
ArvandHerd 2014
Richard Valenzano, Hootan Nakhost*, Martin Müller, Jonathan Schaeffer

University of Alberta
{valenzan, nakhost, mmueller, jonathan}@ualberta.ca

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

Abstract

ArvandHerd is a sequential satisficing planner that uses a
portfolio consisting of LAMA and Arvand. This planner won
the multi-core track of the 2011 International Planning Com-
petition. In this paper, we describe the various components of
ArvandHerd, the updates made for the 2014 competition,
and the modifications that allow ArvandHerd to compete
in the single-core sequential satisficing tracks.

1 Introduction
In the 2011 International Planning Competition, the winner
of the multi-core track was a planner called ArvandHerd.
This planner uses a portfolio-based approach to combine the
strengths of the complementary approaches of random-walk
and best-first search based planning. This is accomplished
by simultaneously using the LAMA (Richter and Westphal
2010) and Arvand (Nakhost and Müller 2009) planners.

An updated version of this planner has been submitted to
the 2014 competition. ArvandHerd 2014 is very similar
to the planner which competed in 2011 and uses the same
code base. However, it has been updated in several ways.
These updates include the addition of techniques to LAMA
including ✏-greedy node selection, aggressive restarting, and
diverse any-time search. We have also modified the planner
so that it could compete in the single-core sequential sat-
isficing tracks. In this paper, we will briefly consider the
various components of ArvandHerd, describe the newly
added techniques, and look at how the standard multi-core
version of this planner has been modified so that it can com-
pete in the single-core tracks.

2 The Components of ArvandHerd
ArvandHerd is a portfolio-based planner that uses a va-
riety of planning techniques. In this section, we will briefly
describe those components that have remained mostly the
same from the 2011 version of this planner.

2.1 The ArvandHerd Code Base
The version of ArvandHerd submitted to the 2011 compe-
tition ran multiple threads from a single C++ binary. This is
because ArvandHerd used both Arvand and LAMA, and
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Arvand had been built on top of LAMA 2008. Though there
have been updates to each of these planners in LAMA 2011
(Richter, Westphal, and Helmert 2011) and Arvand 2013
(Nakhost and Müller 2013), the version of ArvandHerd
submitted to the 2014 competition is still based on the LAMA
2008 code base.

The only component of this code base which was updated
is the PDDL to SAS+ (Bäckström and Nebel 1995) transla-
tor, and the knowledge compilation step needed for the land-
mark count heuristic (Richter, Westphal, and Helmert 2011)
used in LAMA. In the 2011 competition, ArvandHerd used
the translator and knowledge compilation code in LAMA
2008. These pieces crashed on some of the problems in the
2011 competition, and so we have used the translator and
knowledge compilation code from the version of Fast Down-
ward used in IPC 2011. For details on how this translation
is performed see (Helmert 2009). Details on the knowledge
compilation step can be found in (Helmert 2006).

2.2 LAMA

LAMA is the winner of both the 2008 and 2011 IPC compe-
titions, and is therefore a natural candidate for use as the
greedy best-first search planner included in the portfolio.
This planner uses a number of different techniques includ-
ing multiple heuristics, preferred operators, deferred heuris-
tic evaluation, and Restarting Weighted A* (RWA*). For a
more complete description of this planner, see (Richter and
Westphal 2010).

For the 2011 competition, a few additions were made to
LAMA for its use in ArvandHerd. In particular, the plan-
ner was set to use random operator ordering, to cache the
heuristic values of states in between iterations of the RWA*
search, and the planner was modified so that a single call for
the computation of the FF heuristic could be used to return
both the action-cost aware or action-cost unaware versions
of this heuristic. ArvandHerd also added a memory usage
estimator to LAMA. This system estimates how much mem-
ory LAMA is using, and it allows the search to be restarted
whenever a given memory limit is reached so that another
parameterization of LAMA can be tried. These additions were
also used in the 2014 version of ArvandHerd. For more
information regarding how LAMA is used in ArvandHerd
see (Valenzano et al. 2012) and (Valenzano et al. 2011).
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2.3 Arvand
Arvand is a random-walk based planner that has been
shown to be effective in certain domains that are difficult for
best-first search based planners (Nakhost and Müller 2009).
The execution of Arvand consists of a series of search
episodes. Each episode starts by performing a set of ran-
dom walks from the initial state and using the heuristic func-
tion to evaluate the endpoint of each of these random walks.
Once a state with a low heuristic value is found, or after a
certain number of such walks, the search jumps to the end of
the walk on which the best heuristic value was found. The
search episode then continues with a set of random walks
from this state. This process then repeats until either a goal is
found, or enough jumps are made without heuristic progress,
in which case the search starts with a new search episode
from the initial state. For a more thorough description of
Arvand see (Nakhost 2013), (Nakhost and Müller 2009),
(Nakhost and Müller 2013), and (Nakhost, Hoffmann, and
Müller 2012).
Arvand has a number of parameters that allow the user

to control the length of the random walks, the frequency with
which the algorithm jumps during a search episode, and the
frequency with which a search episode is terminated and the
algorithm restarts. Since different parameterizations of the
algorithm are best for different problems, Arvand has been
designed so that a single instance of this planner can use
different configurations in different search episodes. In the
version of Arvand used in the 2011 competition, a config-
uration selection system was used to determine the param-
eterization to use on the next search episode. This system,
which is based on the idea of a multi-armed bandit algorithm
and is also used in ArvandHerd 2014, biases Arvand
to more frequently use those parameterizations which have
previously made the most heuristic progress.
Arvand also uses a second technique for sharing in-

formation across search episodes. This feature, which is
called a walk pool (Nakhost, Hoffmann, and Müller 2012),
stores those search trajectories which made the most search
progress. When starting a new search episode, these trajec-
tories are used to suggest an alternative starting point for
the episode that is deeper into the state-space than the initial
state. For a more in-depth description of how Arvand uses
these features in ArvandHerd see (Valenzano et al. 2012).

2.4 Plan Improvement
In the sequential satisficing and sequential multi-core tracks,
planner evaluation is based on the quality of solutions found.
As such, when competing in these tracks it is critical to use
the time remaining after a first solution is found to find bet-
ter solutions. ArvandHerd uses multiple techniques for
improving solution quality, and in this section we describe
those which remain mostly the same from the version of this
planner that was submitted to IPC 2011.

Aras. ArvandHerd uses a plan post-processing system
called Aras (Nakhost and Müller 2010). The execution of
this system consists of two phases. The first is a linear scan
of a given solution path that looks for actions that can be re-
moved such that the remaining plan is still valid. The second

phase involves the construction of a neighbourhood graph
around the solution path using a combination of forward
search and a backwards, regression-based search. This graph
is built until the number of nodes it contains reaches a given
node limit. A search is then performed which finds the short-
est path in this neighbourhood graph from the initial state to
a goal state.
Aras runs by iterating between these two phases until

some time or memory limit is reached, such that the limit on
the nodes in the neighbourhood graph is increased each time
the neighbourhood graph phase begins. All solutions found
by ArvandHerd using either LAMA or Arvand are fed to
Aras in an effort to improve solution quality.

Restarting Weighted A* (RWA*). RWA* was a feature
introduced in the original version of LAMA that was later
analyzed in (Richter, Thayer, and Ruml 2010). When us-
ing this technique, LAMA restarts and begins a less greedy
search from scratch each time a solution is found. For exam-
ple, on the first iteration of LAMA, the planner uses a greedy
best-first search for finding the first solution. On the second
iteration, LAMA then runs WA* with a weight of 10. If a
second solution is found, WA* is run again but with an even
smaller weight. This process then repeats until the time limit
is reached.

In the standard version of RWA*, no information is shared
between the iterations of RWA* except for the best solu-
tion found thus far, and the heuristic values of nodes that
have already been expanded. This means that the search
will not consider any nodes whose g-cost is as large as the
best solution found thus far. This was the approach taken
by ArvandHerd in 2011, though we used a different tech-
nique in ArvandHerd 2014 as described in Section 3.3.

Any-Time Arvand. Arvand was also set to continu-
ously look for solutions even after a first solution is found.
This simply means that Arvand continues to perform
search episodes. As in LAMA, the cost of previously found
solutions were also used to bound the search. This means
that episodes with a g-cost that is larger than the bound are
forced to restart. However, unlike how LAMA was used in
ArvandHerd 2011, the bound used for the search episodes
is only based on the best solution found by Arvand. As a re-
sult, the solutions found by LAMA or Aras are not factored
into how search episodes are bound. This type of bounding
was employed because Arvand is often unable to find any
new solutions if the bound is too tight. By restricting the
bound to only consider solutions found by Arvand means
that the bound is looser than it would be if the other solutions
were also factored in. This often allows Arvand to produce
more plans, thereby increasing the chance that a plan will be
found that will be greatly improved by Aras.

While this would suggest that perhaps no bounding
should be used, experimentation with this system did indi-
cate that some bounding was useful in certain domains in
which Aras was ineffective at improving the solution qual-
ity. Using the best solution found by Aras was experimen-
tally found to be an effective compromise between finding
enough solutions for Aras while still adding useful bound-
ing for domains in which Aras was not as successful. Note

2



that similar behaviour has been seen when using LAMA (Xie,
Valenzano, and Müller 2013), and so we consider bounding
in LAMA in Section 3.3.

3 Additions to ArvandHerd 2014
In this section, we describe the main changes that have been
made to ArvandHerd for its submission to IPC 2014. Note
that several of these techniques require parameters to be set,
and we will describe the parameter values used in each track
in Section 4.

3.1 ✏-Greedy Node Selection
✏-greedy node selection is a simple technique that effectively
introduces random exploration into the search (Valenzano et
al. 2014). This technique, which requires the user to set a
parameter ✏ in the range from 0 to 1, works as follows. With
probability 1 � ✏, the search acts exactly as the search al-
gorithm ordinarily would. For example, if the search being
used is GBFS, then with probability 1 � ✏ the search will
select the node from the open list with the smallest heuristic
value as the next node to be expanded. However, with proba-
bility ✏, the search is forced to use a different policy. Specif-
ically, the search with select a node uniformly at random
from amongst those in the open list. ✏ therefore determines
how often the algorithm exploits heuristic information, and
how often it explores.

Despite its simplicity, ✏-greedy node selection has been
shown to improve the coverage of planners like LAMA, even
though this planner is already using multiple techniques for
introducing variation into its search (Valenzano et al. 2014).
However, we use ✏-greedy node selection slightly differently
in LAMA than as explained above. This is because LAMA
uses 2k open lists where there are k heuristics in use, with
k of the open lists holding all open nodes (each ordered by
a different heuristic), and k open lists holding only those
nodes achieved with a preferred operator (again, with each
ordered by a different heuristic). For each node expansion,
LAMA must first select one of the 2k open lists, and then
using the corresponding heuristic to select a node from that
open list. In our implementation of ✏-greedy node selection
for LAMA, we have left the open list selection mechanism the
same, but have modified each open list to return a randomly
selected node from that open list with probability ✏. For ex-
ample, if LAMA selects one of the preferred operator open
lists as the next to be used and ✏ = 0.3, then there is a 70%

chance that the next node to be expanded will correspond to
the node achieved using a preferred operator which has the
lowest heuristic value and a 30% chance that the node will
be randomly selected from the set of all nodes achieved us-
ing a preferred operator. This approach was taken due to the
known effectiveness of the LAMA open list selection policy.

3.2 Aggressive Restarting
While the version of LAMA used in ArvandHerd in the
2011 competition would restart and use a different param-
eterization whenever the memory estimator indicated that a
given memory limit was reached, an investigation that was
performed after the competition suggested that this was not

an effective restarting policy (Valenzano et al. 2012). In par-
ticular, if the search does not use up the memory quickly
enough, it may spend all its time using an ineffective planner
parameterization or an unlucky operator ordering. Moreover,
if it does quickly use up the memory, the fact that it caches
the heuristic values may mean that the other parameteriza-
tions do not have much memory to work with.

To remedy these problems, the restarting policy was mod-
ified in the 2014 version of ArvandHerd in two ways. In
the first, we made the policy perform restarts much more of-
ten. This policy requires the user to set two parameters: an
initial node expansion limit Li and a limit factor Lf . The ex-
ecution of LAMA in ArvandHerd 2014 begins with a node
expansion limit of Li. When this limit (or a memory limit)
is hit, LAMA will restart and use a different configuration.
Once the limit is reached with all of the configurations, the
expansion limit is increased by a factor of Lf . This process
then repeats until the time limit is reached.

So as to avoid the problem by which the additional param-
eterizations do not have enough memory for their search, we
have set LAMA to clear its heuristic value cache if it reaches
the memory limit too many times.

3.3 Diverse Any-Time Search
As mentioned above, if Arvand is set to bound its search
episodes using the best solution found thus far including
those from Aras, the bound often makes it too difficult to
find any further plans. In that case, it was experimentally
found to be better to use a looser bound so that Arvand
finds more solutions and thus there is a greater chance that
Aras will greatly improve at least one of them.

In (Xie, Valenzano, and Müller 2013) it was shown that
similar behaviour was found when using Aras along with
RWA* in LAMA. To remedy this situation, a new technique
was developed called Diverse Any-time Search (DAS). When
using this approach, the planner runs RWA* as it typically
does, but once a given time limit is hit, it starts a new RWA*
search that begins again with the greediest of the configu-
rations. This new RWA* search also ignores the cost of all
previous solutions found. For example, if the time limit is
five minutes, then a new RWA* search will begin again with
GBFS every five minutes, and the bound used at any time
is given by the best solution found during the current five
minute RWA* phase. While Aras is also used on all so-
lutions found, the cost of the solutions found by Aras are
never used for bounding so as not to make it too difficult for
LAMA to find new plans.

DAS was added to the RWA* search of LAMA in the ver-
sion of ArvandHerd submitted to IPC 2014. The main
difference with how it is described in (Xie, Valenzano,
and Müller 2013) is how the RWA* time limit is set. In
ArvandHerd 2014, we simply use the restarting policy
described in the previous section to determine when a new
DAS phase should begin. This means that a new DAS phase
will begin once each configuration being used finds a solu-
tion or hits the current node expansion limit. The bound used
during a DAS phase is given by the best solution found of
all configurations tried with the same node expansion limit.
Once all configurations have been tried with a particular
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node expansion limit, the limit is increased according to the
node limit factor, and a new RWA* search is started with a
higher limit but no bound. Note that when a solution is found
for a first time, we delay the increase of the expansion limit
for one more RWA* phase.

4 Multi-Core and Single-Core ArvandHerd
While the version of ArvandHerd submitted in 2011 was
solely a multi-core planner, the current version has been
modified so that it can also compete in the sequential sat-
isficing and the sequential agile tracks. In this section, we
describe the differences between the versions used in these
tracks including the parameterizations used.

4.1 Multi-Core ArvandHerd
The multi-core version of ArvandHerd runs almost iden-
tically to the way it did in 2011. From the single binary,
ArvandHerd runs four threads. One of these threads runs
LAMA while the other three run a parellelized version of
Arvand. This parallel Arvand essentially has each thread
run an independent search episode, although the threads
share a single walk pool and a single configuration selector.
For more information on this architecture, see the descrip-
tion of ArvandHerd given in (Valenzano et al. 2012). The
only difference between the 2011 and 2014 versions of this
system is that the Arvand threads no longer share the best
solution they have found thus far with the thread running
LAMA in the 2014 system. This is because, as described in
Section 3.3, LAMA does not use the best solution found for
bounding the search.

Multi-Core Parameters. In the multi-core version of
ArvandHerd, there are four configurations made available
for the configuration selector of Arvand. Two of these con-
figurations bias the random walks to avoid using actions that
have previously lead to dead-end states, while the other two
bias the random walks to use helpful actions (Hoffmann and
Nebel 2001) suggested by the heuristic. All configurations
use a version of the FF heuristic (Hoffmann and Nebel 2001)
which is not aware of action costs, but the configurations
differ slightly in the initial length of the random walks, and
how quickly the random walk length is increased. Multi-core
ArvandHerd also uses a walk pool which holds a maxi-
mum of 100 search trajectories.
LAMA’s RWA* has been set to run GBFS, then WA* with

weights of 5 and 1. During the GBFS search, it uses a ver-
sion of the FF heuristic that ignores action costs, while it
uses a version which is aware of action costs when perform-
ing WA*. Both types of search also use the landmark count
heuristic (Richter and Westphal 2010) and ✏-greedy node se-
lection with ✏ = 0.3. Regarding the restart policy, the initial
expansion limit is set at 100 while the node limit factor is set
at 10.

4.2 Single-Core ArvandHerd
ArvandHerd did not compete in any single-core tracks in
2011, though it has been submitted to the sequential satis-
ficing and sequential agile tracks in the 2014 competition.
The single-core version of this planner does not use multiple

threads. Instead, it runs Arvand first until a time limit is hit,
and then it switches to LAMA. This is similar to the approach
taken by Fast Downward Stone Soup (Helmert and Röger
2011), which also runs different planners in sequence.

Sequential Satisficing Parameters. In the sequential sat-
isficing track, ArvandHerd runs Arvand for the first 15
minutes of the available runtime. The remaining time is then
used by LAMA. The rest of the parameters are set just as they
were for the multi-core track, except for the size of the walk
pool which has been decreased to hold only a maximum of
50 trajectories.

Agile Satisficing Parameters. In the agile satisficing
track, ArvandHerd runs Arvand for the first 3 minutes
and LAMA for the remaining time. The parameters used are
the same as in the sequential satisficing track, except that the
walk pool size is decreased to hold a maximum of 20 tra-
jectories, ✏-greedy node selection is used with ✏ = 0.2, and
there is no weight 1 WA* configuration included in the set of
LAMA configurations. Since solution quality is not counted
in measuring performance in this track, Aras is not used,
and ArvandHerd terminates once a first solution is found.

5 Conclusion
In this paper we have described the ArvandHerd planner
submitted to the 2014 International Planning Competition.
In particular, we have described the various components of
this planner, the new techniques added since the 2011 com-
petition, and how the planner has been made sequential for
use in the single-core sequential satisficing tracks.
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