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Automated Planning

Given a model of the world, generate a plan to achieve
predefined goals

Applications
Autonomous agents
General solvers
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Classical Representations (STRIPS)

State
Each state is a set of propositions

A 

B 
 {On(B, A), Ontable(A), Clear(B)} 

Action
Each action has preconditions, positive and negative effects

A 

B 

{OnTable(A), Holding(B)} 

Plan
A sequence of actions that starts from the initial state and ends
in s ⊇ G
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Planning Methods

Heuristic Search
Common standard systematic search algorithms such as
Greedy Best First Search (GBFS) and WA*

Contribution
A new search paradigm for satisficing planning: random walk
(RW) search
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Why Random Walks?

Random Walk
A sequence of randomly selected actions

High level and Intuitive Explanations
Escaping faster from plateaus
More exploration
Not wasting time in dead-ends

A theoretical model can explain ...
What are the key features affecting the performance
How we can improve the algorithms



Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

A Motivating Example: Transportation Domain
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Random Walks vs. Systematic Search
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Theoretical Analysis of RW Planning

Graph properties affecting RW performance
Progress Chance(PC)
Regress Chance(RC)
Regress Factor(RF)

PC =
1
4
,RC =

1
2
,RF =

RC
PC

= 2
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Definitions: Fairness and Hitting Time

Fairness
A single state transition in the graph cannot change the goal
distance by more than one unit.
Every undirected graph is a fair graph.

Hitting Time
The expected number of steps in a random walk starting from
the initial state and ending in the goal for the first time.
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Fair Strongly Homogenous Graph (FSHG)

p = progress chance
q = regress chance
D = largest goal distance
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Theorem: Hitting time in FSHG

hx =

{
Θ
(
β0λ

D + β1dx
)

if q 6= p
Θ (α1Ddx ) if q = p

where

λ =
q
p
, β0 =

q
(p − q)2 , β1 =

1
p − q

, α0 =
1

2p
, α1 =

1
p
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Bounds for more general graphs

qi = maximum regress chance at the goal distancei

pi = minimum progress chance at the goal distancei



Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

Analysis of the Transport Example

RCmax = PCmin =
1

2× |trucks|

hx =
Ddx

p
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Fair Homogenous Graph (FHG)

pi = progress chance at goal distance i
qi = regress chance at goal distance i
D = largest goal distance
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Hitting time in FHG

hx =
dx∑

d=1

βD

D−1∏
i=d

λi +
D−1∑
j=d

βj

j−1∏
i=d

λi


where for all 1 ≤ d ≤ D,

λd =
qd

pd
, βd =

1
pd
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Theory for Random Walks with Restart

Restarting Random Walks
At each step with probability r restart from the initial state

Hitting Time

hx ∈ O
(
βλdx−1

)
where

λ =

(
q
p

+
r

p(1− r)
+ 1
)
, β =

q + r
pr
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Findings

Determined the key features of the search space affecting
RW

Regress factor RF
Largest goal distance D
Initial goal distance d

Provides valuable insights to design RW planners
Biasing action selection
Restarting frequency r
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RW Search

The General Framework
Use forward chaining Local Search
In each step, run random walks to find the next state
Use restarts to recover from unpromising search regions
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RWS Framework: an Illustration

9 
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A Basic RW planner

Walk Length
Use a local restarting rate rl : at each step terminate the walk
with probability rl

Restarting
Use a restarting threshold tg : restart the search when the last
tg walks have not reached lower heuristic
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Experimental Study of the Design Space

Local Exploration
Length of Walks
Evaluation Rate
Action Selection Bias

Global Exploration
Jumping Strategies
Restarting Strategies

Heuristic function
Type of the heuristic function
The accuracy of the heuristic function
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Two Practical Outcomes

Learning systems that adapt parameters to the input
problem
Effective Biasing techniques
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The Effect of Restarting Threshold: Elevators 03
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The Effect of Restarting Threshold: Floortile 01
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Adaptive Global Restarting (AGR)

Let Vw be the average heuristic improvement per walk
AGR continually estimates Vw and sets tg = h0

Vw
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Comparison with GBFS
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Comparison with EHC
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Biasing Action Selections

Monte Carlo Helpful Actions (MHA)
MHA gives a higher priority to preferred operators.

P(a, s) =
eQ(a)/T∑n

b∈A(s) eQ(b)/T
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MHA vs. Uniform Action Selection
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MHA vs. GBFS+PO
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Building a Planning System

Combine several techniques that complement each other

Examples
Multiple heuristics in LAMA and Fast Downward
Multiple search strategies in Fast Forward and FD Stone
Soup
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Learning the Best Configuration

Config1 Config2 Config3 

Learning 
Algorithm Planner Problem 
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Comparing Arvand-2013 with Top Satisficing Planners

Table: IPC problems without Derived Predicates

No. of Problems Arvand-2013 LAMA-2011 FDFSS2 Probe Roamer
1661 1552 1540 1533 1422 1507

Table: All IPC problems

No. of Problems Arvand-2013 LAMA-2011 FDFSS2 Probe Roamer
1857 1666 1659 1668 – 1635
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The Gap Between RW and Systematic Planning

Domains Arvand-2013 LAMA-2011 

Airport (50) 44 31 
Notankage (50) 50 44 
Sokoban (20) 1 19 
Storage (30) 30 19 
Tankage (50) 44 41 
Woodworking (30) 14 20 
Philosophers (48) 44 34 
PSR Large (50) 19 31 
PSR Middle (50) 43 50 
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Reasoning about Resources

Examples of limited resources
Fuel, energy, money, time

Model: not replenishable resources
Initial supply
Some actions consume resources
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Limitation of the Current Methods

Relaxation heuristics do not model resource consumption
at all
Greedy search algorithms add more problems
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Improvements to Arvand for RCP

Smart Restarting (SR)
On-path Search Continuation (OPSC)
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Basic Restarting in an Example
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Smart Restarting

Algorithm
Maintain a pool of most promising episodes performed
When an episode gets stuck restart from a state visited in
an episode in the pool

!"
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Smart Restarting in an Example
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How to test RCP planners?

Performance as a function of constrainedness

Resource constrainedness C (Hoffmann et. al. IJCAI-2007)

C =
initial supply

minimum need

The closer C is to 1, the more constrained is the problem.

My Contributions
Extended the definition of C to multiple resources
Developed two new benchmarks for RCP
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Experiments

3 RCP Domains
NoMystery, Rovers, TPP

8 Satisficing Planners
Arvand, FD-AT1, FD-AT2, LAMA, FF, LPG, M, Mp, LPRPGP

5 Optimal Planners
Num-2-sat, LM-cut, Merge and Shrink, Selmax, FD-AT-OPT
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Results: Rovers, small
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Results: Rovers, small

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

1.0	
   1.1	
   1.2	
   1.3	
   1.4	
   1.5	
   1.6	
   1.7	
   1.8	
   1.9	
   2.0	
  

Co
ve
ra
ge
	
  

C	
  

A2	
  
A2(SR)	
  
Arvand	
  
LAMA	
  
FD-­‐AT1	
  
FD-­‐AT2	
  
Mp	
  
LPG	
  
M	
  



Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

Results: Rovers, large
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Results: NoMystery, large
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Results: NoMystery, large
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Plan Improvement

RW planning can generate bad-quality solutions

Idea
Develop fast post-processing techniques to improve the
solutions

Outcome: Aras
A postprocessor that works well for a wide range of planners

Even for those like LAMA that are well-designed to
generate good-quality solutions



Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

Plan Neighborhood Graph Search (PNGS)

Initial Plan 
Improved Plan 
Goal State 
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Anytime PNGS

Iteratively increase the expansion limit
Each iteration starts with last plan generated in previous
iterations
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Experiments

Compare state-of-the-art planners with and without plan
improvement on IPC domains
Scoring function: the cost of the best plan produced by any
planner divided by the cost of the generated plan
Issue: how to divide time between planner and
postprocessor



Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

Cutoff Time

Run the planner until a cutoff time is reached
If no solution is found, keep running until the first solution is
found

Use the postprocessor to improve the best generated plan
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IPC-2008 PNGS
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Integration of Arvand-2013 and Aras

Repeat until the time limit (30 min.) is reached:
Run Arvand-2013 until a solution s is found
Run Aras to improve s until a memory/time limit (2 GB) is
reached

The cost of the best previous plan is used for prunning
Report the best plan found as the result
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Arvand-2013 vs. Top Planner (Solution Quality)
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Random Walk Planners

Arvand-2009: Establishing the foundation
Arvand-RC: Using RW Search for RCP
Arvand-2011: Learning the Best Configuration and Using
Aras
Arvand-LS: RandomWalks with Memory
ArvandHerd: Parallel portfolio
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Contributions

RW search as an effective framework for satisficing planning

A theoretical framework for studying RW search
Determined key features affecting RW
Explained where and why RW exploration is effective

A detailed experimental study of design space
Built effective learning systems that adapt parameters
Built efficient biasing techniques
Gained valuable insights regarding the effects of different
parameters
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Contributions

Application of RW search to RCP
Extended the definition of C to multiple resources
Developed of new benchmarks
Significantly improved the state of the art

Aras: a very effective postprocessing system
Several strong planning systems

Arvand-2009: Establishing the foundation
Arvand-2011: Configuration learner and Aras
Arvand-2013: Empirical study of the design space
Arvand-RC: Using RW search for RCP
Arvand-LS: RW with memory
ArvandHerd: Parallel portfolio
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Thank you for your attention!
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