
Adding Local Exploration to Greedy Best-First Search in Satisficing Planning

Fan Xie and Martin Müller and Robert Holte
Computing Science, University of Alberta

Edmonton, Canada
{fxie2,mmueller,rholte}@ualberta.ca

Abstract

Greedy Best-First Search (GBFS) is a powerful algorithm at
the heart of many state of the art satisficing planners. One
major weakness of GBFS is its behavior in so-called uninfor-
mative heuristic regions (UHRs) - parts of the search space
in which no heuristic provides guidance towards states with
improved heuristic values.
This work analyzes the problem of UHRs in planning in de-
tail, and proposes a two level search framework as a solution.
In Greedy Best-First Search with Local Exploration (GBFS-
LE), a local exploration is started within a global GBFS
whenever the search seems stuck in UHRs.
Two different local exploration strategies are developed and
evaluated experimentally: Local GBFS (LS) and Local Ran-
dom Walk Search (LRW). The two new planners LAMA-LS
and LAMA-LRW integrate these strategies into the GBFS
component of LAMA-2011. Both are shown to yield clear
improvements in terms of both coverage and search time on
standard International Planning Competition benchmarks, es-
pecially for domains that are proven to have unbounded or
large UHRs.1

Introduction
In the latest International Planning Competition IPC-2011
(García-Olaya, Jiménez, and Linares López 2011), the plan-
ner LAMA-2011 (Richter and Westphal 2010) was the clear
winner of the sequential satisficing track, by both measures
of coverage and plan quality. LAMA-2011 finds a first so-
lution using Greedy Best-First Search (GBFS) (Bonet and
Geffner 2001; Helmert 2006) with popular enhancements
such as Preferred Operators, Deferred Evaluation (Richter
and Helmert 2009) and Multi-Heuristic search (Richter and
Westphal 2010). Solutions are improved using restarting
weighted A*.

GBFS always expands a node n that is closest to a goal
state according to a heuristic h. While GBFS makes no
guarantees about solution quality, it can often find a solu-
tion quickly. The performance of GBFS strongly depends
on the quality of h. Misleading or uninformative heuristics
can massively increase its running time.

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Another version of this paper is published in AAAI 2014 (Xie,
Müller, and Holte 2014)

The main focus of this paper is on one such problem with
GBFS: uninformative heuristic regions (UHRs), which in-
cludes local minima and plateaus. A local minimum is a state
with minimum h-value within a local region which is not
a global minimum. A plateau is an area of the state space
where all states have the same heuristic value. GBFS, be-
cause of its open list, can get stuck in multiple UHRs at the
same time.

Figure 1: Overview of h+ topology (Hoffmann 2011). Do-
mains with unrecognized dead ends are not shown.

Hoffmann has studied the problem of UHRs for the case
of the optimal relaxation heuristic h+ (Hoffmann 2005;
2011). He classified a large number of planning benchmarks,
shown in Figure 1, according to their maximum exit distance
from plateaus and local minima, and by whether dead ends
exist and are recognized by h+. The current work proposes
local exploration to improve GBFS. The focus of the analy-
sis is on domains with a large or even unbounded maximum
exit distance for plateaus and local minima, but without un-
recognized dead ends. In these domains, there exists a plan
from each state in an UHR (with h+ < 1).

As an example, the IPC domain 2004-notankage has no
dead ends, but contains unbounded plateaus and local min-
ima (Hoffmann 2011). Instance #21 shown in Figure 2
serves to illustrate a case of bad search behavior in GBFS
due to UHRs. The figure plots the current minimum heuris-
tic value hmin in the closed list on the x-axis against the
log-scale cumulative search time needed to first reach hmin.
The solid line is for GBFS with hFF . The two huge increases

53

Figure 2: Cumulative search time (in seconds) of GBFS,
GBFS-LS and GBFS-LRW with hFF for first reaching a
given hmin in 2004-notankage #21.

in search time, with the largest (763 seconds) for the step
from hmin = 2 to hmin = 1, correspond to times when
the search is stalled in multiple UHRs. Since the large ma-
jority of overall search time is used to inefficiently find an
escape from UHRs, it seems natural to try switching to a
secondary search strategy which is better at escaping. Such
ideas have been tried several times before. This related work
is reviewed and compared in the next section.

The current paper introduces a framework which adds a
local search algorithm to GBFS in order to improve its be-
havior in UHRs. Two such algorithms, local GBFS (LS(n))
and local random walks (LRW(n)), are designed to find
quicker escapes from UHRs, starting from a node n within
the UHRs. The main contributions of this work are:

• An analysis of the problem of UHRs in GBFS, and its
consequences for limiting the performance of GBFS in
current benchmark problems in satisficing planning.

• A new search framework, Greedy Best-First Search with
Local Exploration (GBFS-LE), which runs a separate lo-
cal search whenever the main global GBFS seems to be
stuck. Two concrete local search algorithms, local GBFS
(LS) and local random walks (LRW), are shown to be less
sensitive to UHRs and when incorporated into GBFS are
shown to outperform the baseline by a substantial margin
over the IPC benchmarks.

• An analysis of the connection between Hoffmann’s theo-
retical results on local search topology (Hoffmann 2005;
2011) and the performance of adding local exploration
into GBFS.

The remainder of the paper is organized as follows: after
a brief review of previous work on strategies for escaping
from UHR, the new search framework GBFS-LE is intro-
duced, compared with related work, and evaluated experi-
mentally on IPC domains. A discussion of possible future
work includes perspectives for addressing the early mistakes
problem within GBFS-LE.

Search Strategies for Escaping UHRs
There are several approaches to attack the UHR prob-
lem. Better quality heuristics (Hoffmann and Nebel 2001;
Helmert 2004; Helmert and Geffner 2008) can shrink the
size of UHRs, as can combining several heuristics (Richter
and Westphal 2010; Röger and Helmert 2010). Additional
knowledge from heuristic computation or from problem
structure can be utilized in order to escape from UHRs.
Examples are helpful actions (Hoffmann and Nebel 2001)
and explorative probes (Lipovetzky and Geffner 2011). The
third popular approach is to develop search algorithms that
are less sensitive to flaws in heuristics. Algorithms which
add a global exploration component to the search, which
is especially important for escaping from unrecognized
dead ends, include restarting (Nakhost and Müller 2009;
Coles, Fox, and Smith 2007) and non-greedy node expan-
sion (Valenzano et al. 2014; Imai and Kishimoto 2011;
Xie et al. 2014). The current paper focuses on another direc-
tion: adding a local exploration component to the globally
greedy GBFS algorithm.

The planner Marvin adds machine-learned plateau-
escaping macro-actions to enforced hill-climbing (Coles and
Smith 2007). YAHSP constructs macro actions from FF’s
relaxed planning graph (Vidal 2004). Identidem adds explo-
ration by expanding a sequence of actions chosen probabilis-
tically, and proposes a framework for escaping from local
minima in local-search forward-chaining planning (Coles,
Fox, and Smith 2007). Arvand (Nakhost and Müller 2009)
uses random walks to explore quickly and deeply. Arvand-
LS (Xie, Nakhost, and Müller 2012) combines random
walks with local greedy best-first search, while Roamer (Lu
et al. 2011) adds exploration to LAMA-2008 by using fixed-
length random walks. Nakhost and Müller’s analysis (2012)
shows that while random walks outperform GBFS in many
plateau escape problems, they fail badly in domains such as
Sokoban, where a precise action sequence must be found to
escape. However, while escaping from UHRs has been well
studied in the context of these local search based planners,
there is comparatively little research on how to use search
for escaping UHRs in the context of GBFS. This paper be-
gins to fill this gap.

GBFS-LE: GBFS with Local Exploration
The new technique of Greedy Best-First Search with Local
Exploration (GBFS-LE) uses local exploration whenever a
global GBFS (G-GBFS) seems stuck. If G-GBFS fails to
improve its minimum heuristic value hmin for a fixed num-
ber of node expansions, then GBFS-LE runs a small local
search for exploration, LocalExplore(n), from the best node
n in a global-level open list. Algorithm 1 shows GBFS-LE.
STALL_SIZE and MAX_LOCAL_TRY, used at Line 24, are
parameters which control the tradeoff between global search
and local exploration.

The main change from GBFS is the call to LocalEx-
plore(n) at Line 26 whenever there has been no improve-
ment in heuristic value over the last STALL_SIZE node ex-
pansions.

Two local exploration strategies were tested. The first is

54

Algorithm 1 GBFS-LE
Input Initial state I , goal states G
Parameter STALL_SIZE, MAX_LOCAL_TRY
Output A solution plan

1: if h(I) <1 then
2: (open, hmin) ([I], h(I))

3: end if
4: stalled 0; nuLocalTry 0

5: while open 6= ; do
6: n open.remove_min(){FIFO tie-breaking}
7: if n 2 G then
8: return plan from I to n
9: end if

10: closed.insert(n)
11: for each v 2 successors(n) do
12: if v 62 closed then
13: if h(v) <1 then
14: open.insert(v, h(v))
15: if hmin > h(v) then
16: hmin h(v)

17: stalled 0; nuLocalTry 0

18: else
19: stalled stalled + 1

20: end if
21: end if
22: end if
23: end for
24: if stalled = STALL_SIZE

and nuLocalTry < MAX_LOCAL_TRY then
25: n open.peek_min()

26: LocalExplore(n){local GBFS or random walks}
27: stalled 0; nuLocalTry nuLocalTry + 1

28: end if
29: end while

local GBFS search starting from node n, LocalExplore(n) =
LS(n), which shares the closed list of G-GBFS, but main-
tains its own separate open list local_open that is cleared
before each local search. LS(n), as shown in Algorithm 2,
succeeds if it finds a node v with h(v) < hmin at Line 16 be-
fore it exceeds the LSSIZE limit. In any case, the remaining
nodes in local_open are merged into the global open list. A
local search tree grown from a single node n is much more
focused and grows deep much more quickly than the global
open list in G-GBFS. It also restricts the search to a single
plateau, while G-GBFS can get stuck when exploring many
separate plateaus simultaneously. Both G-GBFS and LS(n)
use a first-in-first-out tie-breaking rule, since last-in-first-out
did not work well: it often led to long aimless walks within
a UHR.

The second local exploration strategy tested is local ran-
dom walk search, LocalExplore(n) = LRW(n), as shown in
Algorithm 3. The implementation of random walks from the
Arvand planner (Nakhost and Müller 2009; Nakhost et al.
2011) is used. LRW (n) runs up to a pre-set number of
random walks starting from node n, and evaluates only the
endpoint of each walk using hFF . All intermediate states

Algorithm 2 LS(n), local GBFS
Input state n, goal states G, hmin{global variable}, open,
closed
Parameter LSSIZE

1: local_open [n]

2: h_improved false
3: for i = 1 to LSSIZE do
4: if local_open = ; then
5: return
6: end if
7: n local_open.remove_min() {FIFO

tie-breaking}
8: if n 2 G then
9: return plan from I to n

10: end if
11: closed.insert(n)
12: for each v 2 successors(n) do
13: if v 62 closed then
14: if h(v) <1 then
15: local_open .insert(v, h(v))
16: if hmin > h(v) then
17: hmin h(v)

18: h_improved true
19: end if
20: end if
21: end if
22: end for
23: if h_improved then
24: break
25: end if
26: end for
27: merge(open,local_open)
28: return

are checked for whether they are goal states. Like LS(n),
LRW (n) succeeds if it finds a node v with h(v) < hmin

within its exploration limit at Line 15. In this case, v is added
to the global open list, and the path from n to v is stored for
future plan extraction. In case of failure, unlike LS(n), no
information is kept.

Parameters, as in Arvand-2011, are expressed as a tu-
ple (len_walk , e_rate, e_period ,WalkType) (Nakhost and
Müller 2009). Random walk length scaling is controlled
by an initial walk length of len_walk , an extension rate
of e_rate and an extension period of NUMWALKS ⇤
e_period . This is very different from Roamer, which uses
fixed length random walks. WalkType defines two different
strategies for action selecting at Line 8: Monte Carlo Help-
ful Actions (MHA), which bias random walks by helpful ac-
tions, and pure random (PURE). For example, in configura-
tion (1, 2, 0.1,MHA) all random walks use the MHA walk
type, and if hmin does not improve for NUMWALKS ⇤ 0.1
random walks, then the length of walks, len_walk , which
starts at 1, will be doubled. LRW was tested with the fol-
lowing two configurations: (1, 2, 0.1,MHA), which is used
with preferred operators, and (1, 2, 0.1,PURE).

The example of Figure 2 is solved much faster, in around

55

Algorithm 3 LRW (n), local random walk
Input state n, goal states G, hmin{global variable}, open
Parameter LSSIZE

1: for i = 1 to LSSIZE do
2: s n
3: for j = 1 to LENGTH_WALK do
4: A ApplicableActions(s)
5: if A = ; then
6: break
7: end if
8: a SelectAnActionFrom(A)

9: s apply(s, a)

10: if s 2 G then
11: open.insert(s, h(s))
12: return
13: end if
14: end for
15: if h(s) < hmin then
16: open.insert(s, h(s))
17: break
18: end if
19: end for
20: return

1 second, by both GBFS-LS and GBFS-LRW, while GBFS
needs 771 seconds. The three algorithms built exactly the
same search trees until they first achieved the minimum h-
value 6. The local GBFS in GBFS-LS, because it could focus
on one branch, found a 5 step path that decreases the mini-
mum h-value using only 10 expansions. The h-values along
the path were 6, 7, 7, 6 and 4, showing an initial increase
before decreasing. h-values along GBFS-LRW’s path also
increased before decreasing. In contrast, GBFS gets stuck
in multiple separate h-plateaus since it needs to expand over
10000 nodes with h-value 6, which were distributed in many
different parts of the search tree. Only after exhausting these,
it expands the first node with h = 7. In this example, the lo-
cal explorations, which expand or visit higher h-value nodes
earlier, massively speed up the escape from UHRs.

There are several major differences between GBFS-LS
and GBFS-LRW. GBFS-LS keeps all the information gath-
ered during local searches by copying its nodes into the
global open list at the end. GBFS-LRW keeps only end-
points that improve hmin and the paths leading to them. This
causes a difference in how often the local search should be
called. For GBFS-LS, it is generally safe to do more lo-
cal search, while over-use of local search in GBFS-LRW
can waste search effort2. This suggests using more conser-
vative settings for the parameters MAX_LOCAL_TRY and
LSSIZE in LRW(n). The two algorithms also explore UHRs
very differently. LS(n) systematically searches the subtree of
n, while LRW(n) samples paths leading from n sparsely but
deeply.

2Each step in a random walk generates all children and ran-
domly picks one, which is only slightly cheaper than one expansion
by LS when Deferred Evaluation is applied.

Experimental Results
Experiments were run on a set of 2112 problems in 54 do-
mains from the seven International Planning Competitions
which are publicly available3, using one core of a 2.8 GHz
machine with 4 GB memory and 30 minutes per instance.
Results for planners which use randomization are averaged
over five runs. All planners are implemented on the Fast
Downward code base FD-2011 (Helmert 2006). The trans-
lation from PDDL to SAS+ was done only once, and this
common preprocessing time is not counted in the 30 min-
utes. Parameters were set as follows: STALL_SIZE = 1000
for both algorithms. (MAX_LOCAL_TRY, LSSIZE) = (100,
1000) for GBFS-LS and (10, 100) for GBFS-LRW.

Local Search Topology for h+

For the purpose of experiments on UHRs, the detailed classi-
fication by h+ of Figure 1 can be coarsened into three broad
categories:

• Unrecognized-Deadend: 195 problems from 4 domains
with unrecognized dead ends: Mystery, Mprime, Freecell
and Airport.

• Large-UHR: 383 problems from domains with UHRs
which are large or of unbounded exit distance, but with
recognized dead ends: column 3 in Figure 1, plus the top
two rows of columns 1 and 2.

• Small-UHR: 669 problems from domains without UHRs,
or with only small UHRs, corresponding to columns 1 and
2 in the bottom row of Figure 1.

Note, problems from these three categories are only a sub-
set of the total 2112 problems. Only a part of the 54 domains
were analyzed by Hoffmann (2011).

Performance of Baseline Algorithms
The baseline study evaluates GBFS, GBFS-LS and GBFS-
LRW without the common planning enhancements of pre-
ferred operators, deferred evaluation and multi-heuristics.
Three widely used planning heuristics are tested: FF (Hoff-
mann and Nebel 2001), causal graph (CG) (Helmert 2004)
and context-enhanced additive (CEA) (Helmert and Geffner
2008). We use the distance-base versions for the three
heuristics. They estimate the length of a solution path start-
ing from the evaluated state. Table 1 shows the coverage
on all 2112 IPC instances. Both GBFS-LS and GBFS-LRW
outperform GBFS by a substantial margin for all 3 heuris-
tics.

Heuristic GBFS GBFS-LS GBFS-LRW
FF 1561 1657 1619.4
CG 1513 1602 1573.2
CEA 1498 1603 1615.2

Table 1: IPC coverage out of 2112 for GBFS with and with-
out local exploration, and three standard heuristics.

3Our IPC test set does not include Hanoi, Ferry and Simple-Tsp
from Figure 1.

56

(a) GBFS(X) vs GBFS-LS(Y) (b) GBFS(X) vs GBFS-LRW(Y)

Figure 3: Comparison of time usage of the three baseline algorithms. 10000 corresponds to runs that timed out or ran out of
memory. Results shown for one typical run of GBFS-LRW.

Benchmarks GBFS GBFS-LS GBFS-LRW
UR-Deadend(195) 162 162(0.0%) 169(3.7%)
Large-UHR(383) 195 214(9.7 %) 225(15.3%)
Small-UHR(669) 634 637 (0.5%) 641(1.1%)

Table 2: Coverage comparison on the three domain cate-
gories for GBFS and GBFS-LE with hFF . UR-Deadend is
short for Unrecognized-Deadend. The same typical run in
Figure 3 is used for GBFS-LRW. Numbers in parentheses
show coverage improvements compared to GBFS.

Figure 3 compares the time usage of the two proposed
algorithms with GBFS using hFF over all IPC benchmarks.
Every point in the figure represents one instance, plotting the
search time for GBFS on the x-axis against GBFS-LS (left)
and GBFS-LRW (right) on the y-axis. Only problems for
which both algorithms need at least 0.1 seconds are shown.
Points below the main diagonal represent instances that the
new algorithms solve faster than GBFS. For ease of compar-
ison, additional reference lines indicate 2⇥, 10⇥ and 50⇥
relative speed. Data points within a factor of 2 are shown in
grey in order to highlight the instances with substantial dif-
ferences. Problems that were only solved by one algorithm
within the 1800 second time limit are included at x = 10000

or y = 10000. Both new algorithms show substantial im-
provements in search time over GBFS.

Figure 4 restricts the comparison to Unrecognized-
Deadend, Large-UHR and Small-UHR respectively. Table
2 shows the overall coverages. In Large-UHR, GBFS-LS
and GBFS-LRW solve 19 (+9.7%) and 30 (+15.3%) more
problems than GBFS (195/383) respectively. Both outper-
form GBFS in search time. However, in Small-UHR, GBFS-
LS and GBFS-LRW only solve 3 (+0.5%) and 7 (+1.1%)
more problems than GBFS (634/669), and there is very lit-
tle difference in search time among the three algorithms.
This result clearly illustrates the relationship between the
size of UHRs and the performance of the two local ex-
ploration techniques. For Unrecognized-Deadend, GBFS-

LS is slightly slower than GBFS with the same coverage
(162/195), while GBFS-LRW is slightly faster and solves
7 (+3.7%) more problems. The effect of local exploration
on the performance in the case of unrecognized dead-ends is
not clear-cut.

Performance with Search Enhancements
Experiments in this section test the two proposed algorithms
when three common planning enhancements are added: De-
ferred Evaluation, Preferred Operators and Multiple Heuris-
tics. hFF is used as the primary heuristic in all cases.

• Deferred Evaluation delays state evaluation and uses the
parent’s heuristic value in the priority queue (Richter and
Helmert 2009). This technique is used in G-GBFS and
LS(n), but not in the endpoint-only evaluation of random
walks in LRW(n).

• The Preferred Operators enhancement keeps states
reached via a preferred operator, such as helpful actions
in hFF , in an additional open list (Richter and Helmert
2009). An extra preferred open list is also added to
LS(n). Boosting with default parameter 1000 is used,
and Preferred Operator first ordering is used for tie-
breaking as in LAMA-2011 (Richter and Westphal 2010).
In LRW (n), preferred operators are used in form of
the Monte Carlo with Helpful Actions (MHA) technique
(Nakhost and Müller 2009), which biases random walks
towards using operators which are often preferred.

• The Multi-Heuristics approach maintains additional open
lists in which states are evaluated by other heuristic
functions. Because of its proven strong performance
in LAMA, the Landmark count heuristic hlm (Richter,
Helmert, and Westphal 2008) is used as the second heuris-
tic. Both G-GBFS and LS(n) use a round robin strategy for
picking the next node to expand. In Fast Downward, hlm

is calculated incrementally from the parent node. When
Multi-Heuristics is applied to GBFS-LRW, the LRW (n)

part still uses hFF because the path-dependent landmark

57

(a) Unrecognized-Deadend (b) Large-UHR (c) Small-UHR

Figure 4: Comparison of time usage of the three baseline algorithms over the three different categories. 10000 corresponds to
runs that timed out or ran out of memory. Results shown for one typical run of GBFS-LRW, which is selected by comparing
all 5 runs and picking the most typical one. They are all very similar.

computation was not implemented for random walks.
When LRW (n) finds an heuristically improved state s,
GBFS-LRW evaluates and expands all states along the
path to s in order to allow the path-dependent compu-
tation of hlm

(s) in G-GBFS. Without Multi-Heuristics,
only s itself is inserted to the open list.
Table 3 shows the experimental results on all IPC do-

mains. Used as a single enhancement, Preferred Operators
improves all three algorithms. Deferred Evaluation improves
GBFS-LS and GBFS-LRW, but fails for GBFS, mainly due
to plateaus caused by the less informative node evaluation
(Richter and Helmert 2009). In GBFS-LS and GBFS-LRW,
the benefit of faster search outweighs the weaker evalua-
tion. Multi-Heuristics strongly improves GBFS and GBFS-
LS, but is only a modest success in GBFS-LRW. This is not
surprising since LRW(n) does not use hlm, and in order to
evaluate the new best states generated by LRW(n) with hlm

in G-GBFS, all nodes on the random walk path need to be
evaluated, which degrades performance. When combining
two enhancements, all three algorithms achieve their best
performance with Preferred Operators plus Deferred Evalu-
ation. Figure 5 compares the time usage of the three algo-
rithms in this case.

Comparing State of the Art Planners in terms of
Coverage and Search Time
The final row in Table 3 shows coverage results when all
three enhancements are applied. The performance compar-
isons in this section use this best known configuration in
terms of coverage for three algorithms based on GBFS,
GBFS-LS and GBFS-LRW, which closely correspond to the
“coverage-only” first phase of the LAMA-2011 planner:

Enhancement GBFS GBFS-LS GBFS-LRW
(none) 1561 1657 1619.4
PO 1826 1851 1827.4
DE 1535 1721 1635
MH 1851 1874 1688.4
PO + DE 1871 1889 1880.6
PO + MH 1850 1874 1854.2
DE + MH 1660 1764 1730.2
PO + DE + MH 1913 1931 1925.4

Table 3: Number of instances solved with search enhance-
ments, out of 2112. PO = Preferred Operators, DE = De-
ferred Evaluation, MH = Multi-Heuristic.

• LAMA-2011: only the first GBFS iteration of LAMA
is run, with deferred evaluation, preferred operators and
multi-heuristics with hFF and hlm (Richter and Westphal
2010).

• LAMA-LS: Configured like LAMA-2011, but with
GBFS replaced by GBFS-LS.

• LAMA-LRW: GBFS in LAMA-2011 is replaced by
GBFS-LRW.

Table 4 shows the coverage results per domain. LAMA-
LS has the best overall coverage, 18 more than LAMA-2011,
closely followed by LAMA-LRW. LAMA-LS solves more
problems in 7 of the 10 domains where LAMA and LAMA-
LS differ in coverage. This number for LAMA-LRW is 7
out of 11. Although LAMA-LRW uses a randomized algo-
rithm, our 5 runs for LAMA-LRW had quite stable results:
1927, 1924, 1926, 1924 and 1926. By comparison, adding
the landmark count heuristic, which differentiates LAMA-

58

GBFS-PO&DE(x) vs GBFS-LS-PO&DE(y) GBFS-PO&DE(x) vs GBFS-LRW-PO&DE(y)

Figure 5: Comparison of time usage of the three baseline algorithms with Preferred Operators and Deferred Evaluation. 10000
corresponds to runs that timed out or ran out of memory. A typical single run of GBFS-LRW-PO&DE is shown.

(a) LAMA-2011(X) VS LAMA-LS(Y) (b) LAMA-2011(X) VS LAMA-LRW(Y)

Figure 6: Comparison of time usage of LAMA-2011 with LAMA-LS and LAMA-LRW. A typical single run is used for LAMA-
LRW.

2011 from other planners based on the Fast Downward code
base, improves the coverage of LAMA-2011 by 42, from
1871 to 1913.

Using the same format as Figure 3 for baseline GBFS,
Figure 6 compares the search time of the three planners
over the IPC benchmark. Both LAMA-LS and LAMA-
LRW show a clear overall improvement over LAMA-2011
in terms of speed. In Figure 7, the benefit of local explo-
ration for search time in Large-UHR still holds even with all
enhancements on. Both LAMA-LS and LAMA-LRW solve
12 more problems (4.1%) than LAMA-2011’s 290/383 in
Large-UHR, while in Small-UHR they solve 1 and 2 fewer
problems respectively than LAMA-2011’s 646/669. Table 5
compares coverages of the three planners over different cat-
egories.

For further comparison, the coverage results of some
other strong planners from IPC-2011 on the same hardware
are: FDSS-2 solves 1912/2112, Arvand 1878.4/2112, Lama-
2008 1809/2112, fd-auto-tune-2 1747/2112, and Probe

1706/1968 (failed on the ":derive" keyword in 144 prob-
lems).

Although the local explorations are inclined to increase
the solution length, the influence is not clear-cut since they
also solve more problems. The IPC-2011 style plan quality
scores for LAMA-2011, LAMA-LS and LAMA-LRW are
1898.0, 1899.6 and 1900.5.

Conclusions and Future Work
While local exploration has been investigated before in the
context of local search planners, it also serves to facilitate
escaping from UHRs for greedy best-first search. The new
framework of GBFS-LE, GBFS with Local Exploration, has
been tested successfully in two different realizations, adding
local greedy best-first search in GBFS-LS and random walks
in GBFS-LRW.

Future work should explore more types of local search
such as FF’s enforced hill-climbing (Hoffmann and Nebel
2001), and try to combine different local exploration meth-

59

(a) Unrecognized-Deadend (b) Large-UHR (c) Small-UHR

Figure 7: Comparison of time usage of LAMA-2011 with LAMA-LS and LAMA-LRW over the three different categories. A
typical single run is used for LAMA-LRW.

Domain Size LAMA-2011 LAMA-LS LAMA-LRW
00-miconic-ful 150 136 136 135.6
02-depot 22 20 20 19.6
02-freecell 80 78 79 78 .2
04-airport-str 50 32 34 32.8
04-notankage 50 44 43 44
04-optical-tel 48 4 6 4
04-philosoph 48 39 47 47.8
04-satellite 36 36 35 35
06-storage 30 18 23 21
06-tankage 50 41 41 42
08-transport 30 29 30 29.6
11-floortile 20 6 5 6
11-parking 20 18 20 16.8
11-transport 20 16 16 17
All others 1396 1396 1396 1396
Total 2112 1913 1931 1925.4
Unsolved 199 181 186.6

Table 4: Domains with different coverage for the three plan-
ners. 33 domains with 100% coverage and 7 further domains
with identical coverage for all planners are not shown.

Benchmarks LAMA-2011 LAMA-LS LAMA-LRW
UR-Deadend(195) 164 166(1.2%) 165(0.6%)
Large-UHR(383) 290 302(4.1 %) 302(4.1%)
Small-UHR(669) 646 645 (-0.2%) 641(-0.3%)

Table 5: Coverages over the three domain categories for
LAMA-2011, LAMA-LS and LAMA-LRW. UR-Deadend
is short for Unrecognized-Deadend. The same typical run in
Figure 6 is used for LAMA-LRW. Numbers in parentheses
show coverage improvements compared to LAMA-2011.

ods in a principled way. One open problem of GBFS-LE
is that it does not have a mechanism for dealing with un-
recognized dead-ends. Local exploration in GBFS-LE al-
ways starts from the heuristically most promising state in
the global open list, which might be mostly filled with nodes
from such dead-ends. In domains such as 2011-nomystery
(Nakhost, Hoffmann, and Müller 2012), almost all explo-
ration will occur within such dead ends and therefore be
useless. It would be interesting to combine GBFS-LE with
an algorithm for increased global-level exploration, such as
DBFS (Imai and Kishimoto 2011) and Type-GBFS (Xie et
al. 2014).

Acknowledgements
The authors wish to thank the anonymous referees for their
valuable advice. This research was supported by GRAND
NCE, a Canadian federally funded Network of Centres of
Excellence, NSERC, the Natural Sciences and Engineering
Research Council of Canada, and AITF, Alberta Innovates
Technology Futures.

References
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research 28:119–156.
Coles, A.; Fox, M.; and Smith, A. 2007. A new local-
search algorithm for forward-chaining planning. In Boddy,
M. S.; Fox, M.; and Thiébaux, S., eds., Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS-2007), 89–96.

60

García-Olaya, A.; Jiménez, S.; and Linares López, C., eds.
2011. The 2011 International Planning Competition.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E. A., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS-2008), 140–147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-2004),
161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Hoffmann, J. 2011. Where ignoring delete lists works, part
II: Causal graphs. In Bacchus, F.; Domshlak, C.; Edelkamp,
S.; and Helmert, M., eds., Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2011), 98–105.
Imai, T., and Kishimoto, A. 2011. A novel technique for
avoiding plateaus of greedy best-first search in satisficing
planning. In Burgard, W., and Roth, D., eds., Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-2011), 985–991.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Bacchus, F.; Domshlak,
C.; Edelkamp, S.; and Helmert, M., eds., Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS-2011), 154–161.
Lu, Q.; Xu, Y.; Huang, R.; and Chen, Y. 2011. The Roamer
planner random-walk assisted best-first search. In García-
Olaya, A.; Jiménez, S.; and Linares López, C., eds., The
2011 International Planning Competition, 73–76.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In Walsh, T., ed., Proceedings of
the Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI’09), 1766–1771.
Nakhost, H., and Müller, M. 2012. A theoretical framework
for studying random walk planning. In Borrajo, D.; Felner,
A.; Korf, R. E.; Likhachev, M.; López, C. L.; Ruml, W.; and
Sturtevant, N. R., eds., Proceedings of the Fifth Annual Sym-
posium on Combinatorial Search (SOCS-2012), 57–64.
Nakhost, H.; Müller, M.; Valenzano, R.; and Xie, F. 2011.
Arvand: the art of random walks. In García-Olaya, A.;
Jiménez, S.; and Linares López, C., eds., The 2011 Inter-
national Planning Competition, 15–16.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Silva, J. R.; and

Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2012), 181–189.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A. E.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS-2009), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-2008), 975–982.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS-2010), 246–
249.
Valenzano, R.; Schaeffer, J.; Sturtevant, N.; and Xie, F.
2014. A comparison of knowledge-based GBFS enhance-
ments and knowledge-free exploration. In Proceedings of
the 24th International Conference on Automated Planning
and Scheduling (ICAPS-2014).
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS-2004), 150–160.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI-2014).
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI-2014).
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning
via random walk-driven local search. In McCluskey, L.;
Williams, B.; Silva, J. R.; and Bonet, B., eds., Proceeed-
ings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling (ICAPS-2012), 315–322.

61

