
Jasper: the Art of Exploration in Greedy Best First Search

Fan Xie and Martin Müller and Robert Holte
Computing Science, University of Alberta

Edmonton, Canada
{fxie2,mmueller,robert.holte}@ualberta.ca

Introduction
LAMA-2011 (Richter and Westphal 2010) is the clear win-
ner of the sequential satisficing track in the latest Inter-
national Planning Competition (IPC-2011). It finds a first
solution by Greedy Best-First Search (GBFS), and then
continues to improve solutions using restarting weighted
A* (Richter, Thayer, and Ruml 2010). Diverse Anytime
Search (DAS) (Xie, Valenzano, and Müller 2013) is a meta-
algorithm designed for solution improvement. It takes an
anytime planner and a post-processing system, and adds
restarts and randomization for better quality search.

Jasper is a satisficing planner that builds on LAMA-2011.
It adds two modifications. First, it replaces the GBFS al-
gorithm in LAMA-2011 with an improved GBFS variant,
called Type Exploration based Greedy Best-First Search
with Local Search (Type-GBFS-LS). GBFS always expands
a node n that is closest to a goal state according to a heuristic
h. GBFS’ performance strongly depends on h. Uninforma-
tive or misleading heuristics can massively increase the time
and memory complexity of such searches. Type-GBFS-LS
is an improved version of GBFS that is less sensitive to such
flaws in heuristic functions. Second, it implements the DAS
system for solution improvement, which takes the modified
LAMA-2011 as the anytime planner and Aras (Nakhost and
Müller 2010) as the post-processing system.

A detailed description of the implementation of DAS can
be found in the ICAPS paper by Xie, Valenzano and Müller
(Xie, Valenzano, and Müller 2013). This paper focuses on
describing the new search algorithm, Type-GBFS-LS.

The remainder of this paper is organized as follows. First,
we motivate this work by discussing the two potential prob-
lems of GBFS: uninformative heuristic region and mislead-
ing heuristics, followed by describing two corresponding so-
lutions as well as their combination, Type-GBFS-LS. Later,
experimental results show that the proposed algorithms im-
prove the state of the art planner LAMA-2011 significantly.

Uninformative Heuristic Regions (UHR) and
GBFS with Local Search

The notion of an Uninformative Heuristic Region (UHR) in-
cludes both local minima and plateaus. A local minimum is

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a state with minimum h-value within a local region, which
is not a global minimum. A plateau is an area of the state
space where all states have the same heuristic value.

Figure 1: Cumulative search time (in seconds) of GBFS, and
GBFS-LS with hFF for first reaching a given hmin in 2004-
notankage #21.

As an example, the IPC domain 2004-notankage has no
dead ends, but contains large plateaus and local minima
(Hoffmann 2011). Instance #21 shown in Figure 1 serves
to illustrate a case of bad search behavior in GBFS due
to UHRs. The figure plots the current minimum heuristic
value hmin in the closed list on the x-axis against the log-
scale cumulative search time needed to first reach hmin. The
solid line is for GBFS with hFF . The two huge increases in
search time, with the largest (763 seconds) for the step from
hmin = 2 to hmin = 1, correspond to times when the search
is stalled in UHRs. Since the large majority of overall search
time is used to inefficiently find an escape from UHRs, it
seems natural to try switching to a secondary search strat-
egy which is better at escaping.

GBFS with Local Search
The new algorithm of Greedy Best-First Search with Lo-
cal Search (GBFS-LS) uses a local GBFS (LS) whenever a
global GBFS (G-GBFS) seems stuck. If G-GBFS fails to im-
prove its minimum heuristic value hmin for a fixed number



of node expansions, then GBFS-LS runs a small local GBFS
for exploration from the best node n in a global-level open
list.

LS shares the closed list of G-GBFS, but maintains its own
separate open list local_open that is cleared before each lo-
cal search. LS succeeds if it finds a new best node v with
h(v) < hmin before it exceeds a given limit on the number
of nodes. In any case, the remaining nodes in local_open are
merged into the global open list. A local search tree grown
from a single node n is much more focused and grows deep
much more quickly than the global open list in G-GBFS. It
also restricts the search to a single plateau, while G-GBFS
can get stuck when exploring many separate plateaus simul-
taneously. Both G-GBFS and LS use a first-in-first-out tie-
breaking rule. A detailed description of GBFS-LS can be
found in (Xie, Müller, and Holte 2014). In Figure 1, the
same problem takes GBFS-LS only 1 second to solve, while
it takes the basic GBFS around 1000 seconds.

Misleading Heuristics (ML) and Type
Exploration in GBFS

Early mistakes are mistakes in search direction at shallow
levels of the search tree, caused by sibling nodes being ex-
panded in the wrong order due to a misleading heuristic. the
root node of a bad subtree, which contains no solution or
only hard-to-find solutions, has a lower heuristic value than
a sibling which would lead to a quick solution.

The 2011-Nomystery domain from IPC-2011 is a typ-
ical example where delete-relaxation heuristics systemati-
cally make early mistakes (Nakhost, Hoffmann, and Müller
2012). In this transportation domain with limited non-
replenishable fuel, delete-relaxation heuristics such as hFF

ignore the crucial aspect of fuel consumption, which makes
the heuristic overoptimistic and misleading. Bad subtrees
in the search tree, which over-consume fuel early on, are
searched exhaustively, before any good subtrees which con-
sume less fuel and can lead to a solution are explored. As
a result, while the random walk-based planner Arvand with
its focus on exploration solved 19 out of 20 nomystery in-
stances in IPC-2011, LAMA-2011 solved only 10.

Previous exploration methods in GBFS suffer from bias-
ing their exploration heavily towards the neighborhood of
nodes in the open list. In the case of early mistakes, the
large majority of these nodes is in useless regions of the
search space. Consider the nodes in the regular hFF open list
of LAMA-2011 while solving the problem 2011-nomystery
#12. Figure 2 shows snapshots of their h-value distribution
after 2,000, 10,000 and 50,000 nodes expanded. In the fig-
ure, the x-axis represents different heuristic values and the y-
axis represents the number of nodes with a specific h value
in the open list. The solution eventually found by LAMA-
2011 goes through a single node n in this 50,000 node list,
with h(n) = 18. This node is marked with a star in the fig-
ure. Over 99% of the nodes in the open list have lower h-
values, and will be expanded first, along with much of their
subtrees. However, in this example, none of those nodes
leads to a solution. The open list is flooded with a large num-
ber of very similar, useless nodes from undetected dead ends

h-values in 2011-nomystery #12

Figure 2: h-value distribution in the regular hFF open list of
LAMA-2011.

or local minima.
ε-GBFS (Valenzano et al. 2014) samples nodes uniformly

over the whole open list. This is not too useful when entries
are heavily clustered in bad subtrees. In the example above,
ε-GBFS has a less than 1% probability to pick a node with
h-value 18 or more in its exploration step, which itself is
only executed with probability ε. Furthermore, the algorithm
must potentially select several good successor nodes before
making measurable progress towards a solution by finding
an exit node with a lower h-value.

Type System
Can the open list be sampled in a way that avoids the over-
concentration on a cluster of very similar nodes? A type sys-
tem (Lelis, Zilles, and Holte 2013), which is based on earlier
ideas of stratified sampling (Chen 1992), is one possible ap-
proach. It is defined as follows:

Definition 1 (Lelis, Zilles, and Holte 2013) Let S be the set
of nodes in search space. T = {t1, . . . , tn} is a type system
for S if T is a disjoint partitioning of S. For every s ∈ S,
T (s) denotes the unique t ∈ T with s ∈ S.

Types can be defined using any property of nodes. The
simple type system used here defines the type of a node s
in terms of its h-value for different heuristics h, and its g-
value. A simple and successful choice is the pair T (s) =
(hFF (s), g(s)). The intuition behind such type systems is
that they can roughly differentiate between nodes in differ-
ent search regions, and help explore regions differents from
the nodes where GBFS gets stuck.

Type-GBFS: Adding a Type System to GBFS
Type-GBFS uses a simple two level type bucket data struc-
ture tb which organizes its nodes in buckets according to
their type. Type bucket-based node selection works as fol-
lows: first, pick a bucket b uniformly at random from among



(a) ε-GBFS(ε = 0.5) (b) Type-GBFS

Figure 3: Distribution of types over the first 20,000 nodes expanded by the exploring phase (ε-exploration or type buckets) of
ε-GBFS(ε = 0.5) and Type-GBFS.

all non-empty buckets and then pick a node n uniformly at
random from all nodes in b. Type-GBFS alternately expands
a node from the regular open list O and from tb, and each
new node is added to both O and tb. A detailed description
of Type-GBFS can be found in (Xie et al. 2014).

Type-GBFS and ε-GBFS with ε = 0.5 both spend half
their search effort on exploration. However, the distribution
of types of the explored nodes is very different. Figure 3
shows the frequency of explored node types for ε-GBFS
with ε = 0.5 and Type-GBFS1 after 20,000 nodes in the
same format. ε-GBFS mainly explores nodes close to the
low heuristic value types, while Type-GBFS explores much
more uniformly over the space of types.

Note that the z-axis scales are different for the two figures.
The single most explored type contains around 800 nodes for
ε-GBFS but only 40 for Type-GBFS. The presence or ab-
sence of exploration helps explain the relative performance
in 2011-Nomystery. The coverage for the 20 instances of
this domain for one typical run under IPC conditions is 9 for
GBFS, 11 for ε-GBFS with ε = 0.5, and 17 for Type-GBFS.

Combining GBFS-LS and Type-GBFS
GBFS-LS and Type-GBFS are designed for two different
problems in GBFS. Jasper applies both enhancements to
GBFS. The new algorithm is called Type Exploration based
Greedy Best-First Search with Local Search (Type-GBFS-
LS). Like GBFS-LS, Type-GBFS-LS uses a local search
when the global search gets stuck. However, it replaces
GBFS with Type-GBFS in both the global level search and
the local level search.

Experiments
Experiments were run on a set of 2112 problems in 54 do-
mains from the seven International Planning Competitions,

1Some explored types are outside the (h, g) range shown in Fig-
ure 3 (b).

using one core of a 2.8 GHz machine with 4 GB memory
and 30 minutes per instance. Results for planners which use
randomization are averaged over five runs.

The performance comparison in this section includes the
following planners:

• LAMA-2011: only the first iteration of LAMA using
GBFS is run, with deferred evaluation, preferred opera-
tors and multi-heuristics (hFF , hlm ) (Richter and West-
phal 2010).

• LAMA-LS: Configured like LAMA-2011, but with
GBFS replaced by GBFS-LS.

• Type-LAMA: With GBFS replaced by Type-GBFS, uses
the same four queues as LAMA-2011, plus (hFF , g) type
buckets.

• Jasper: Configured like LAMA-2011, but with GBFS
replaced by Type-GBFS-LS. It uses the same four queues
as LAMA-2011 plus (hFF , g) type buckets in both the
global search and the local search.

Table 1 shows the coverage results for the four plan-
ners. All the three proposed planners get better results than
LAMA-2011, with the best result of 1953.0 for Jasper.

Each diagram in Figure 4 compares one planner with
LAMA-2011 on their time performance. Every data point
represents one instance, with the search time for LAMA-
2011 on the x-axis plotted against the corresponding planner
on the y-axis. Only problems for which both algorithms need
at least 0.1 seconds are shown. Points below the main diag-
onal represent instances that Type-GBFS solves faster than
GBFS. For ease of comparison, additional reference lines in-
dicate 2×, 10× and 50× relative speed. Data points within a
factor of 2 are greyed out in order to highlight the instances
with substantial differences. Problems that were only solved
by one algorithm within the 1800 second time limit are in-
cluded at x = 10000 and y = 10000.



(a) LAMA-2011 (x) vs. LAMA-LS(y) (b) LAMA-2011 (x) vs. Type-LAMA (y) (c) LAMA-2011 (x) vs. Jasper (y)

Figure 4: Comparison of search time: LAMA-2011 vs. LAMA-LS (a), Type-LAMA(b) and Jasper.

All the three proposed planners show a clear overall im-
provement over LAMA-2011 in terms of speed. Jasper has
the best overall performance. It solves more problems than
LAMA-LS. Besides its advantage in coverage, it wins the
time comparison with Type-LAMA for a larger number of
instances by factors 2x and 10x.

Planner LAMA-2011 LAMA-LS Type-LAMA Jasper
Coverage 1913 1931 1949.8 1953.0

Table 1: IPC coverage out of 2112.

References
Benton, J.; Haslum, P.; Helmert, M.; Katz, M.; and Thayer,
J., eds. 2014. Proceedings of the Sixth Workshop on Heuris-
tic Search for Domain-Independent Planning, HSDIP 2014.
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds. 2010. Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010.
Chen, P. C. 1992. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM
J. Comput. 21(2):295–315.
Hoffmann, J. 2011. Where ignoring delete lists works, part
II: Causal graphs. In Bacchus, F.; Domshlak, C.; Edelkamp,
S.; and Helmert, M., eds., ICAPS, 98–105. AAAI.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Stratified
tree search: a novel suboptimal heuristic search algorithm.
In Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds.,
AAMAS, 555–562.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman et al. (2010), 121–128.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceeedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2012), 181–189.
Richter, S., and Westphal, M. 2010. The LAMA planner:

Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Brafman
et al. (2010), 137–144.
Valenzano, R.; Schaeffer, J.; Sturtevant, N.; and Xie, F.
2014. A comparison of knowledge-based GBFS enhance-
ments and knowledge-free exploration. In ICAPS.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Benton et al. (2014). 9 pages.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Benton et al. (2014). 9 pages.
Xie, F.; Valenzano, R.; and Müller, M. 2013. Better time
constrained search via randomization and postprocessing. In
ICAPS, 269–277. AAAI.


