead of large patterns for feature knowledge evaluation.

– Pass
– Capture, Extension, Self-atari, Atari Tactical features similar to [3].
– Line and Position (edge distance perpendicular to Line) ranges from

1 to 10.
– Distance to previous move feature values are 2,. . . , 16, ≥ 17. The dis-

tance is measured by d(δx, δy) = |δx|+ |δy|+max{|δx|, |δy|}.
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Fig. 3. Experimental Results: FBT-Fuego vs Fuego.

– Distance to second-last move uses the same metric as previous move.
The distance can be 0.

– Fuego Playout Policy These features correspond to the rules in the playout
policy used in Fuego. Most are simple tactics related to stones with a low
number of liberties and 3x3 patterns.

– Side Extension The distance to the closest stones along the sides of the
board.

– Corner Opening Move Standard opening moves.

– CFG Distance Distance when contracting all stones in a block to a single
node in a graph [6].

– Shape Patterns Circular patterns with sizes from 2 to 14. All shape pat-
terns are invariant to rotation, translation and mirroring.

4.3 Setup

Experiments are performed on a 2.4 GHz Intel Xeon CPU with 64 GB memory.
We use the latest Fuego (svn revision 2017) in the experiment. We call Fuego
without LFR prior knowledge as FuegoNoLFR, Fuego applying formula (1) to
select moves in-tree as FBT-Fuego, and Fuego without LFR but using formula
(1) as FBT-FuegoNoLFR. The lower cut threshold for FBT knowledge is set to
λFBT = 0.001. All other parameters are default as in the original settings of
Fuego.
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Program Name 100 1000 3000 6000 10000

FBT-FuegoNoLFR 11.8 192.4 704.1 1014.5 1394.9
FuegoNoLFR 5.1 55.7 148.7 225.2 354.4
FBT-Fuego 23.4 241.1 734.1 912.6 1417.5

Fuego 10.8 168.3 564.2 778.6 1161.2

Table 1. Running time comparison (specified in seconds) with different simulations
for per move.

4.4 Experimental Results

We first compare FBT-FuegoNoLFR with FuegoNoLFR. This experiment is de-
signed to show the strength of FBT knowledge without any influence from other
kinds of knowledge. We test the performance of FBT-FuegoNoLFR against Fue-
goNoLFR with different exploration constants cpuct. After initial experiments,
the range explored was cpuct ∈ {2, 2.3, 2.5, 2.7, 3}. In order to investigate if the
FBT knowledge is scaling with the number of simulations per move, Nsim was
tested by setting Nsim ∈ {100, 1000, 3000, 6000, 10000}. Figure 2 shows the win
rate of FBT-FuegoNoLFR against FuegoNoLFR. All data points are averaged
over 1000 games. The results show that adding FBT knowledge can dramatically
improve the performance of Fuego over the baseline without feature knowledge
as prior. FBT-FuegoNoLFR scales well with more simulations per move. With
cpucb = 2 and 10000 simulations per move FBT-FuegoNoLFR can beat Fue-
goNoLFR with 81% winning rate.

We then compare FBT-Fuego with full Fuego, in order to investigate if the
FBT knowledge is comparable with current feature knowledge in Fuego and able
to improve the performance in general. In this case, cpuct is tuned over a different
range, cpuct ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. Nsim ∈ {100, 1000, 3000, 6000, 10000},
and all data points are averaged over 1000 games as before. Results are presented
in Figure 3. FBT-Fuego has worse performance in most settings of cpuct. But it
can be made to work after careful tuning. As suggested in Figure 3, under the
setting where cpucb = 0.1, FBT-Fuego scales well with the number of simulations
per move, and achieves 62% winning rate against Fuego with 10000 simulations
per move. One possible reason is that the FBT knowledge is not quite comparable
with the LFR knowledge. The moves these two methods favour might be different
in some situations, which makes it very hard to tune a well tuned system when
adding another knowledge term.

Finally, we show the running time of our methods with different simulations
per move in Table 1. FBT-FuegoNoLFR spends much more time than Fue-
goNoLFR, since FuegoNoLFR only uses Greenpeep knowledge for exploration
and thus does not need to compute any feature knowledge. FBT-FuegoNoLFR
spends a little less time than FBT-Fuego, since it does not use feature knowl-
edge to initialize prior knowledge. The speed of FBT-Fuego is a little worse than
Fuego. The time difference is spent on computing large patterns, while Fuego
only uses small shape patterns.
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5 Conclusion and Future Work

In this paper, we introduce how to integrate the state-of-the-art fast move pre-
diction algorithm FBT in MCTS. We use the open source program Fuego as
our test platform. Experimental results show that FBT knowledge is useful to
improve the performance of Fuego, without too much sacrifice in efficiency.

Future work includes: 1. try to discover a method to transform FBT knowl-
edge as prior knowledge for initialization. 2. try to apply the FBT knowledge for
improving fast roll-out policy, which has been shown as a very important part
in the state-of-the-art Go program AlphaGo [12].
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