
Monte Carlo Tree Search in Go

Adrien Couëtoux and Martin Müller and Olivier Teytaud

Abstract Monte Carlo Tree Search (MCTS) was born in Computer Go, i.e. in the
application of artificial intelligence to the game of Go. Since its creation, in 2006,
many improvements have been published. Programs are still by far weaker than
the best human players, yet the gap was very significantly reduced. MCTS is now
widely applied in games, in particular when no trustable evaluation function is read-
ily available. This chapter reviews the development of current strong Go programs
and the most important extensions to MCTS that are used in this game.

1 Introduction

This chapter describes the application of Monte Carlo Tree Search (MCTS) meth-
ods to the game of Go. Computer Go was the first major success story for MCTS,
and many important techniques were developed in this context. Go remains the best
studied application, with a huge amount of practical work as well as many publica-
tions over the last seven years.

The game of Go is a perfect information turn-based two player board game. As
usual in board games, actions are called moves. In Go, a normal move consists in
placing a single stone on the Go board, plus removing any captured opponent stones
from the board. Special move types are passing and resigning.

Adrien Couëtoux
Institute of Information Science, Academia Sinica, Taiwan, e-mail: adrienc@iis.sinica.
edu.tw

Martin Müller
Department of Computing Science, University of Alberta, Canada, e-mail: mmueller@
ualberta.ca

Olivier Teytaud, Tao, Inria, Lri, UMR CNRS 8623, Université Paris-Sud, France e-mail:
olivier.teytaud@inria.fr

1

2 Adrien Couëtoux and Martin Müller and Olivier Teytaud

The state of a Go game is described by the location of black and white stones
on the board, plus the move history, including who plays next. History is needed to
check the Ko rules which forbid certain types of repetition (see Section 1.2). Some
versions of the rules also require keeping track of the number of captured stones.

Notation: Throughout the chapter, moves are denoted by m, states by s, and the
player to play in state s by player(s).

1.1 The importance of Go

The game of Go originated in China more than 2000 years ago. It has simple rules,
but advanced tactics and a striking strategic level. It is the oldest known abstract
board game, and is actively played by millions of people. There is a large commu-
nity of hundreds of professional Go players, mainly in Asia. These players study,
teach and play Go full-time. Compared to many other classical games, progress in
Computer Go has been much slower, and it has been considered a “grand challenge”
of artificial intelligence. The recent breakthrough of MCTS has, for the first time,
led to strong computer programs, and has even opened up perspectives to approach
the level of the best human professionals. This level has already been achieved on
small boards of size 9×9 and smaller.

A key feature about Go is its great strategic depth. The depth of a game [53]
is defined as the maximum number of players p1, . . . , pdepth such that, if 1 ≤ j <
i ≤ depth, player p j wins with probability at least 60% against pi . Depth is not
always clearly defined, and it relies on a set of players, but it makes it possible to
compare different games. Go has a depth around 40, which is much more than any
other known game.

1.2 The rules of Go

Go is played by placing stones on the intersections of a square board. The standard
board size is 19× 19, but smaller sizes are popular for teaching and quick games.
Black plays first, then the two players (black and white) alternate until the game
ends with two or three consecutive passes, or with a resignation. Stones never move
on the board, but are removed when captured. Examples and details of these rules
are given in Fig. 1. The Ko rule prevents players from creating a potentially endless
loop by repeating a previous situation. This rule is explained in Fig. 2. At the end,
the player with the larger score is the winner. The exact scoring method depends
on the rules used. The simplest method used by most Go programs is a variant of
Chinese rules, which counts both stones and surrounded empty points, called terri-
tories, for each player (see Fig. 3). The score can be adjusted by a fixed value called
Komi. This is used to compensate for the advantage of the first player, or sometimes
to compensate for the different strength of the players. The more usual method to

Monte Carlo Tree Search in Go 3

Fig. 1 Rules of the game of Go.
Blocks: A block of stones is a maximal 4-connected set of stones of the same color. For exam-
ple, {J7,J8,J9} is a block, but {J7,J8} is not (not maximal) and {J7,J8,J9,K6} is also not (not
4-connected). A block of stones can be referred to by any of its stones: block J7 is the same as the
block J8.
Liberties: The empty intersections adjacent to a block are called its liberties. For example, block
A1 has a single liberty at C2, while block A2 has three liberties at A3, B3 and C2.
Capture: A block of stones is captured if the opponent fills its last liberty. For example, Black C2
captures the White block {A1,B1,C1,D1,E1,F1}. Captured stones are removed and these intersec-
tions become empty again. It is possible to capture several blocks in one move. For example, Black
C8 captures the two white blocks A6 and A9.
Suicide: In most variations of the Go rules, it is illegal to play a stone that fills the last liberty of the
player’s own block, while not capturing any opponent. For example, White L8 is suicide whereas
Black L8 is a capture and is allowed. White A8 is also suicide. White can play either one of E15
or G15 but not both. Black can not play either move. T17 is the last liberty of both the white block
T18, and the black block T16. Whoever plays first can capture the other.
Chains, groups etc: Closely related or virtually connected sets of blocks are often called chains
or groups. The notation is not consistent in the literature. Typically, a group is treated as a unit and
all its blocks are expected to live together or die together. Cutting off a group from other blocks is
considered an important event in a game.

compensate strength differences is to give handicap stones: Black is allowed to make
several consecutive moves at the start of the game.

For more information about the game of Go in general, see [8, 68]. For informa-
tion about rules and variations, see [69].

Two important Go concepts are eyes, and the safety of blocks of stones. Group
E16 in Fig. 1 has two eyes at E15 and G15. Playing either of these moves would be
suicide for Black (cf Fig. 1). Therefore, a group with two eyes can not be killed by

4 Adrien Couëtoux and Martin Müller and Olivier Teytaud

Fig. 2 The Ko rule: In the figure on the left-hand side, white can capture a single stone with D4,
leading to the position on the right. The Ko rule forbids Black from immediately recapturing on
E4 which would repeat the position on the left. All Ko rules prevent such simple cycles of length
2. Rules differ in their handling of longer, more complex cycles [69].

the opponent; it is safe unless its owner fills its own eyes. In contrast, block K7 has
only one eye; it can be killed by Black L8.

Computational Complexity.

A variant of the rules, namely the Japanese rules, is known to be Exptime-hard [54];
more precisely, this (not fully defined) set of rules contains a well defined set of
positions which is Exptime-complete. The Chinese variant is completely defined
but its complexity is unknown; it is in the (huge) gap between Pspace-hard [22] and
Expspace.

1.3 Computer Go before Monte Carlo Tree Search

Work on Computer Go started fifty years ago. Early programs were rule-based sys-
tems, and dealt with basic tactics such as ladders. The advent of affordable personal
computers in the mid 1980’s led to a big boost in popularity, and to the creation of
the first regular tournaments such as the Ing cup.

Wilcox describes the early development of Computer Go up to the late 1970’s
[70]. The first large-scale Go program was Interim.2, written in Lisp by Reitman
and Wilcox [51]. Reviews of the development of Computer Go up to about the year
2000 and detailed survey papers covering “classical” Computer Go were published
about ten years ago [6, 45, 46].

Monte Carlo Tree Search in Go 5

Fig. 3 Scoring: When no player is willing to keep playing (both play a pass) the game is stopped
and we count who has won. E.g. for Chinese rules, the points for Black are (i) the black stones
on the board (ii) the areas enclosed by black stones. The points for White are (i) the white stones
on the board (ii) the areas enclosed by white stones (iii) a bonus for White, termed Komi, e.g.
5.5, aimed at compensating Black’s advantage of first play. Here, on a 7×7 board, Black has 21,
whereas White has 28+5.5 = 33.5; White has won by 12.5 points. Players can play until they see
that whatever additional stone they play, it will be captured; at some point there will be no more
legal move. The game is usually stopped far before there is no legal move.

One measure of progress were the yearly handicap exhibition matches between
the Ing Cup winner and three young human players, often of insei (student profes-
sional) strength. The strength of the computer program would then be measured by
how many stones it needed to win (the less stones, the better the program). The first
hurdle at 17 stones handicap was taken in 1991 by Mark Boon’s program GOLIATH.
In 1997, Chen Zhixing’s HANDTALK won on 11 stones. At the time of the last Ing
Cup in 2000, programs had not yet won a game at 9 stones, which is considered
the highest handicap in regular use. Nick Wedd maintains a website with detailed
information, including game records, of all man-machine Go matches [67].

Progress was slow. As computers got faster, programs started to use more
specialized tactical searches such as block capture and life and death. GOLIATH
implemented a successful goal-oriented global search. Other programs such as
HANDTALK, THE MANY FACES OF GO and GO++ also started using global search.
The main obstacle for progress with using traditional alpha-beta based methods in
Go was the lack of a fast but reasonable evaluation function.

One notable development of the years leading up to the Monte Carlo revolution
was the rise of GNU GO, the first strong open source Go program [28].

Typical ingredients of a “classical”, pre-Monte Carlo Go program were:

6 Adrien Couëtoux and Martin Müller and Olivier Teytaud

• A fast implementation of a Go board, including rules, executing and taking back
moves, blocks and their liberties

• A ladder reading module, sometimes implemented on a specialized board with
reduced “lazy” updates

• An influence function which radiates out from stones, and allows the program to
assign a “likely owner” to each empty point

• A pattern matching system, typically containing several thousand hand-made pat-
terns, with extra attributes such as liberty counts

• A sophisticated set of data structures for higher-level units on a Go board, such
as chains, groups, and territories

• A set of heuristics for recognizing and evaluating eyes and potential eyes
• Specialized selective search modules for capturing blocks of stones, and for life

and death of groups
• A highly selective, shallow global search
• An opening book containing standard joseki corner sequences

Since the overall problem of playing Go well appeared intractable, quite a bit of
work has gone into specialized approaches to handle specific subproblems of Go.
Representative examples are life and death solvers [71, 39], specialized searches
for capturing blocks of stones [63], solving endgame puzzles using methods from
combinatorial game theory [44], proving the safety of stones and territories [4, 43,
49, 50], and solving seki [48].

Van der Werf has solved Go for several small but highly nontrivial board sizes
including 5× 5 [64], 5× 6 and 4× 7 [65]. An overview table is shown on http:
//erikvanderwerf.tengen.nl/mxngo.html.

Towards MCTS for Go

While the top-level structure of MCTS-based Go programs is completely different
from classical ones, some components have been kept, reintroduced, or further re-
fined:

• Fast incremental data structures for maintaining a board, blocks and liberties
• Tools for dealing with large numbers of game records from master players or

from computer players; tools for automated testing and parameter tuning using
self-play and tournaments

• Zobrist hashing [74]: the Zobrist hash is a fast and fair method for mapping
from Go boards to integers. It is used for storing positions in transposition tables.
This can save memory and computational cost by avoiding duplicates in the tree.
However, dealing with the resulting cyclic and acyclic graphs in MCTS has its
own challenges [16, 55].

• The AMAF and RAVE methods described in Section 3.1 are related to, but dif-
ferent from the history heuristic [56] used in alphabeta search.

• Heuristic Go knowledge in the form of pattern matching (Section 3.2), expert
rules (Section 3.3), and opening books (Section 3.4).

Monte Carlo Tree Search in Go 7

There are also approaches based on reinforcement learning. NeuroGo [25] uses
reinforcement learning (Section 1.5) with neural networks, and RLGO [60] uses
both offline and online learning of weights for patterns up to size 3×3.

Bernd Bruegmann designed the first Go evaluation function using Monte Carlo
simulations and implemented it in his Gobble program [10]. His approach simulates
many random games from a given state, and estimates the move values by their
winning probability. This algorithm missed the crucial second component of MCTS,
the tree search, and its performance was much weaker than the classical programs
at the time. Therefore, there was little follow-up work for several years.

1.4 The Bandit Literature

In this section, we introduce the bandit literature, which is a theoretical, maybe more
than practical, ground for MCTS. Developed during the recent decades, this body of
work is devoted to the problem of choosing one action a in a set of K options (also
termed arms), at each time step t ∈ {1, . . . ,T}. One obtains a stochastic reward each
time an action is selected. Some of the common objectives are to maximize the ex-
pected total reward from 1 to T , or to maximize the expected reward obtained at the
last time step. In the former case, one needs to balance exploration and exploita-
tion. Focusing on exploration only would mean to choose actions uniformly in order
to explore as many options as possible, to avoid missing a good one. On the other
hand, focusing on exploitation would mean choosing the action that has the best
empirical average reward. This balance is at the heart of successful approaches to
multi-armed bandit problems.

In the case of Monte Carlo Tree Search, bandit algorithms are used for choosing
which moves should be simulated more often in a given state (Section 2). The goal is
to balance the exploration of actions that we know little about versus the exploitation
of actions that returned the highest rewards in the past (the incentive being that we
may want to simulate these promising moves to confirm their high value).

The bandit problem [42, 1] is formally described as follows:

• There are time steps 1,2, . . . ,T .
• There are arms, also termed options, 1,2, . . . ,K.
• At each time step t ∈ {1, . . . ,T},

– An arm at ∈ {1, . . . ,K} is chosen. It is indeed chosen by a bandit policy π ,
with at = π(a1, . . . ,at−1,r1, . . . ,rt−1).

– Then, a reward rt = rat ,t is obtained. The random variables ra,t for a ∈
{1, . . . ,K} and t ∈ {1, . . . ,T +1} determine the problem.

• Other quantities of interest are

– nm(a) =Card {t ∈ {1, . . . ,m};at = a}, the number of time steps≤m at which
arm a has been chosen.

– rm(a) = ∑t∈{1,...,m};at=a rt , the total reward of arm a.

8 Adrien Couëtoux and Martin Müller and Olivier Teytaud

– q̂m(a) = rm(a)/nm(a) average reward of arm a (defined if nm(a) > 0; set to
+∞ otherwise).

– the Upper Confidence Bound (UCB) score:

scoreucb,t(a) = q̂t(a)︸︷︷︸
exploitation

+C
√

log(t)/nt(a)︸ ︷︷ ︸
exploration

(1)

and its associated policies πucb which chooses at time t the arm a which max-
imizes scoreucb,t−1(a) (randomly breaking ties). The exploration part repre-
sents the incentive to simulate arms that we have little knowledge about. The
exploitation part represents the incentive to simulate arms that have shown
good results in the past simulations.

• Given a1, . . . ,aT and r1, . . . ,rT , a recommendation policy R decides a=R(a1, . . . ,aT ,r1, . . . ,rT)∈
{1, . . . ,K}. Classical recommendation policies include

REBA = argmax
a

q̂T (a)

RMPA = argmax
a

nT (a)

RLCB = argmax q̂T (a)−C
√

log(T)/nT (a)

where EBA, MPA, LCB stand for Empirically Best Arm, Most-Played Arm,
Lower Confidence Bound respectively.

In the case of MCTS,

• the policy π is used for choosing which move is simulated from the current situ-
ation;

• the recommendation policy R chooses which move is actually played.

The expected cumulative regret (ECR) is

ECR = max
b∈{1,2,...,K}

T

∑
t=1

E(f (b)− f (at)).

The expected simple regret associated to a bandit policy π and a recommendation
policy R is E(rT+1,a) with a chosen by R and a1, . . . ,aT decided by π .

Bandits can be considered in a stationary or a non-stationary setting:

• The stationary case, corresponds to the case in which the (rt,a)t∈{1,...,T+1} are in-
dependently identically distributed according to some unknown distribution da,
usually assumed to lie in some interval. The stationary case can be handled by
different algorithms; depending on the exact criteria, the optimal policy can be
Upper Confidence Bound (πucb) with recommendation RMPA, or the uniform pol-
icy πuni f orm with recommendation REBA.

• The non-stationary case is harder to define, as many distinct non-stationary prob-
lems can be defined. Bandits involved in MCTS are non-stationary, with some
special properties (convergence, for t → ∞, of r̂(a, t) either to 0 or to 1). The

Monte Carlo Tree Search in Go 9

bandit part in MCTS is indeed not fundamental in the success of a MCTS for a
large problem; the playout policy (Section 3.2.3) and the bias in the tree (Sec-
tion 3.2.2), both in particular using domain knowledge, are much more impor-
tant. But a MCTS programmer should keep in mind the principle of explo-
ration/exploitation. Discounted variants were proposed in [41]; they are success-
ful in some bandit problems but have not been successfully tested in MCTS prob-
lems.

Adversarial bandits are a related family of problems in which rt,a = M(at ,bt) where
M specifies the problem, bt is chosen by an opponent aware of a1, . . . ,at−1 and
r1, . . . ,rt−1 but not aware of at . Such bandits are solved optimally in [33, 2] and
applied to MCTS for games with simultaneous moves in [27].

1.5 Reinforcement learning background

Reinforcement learning [62] is the setting where an agent (also sometimes called
controller) interacts with an environment in order to learn how to choose an action
(or a move in the case of Go) depending on the current state of the system. At
initialization, the agent has no knowledge of what good or bad actions look like.
He needs to interact with the environment to observe the consequences of different
actions, and learn what are the best actions. The signal given by the environment
is often a numerical value called reward, that the agent tries to maximize, over a
certain period of time. In the case of Go, the reward can be 1 when a game is won
and 0 or−1 when a game is lost. In the context of a mimicking approach, the reward
can be 1 when the agent reproduces the moves by an expert and 0 otherwise (see
e.g. Section 3.2.1 for such a case in the game of Go). The time horizon can be finite,
like in the game of Go, or infinite. In the latter case, or with large time horizons, one
often needs to discount the future rewards, in order to have finite objective function
values. In simulation balancing (Section 3.2.3) the reward is the similarity between
the percentage of wins for black in a given situation and the probability as estimated
by an expert. Reinforcement learning problems can be model based or model free. In
the former case, one assumes that a model of the environment is available, and that
for any couple state-action, one can simulate a transition, i.e. how the environment
would react to such couple. In the latter case, no such assumption is made, and one
usually only has historical data of observed transitions (i.e. tuples containing a state,
an action, a resulting state and observed reward). For example, mimicking in Go is
based on databases of games.

The most classical algorithms in reinforcement learning are either actor meth-
ods (based on learning directly a function which maps inputs to outputs), or critic
methods (learning an evaluation function, i.e. a function which, for maps situations
to probabilities of winning). In the case of Go, [18] learns a function as in actor
methods, but the crucial new component is the Tree Search on top of it. [57] (using
neural networks) and [60] (using a linear representation by all 3×3 patterns) are of
the critic type.

10 Adrien Couëtoux and Martin Müller and Olivier Teytaud

2 Basic Monte Carlo Tree Search

The idea is to use Monte Carlo simulations to evaluate the value of all available
moves, in order to select the best one. In the particular case of a 2 player game
like Go, uniform sampling based simulations are not enough to provide an accurate
estimation of the moves’ values. Ideally, one would want to simulate all possible
sequences of moves, and weight each opponent’s move with the probability that he
would choose that specific move. But this would require an almost infinite compu-
tational budget (due to the number of possible sequences), and a perfect knowledge
of the opponent’s move preferences. Both of these being out of reach, the key idea
of Monte Carlo Tree Search (MCTS), as defined in [18], is to bias the sampling
of moves, to invest most of the computation time in the actions that look the most
promising, using bandit algorithms (see Section 1.4). This focus on good moves is
how MCTS deals with intractably large search space. The other challenge is the
unknown opponent’s strategy. To deal with it, the bias of move sampling in MCTS
is designed so that, asymptotically, the best move will be infinitely more simulated
than the other moves. The ultimate goal is to approximate the minimax tree derived
from the current state. Combining this goal with the biasing of simulations means
that MCTS will only approximate the minimax tree for the subtree corresponding
to the most promising moves.

Practically speaking, given a state s, MCTS uses the computation time to build a
tree that represents a subset of all possible trajectories from that state s. The nodes
of the tree correspond to reachable states, and the arcs represent available moves.
The longer MCTS runs, the larger the tree grows, and the more information is avail-
able. This information is updated after each iteration, and used to bias the following
simulations. When time runs out, one uses that information to select the move that is
the best according to a chosen criterion (e.g. the most simulated move). We present
the MCTS algorithm in detail below.

2.1 Useful notations

Simulations will be denoted by g1, . . . ,gt , i.e. gt is the tth simulation performed
during the thinking time. Collected statistics are the following:

• q̂t(s,m) denotes the frequency at which, in simulations g1, . . . ,gt , simulations
including move m in state s have been a win for the player to play in state s.

• V̂t(s) is the frequency at which, in simulations g1, . . . ,gt , simulations including
state s have been a win for the player to play in state s.

• nt(s,m) is the number of simulations, in g1, . . . ,gt , which include move m played
in state s.

• nt(s) is the number of simulations, in g1, . . . ,gt , which include state s.
• nrave,t(s) is the number of simulations, in g1, . . . ,gt , which include move m and

state s, with m played by player(s) in state s or later than state s. RAVE stands

Monte Carlo Tree Search in Go 11

for “rapid action value estimates”, to be detailed later. RAVE values, originally
known as All-Moves-As-First (AMAF), were described in [10], in the context of
Monte Carlo simulations without tree search; they were adapted to the MCTS
context in [30].

• q̂rave,t(s,m) is the frequency at which simulations, in g1, . . . ,gt , have been a win
for player(s) and contain move m played by player(s) in state s or later than in
state s.

• T the tree currently stored in memory by MCTS
• M (s) the moves available in state s

As far as possible, we remove the subscript t, but we should keep in mind that all
these quantities evolve dynamically, depending on the results of simulations. After
each simulations, these quantities are updated.

2.2 Main loop of MCTS

We explain here more formally how MCTS works. The algorithm can be described
as follows: given a state s0, it creates a tree T where it stores the information gath-
ered during simulations of the game (it is thus initialized with a single node, its
root, the state s0). MCTS then repeats the main loop, here called GrowTree, un-
til the computation time is over. It then uses the information stored in T to select
a move, implementing a function that we call BestAction(T). BestAction is also
termed the recommendation policy, or final selection function.

A commonly used final selection function is to pick the most simulated move.
But there are other options available, inspired by the bandit literature (see Section
1.4), such as EBA or LCB.

The GrowTree function, the main loop of MCTS, contains the core features of
MCTS, and will be the focus of this section. It can be divided in four steps [12], as
illustrated by Figure 4, borrowed from [9]:

1. Selection (tree part): starting in the root node (the current state s0), and a selec-
tion policy, one travels down the tree, until one decides to expand the tree by
simulating an unvisited node;

2. Expansion: given a node s in the tree, one chooses a feasible move m that has not
been visited yet, and adds the resulting state s′ in the tree;

3. Simulation, also termed playout: from that new node s′, one simulates a possible
trajectory until a final state is reached, where the result of the game is known;

4. Backpropagation: given the last simulation’s result, the tree is updated, typically
by updating the statistics (average win ratio, number of simulations, etc as ex-
plained in Section 2.1) in all the nodes visited during this last simulation.

We formally describe the MCTS algorithm in Alg. 1. We generally denote the
current tree stored in memory T . It is initialised as a single node, its root, the initial
state s0.

12 Adrien Couëtoux and Martin Müller and Olivier Teytaud

Fig. 4 The four steps of the main loop of MCTS. Each iteration of the loop corresponds to one
possible sequence of states and moves, and adds information to the tree.

Algorithm 1 MCTS algorithm
Require: initial state s0, time budget B
Ensure: a chosen move m̃∗

Initialize t0← t, and T ← s0
while t < t0 +B do

GrowTree(T)
end while
Return: BestAction(T)

GrowTree is the main loop of MCTS. It is iterated as long as the time budget
allows it. We formally describe this loop in Alg. 2. The transition function is specific
to the problem, and is assumed to be known. In the case of Go, this function models
the rules of the game and is deterministic.

This loop clearly shows three essential parts of MCTS: (i) the selection policy,
(ii) the simulation procedure, and (iii) the update of the tree. We dedicate the section
2.3 to the selection policy, that is at the core of MCTS, and that was a key factor in
the breakthrough for computer Go [40].

As for the simulation procedure, a standard choice is to apply a default policy
until a final state is reached, where the result of the game can be computed. An easy
choice for that default policy is to choose random moves, but more elaborate default
policies can improve the overall performance (see Section 3).

Updating the tree is usually done by storing in each state the number of simula-
tions and the win ratio. Again, the result of one simulation can be used more widely
to spread information across the tree.

Monte Carlo Tree Search in Go 13

Algorithm 2 GrowTree
Require: tree T
Ensure: adds information to the tree T

Initialize s← root(T)
while s ∈T AND !(s =final state) do

m =Selection(s)
s =Transition(s,m)

end while
result=Simulation(s)
T ← Update(T ,result)

2.3 How simulations are biased inside the tree

q(s,m) is a score used in the algorithm for adapting the simulations. q(s,m) has
various definitions in various papers, but a classical version popularized by [40] is
as follows:

q(s,m) = q̂(s,m)+
√

log(n(s))/n(s,m). (2)

This formula is inspired by [42, 1], as explained in Section 1.4 (Eq. 1). We keep
notations simple, but special cases are implemented for avoiding log(0) or divisions
by zero. A key point is that the right hand side term should be positive so that explo-
ration is never zero. For instance, one can set q(s,m) = +∞ if n(s,m) = 0, in order
to explore all moves at least once before actually implementing the above formula.
Alternatively, [14] proposes progressive widening to slowly increase the number of
moves considered from a state s as n(s) increases. Then, when the algorithm reaches
a state s, it simulates the move m that maximizes the score function q(s,m) (if mul-
tiple moves maximize it, pick one randomly). In Algorithm 2, this means:

Selection(s) = argmax
m∈M (s)

q(s,m) (3)

3 Popular MCTS Extensions for Computer Go

This section presents the most popular extensions used in MCTS for Go.

3.1 Rapid Action-Value Estimates

When Rapid Action Value Estimates, as described in Section 2.1, are used, then Eq.
2 is modified as follows:

14 Adrien Couëtoux and Martin Müller and Olivier Teytaud

q(s,m) = α(q̂(s,m)+
√

log(n(s))/n(s,m))

+ (1−α)(q̂rave(s,m)+
√

log(nrave(s))/nrave(s,m)) (4)

where q̂(s,m) and q̂rave(s,m) are defined in Section 2.1. This score linearly com-
bines two move scores:

• The classical UCT score consisting of the average payoff q̂(s,m) plus an explo-
ration term; this part is based on simulations in which move m has been played
immediately in state s.

• The RAVE score of m in s is computed from all simulations in which m has been
played in s or later in the simulation. These simulations are termed RAVE sim-
ulations. Importantly, RAVE simulations are the same as classical simulations;
just, the set of simulations used for valuating a move m is (see Section 2.1)

– Simulations(m,s): Simulations in which m is played in s;
– Rave−Simulations(m,s): Simulations in which m is played in s or later.

The union of the Simulations(m,s), for all m legal in s, is equal to the union
of the Rave− Simulations(m,s); but for a fixed m, Rave− Simulations(m,s) is
much bigger than Simulations(m,s). For a typical state s, each simulation con-
taining s appears in only one Simulation(m,s), and in many different Rave−
Simulation(m,s).

The RAVE term is, a priori, less precise than the classical UCT term. However,
RAVE produces statistics much more quickly. On average, almost half the moves
on the board are played at least once by one player over the course of a whole
simulation, whereas there is only a single move per simulation from state s. RAVE
values are therefore most useful in the early phase of a search, when there are only
few simulations for a given move. Therefore, the coefficient α must go to 1 when
the number of simulations increases, and should be 0 when there are only RAVE
simulations in a node. A classical formula [31] is

α =
√

n(s,m)/(n(s,m)+3k)

where k is chosen so that when n(s,m) = k, the RAVE value q̂rave(s,m) and the
classical value q̂(s,m) have nearly the same weight.

In most strong Go programs, RAVE is used and gives a clear improvement. How-
ever, it can fail occasionally [47], in the case where a move must be played immedi-
ately, but is often bad when played later in a simulation. Figure 5 shows an example
where the program FUEGO does not find the only winning move due to its bad
RAVE score.

Monte Carlo Tree Search in Go 15

Fig. 5 Example of misleading RAVE score in FUEGO: White B2 is the only winning move
which avoids a seki. Its RAVE value is very low, since if the liberty at A5 gets filled first, as
happens in many simulations, then B2 becomes a very bad self-atari.

3.2 Learning and using local Go patterns

Go players learn many patterns - local shapes of stones - as well as information
such as which moves in a pattern are forced, usually good, or bad. All such rules are
heuristic and cannot be used for hard pruning.

For example, playing a so-called empty triangle is usually bad shape, but in some
cases it can be a good move. Figure 6 shows examples. Databases of patterns are
used in all strong MCTS programs for both simulations and, to an even larger de-
gree, as in-tree knowledge. While some programs play standard joseki sequences
instantly, most patterns are used as a soft bias only. This allows a bad shape move
to still be simulated and chosen by the search.

Section 3.2.1 discusses the learning of patterns. Section 3.2.2 presents the use of
patterns in the game tree (defining pattern values, and using pattern values for bias-
ing the tree search). Section 3.2.3 is dedicated to patterns in the playouts (defining
values, and using pattern values for biasing the Monte Carlo sampling, out of the
tree).

16 Adrien Couëtoux and Martin Müller and Olivier Teytaud

Fig. 6 Do not play empty triangles (usually): Playing K11 or L12 for Black builds an empty
triangle; it wastes one stone with little effect. Counter-example: On the other hand playing G6 for
black is a good move; it is the only solution for killing E6.

3.2.1 Patterns Learning

Learning patterns is not an easy task. [19, 14] learn the value of patterns in databases.
Let us consider a database of games between strong players. The pattern is a family
of pairs (relative location, set of values); for example, an empty triangle pattern (Fig.
6) is “(-1,0) is black, (0,1) is black, (-1,1) is empty, next move is (0,0)”. The most
popular patterns shapes are approximately circular and rectangular/square. Special
case patterns can be learned for corners and sides of the board. Standard corner
opening sequences called joseki can also be represented as sets of patterns. For
matching, symmetries such as rotation, mirroring and swapping colors are taken
into account.

The confidence of a pattern is the probability (in the database) that a pattern is
played, given that it can be played legally. The support of a pattern is the frequency
at which simultaneously (i) the pattern can legally be played and (ii) it is actu-
ally played. There are fast algorithms for selecting patterns which have at least a
given support and a given confidence [7]; the speed strongly depends on the support
threshold (the lower the threshold, the slower the algorithm).

Monte Carlo Tree Search in Go 17

3.2.2 Patterns in the Game Tree

Extracting patterns, with their confidence and support, is the first part of the job; the
second part consists of attributing values to patterns.

Heuristic pattern values.

The pattern move value h(s,m), for a move m in a state s, can be defined as a com-
bination of pattern size, support, and confidence, using either handcrafted formulas
or machine optimization [52]. When the extraction algorithm filters out patterns
with low support, then this approach can only design positive patterns, as negative
patterns have very low support - Guzumi is therefore neglected.

Minorization-Maximization.

A popular solution for learning patterns values due to Coulom consists in optimiz-
ing pattern weights by numerical optimization such as Minorization-Maximization
[19, 21]. The criterion for such optimization is typically move prediction in master
games.

Direct optimization.

Other approaches directly optimize the winning rate in simulated games [13]. How-
ever, this approach requires expensive simulations.

When values are computed, they now have to be used in the program. Heuristic
pattern knowledge can be used as a bias in the game tree. A “heuristic pattern value”
h(s,m) of each move m in the state s can be added to the MCTS move selection.

Values obtained by reinforcement learning.

Some papers have proposed the use of values obtained by reinforcement learning,
but these results were never reproduced later and indeed removed from MOGO in
which these tests had been performed.

How to use pattern values.

When patterns are extracted and values are available for all patterns, then the heuris-
tic value of a move h(s,m) can be defined as the value of the largest pattern match-
ing move m in state s. Such values can be used for in-tree bias in many differ-
ent ways. Popular methods are adding “fake” initial simulations for UCT and/or

18 Adrien Couëtoux and Martin Müller and Olivier Teytaud

RAVE values with “virtual wins and losses”, or directly adding a term such as
C×h(s,m)/ log(n(s,m)) to the move selection formula [52].

Pattern matching can be based on hashing and be reasonably fast [19]. Values are
computed once for a node when it is created. Some implementations maintain two
types of nodes; small nodes before computing the pattern value of each move, and
large nodes for which values have been computed.

3.2.3 Patterns in the Playouts

Using patterns in playouts is important, but computationally much more challenging
since typical playouts aim for a speed in the order of one microsecond per move. Be-
sides the still popular small handcrafted patterns such as the original 3×3 “MOGO
patterns” [66] (accompanied by expert rules such as “if you can capture, then cap-
ture”, and, for advanced programs, more sophisticated Go expertise such as Nakade
and approach moves), we distinguish two learning methods:

• Offline learning: patterns are learnt before the actual game is played.
• Online learning: patterns are learnt during the actual game.

Offline learning of pattern values for Monte Carlo Simulations

An early negative result by Gelly and Silver showed that increasing the strength
of a Monte Carlo simulation policy does not necessarily improve the strength of
the MCTS player built on top of it [29, 66]. It is more important that a playout
is “unbiased” or “balanced”, i.e. that black moves and white moves preserve the
equilibrium of the game [61, 35]. Therefore a possible solution consists in defining
the balancing problem for N parameters θ = (θ1, . . . ,θN) as follows:

• Vθ (s): the frequency of wins over M simulations for black when playouts start in
situation s and use parameters θ .

• Vtarget(s): a target value, obtained either:

– by human expertise;
– or by self-play of a MCTS program on situation s.

The case of learning from self-play is particularly interesting because it is unsuper-
vised.

Given Vtarget(s) and a parametric policy defining simulations as a function of a
parameter θ , SB provides a parameter θ̂ is obtained by minimization of

θ̂ = argmin
θ

∑
s∈{s1,...,sN}

(Vθ (s)−Vtarget(s))
2 . (5)

Let us define the random variable simulation, which is defined for some initial state
s and a parameter θ . The derivative, with respect to θ , of the sum of squares term in
Eq. 5 is the product of

Monte Carlo Tree Search in Go 19

2Es (Vθ (s)−Vtarget(s))

(which is easy to compute by simulations, given θ and Vtarget and

Esimulationreward(simulation)∇θ logP(simulation|s,θ),

which needs the gradient of the log-likelihood logP(simulation|s,θ), which is the
sum of the log-likelihood of each move in the simulation.

Success has been reported for simulation balancing on small boards and for the
Go program ERICA [34]. However, some negative results were also reported on
the computer-go mailing list; sometimes, minimizing Eq. 5 actually decreased the
playing strength of the MCTS built on top of the playout.

Despite much research on automated learning methods, handcrafted patterns
and/or expert rules are still heavily used in current strong implementations of MCTS
for Go. Playouts in which a lot of human knowledge is encoded are termed heavy
playouts, whereas simulations based on fast simple rules are termed light playouts.
The recent trend of programs such as ZEN has been towards heavier playouts.

Online learning of pattern values for Monte Carlo simulations.

The RAVE method (Section 3.1) has shown the great potential of exploiting more
detailed statistics from simulations. Therefore, it is natural to try other forms of
learning from these simulations, possibly leading to dynamic, adaptive policies.

Drake and Chen have proposed to learn a position-specific policy by coevolution
of strategies [24]. In spite of promising results on life-and-death situations in Go,
such positive results could not be shown for the general case, i.e. for improving the
overall strength of optimized MCTS algorithms. Drake and Baier proposed [23, 3] to
extract statistics of “winning replies”, i.e. moves b for Black which, when following
move w for White, have recently led to a win for Black. The early positive results
were achieved with relatively simple policies and were not reproduced (at least not
in public) for more complex Go programs. The online adaptation of playouts is not,
currently, a necessary component of a strong MCTS program.

3.3 Expert rules

Many types of Go knowledge cannot be easily represented by patterns. Examples
are capture tactics, irregular cut/connect and life and death problems [46], dealing
with wide open spaces [52], threats, and approach moves (moves which prepare a
later move, without immediate clear benefit). Such knowledge must, at least for the
current state of the art, be encoded manually and needs a lot of handcrafting. Still,
such expert rules provide substantial benefits in terms of playing strength of MCTS.
Encoding such knowledge into MCTS in the right way is still considered a black

20 Adrien Couëtoux and Martin Müller and Olivier Teytaud

art. Parameter tuning methods can help, but surprisingly little has been published on
this topic.

3.4 Global and local opening books - Fuseki and Joseki

Full board opening books specify the next move given an exactly matching board.
They are limited for the full 19× 19 board in Go due to the large branching factor
and diversity of possible moves. However, on board sizes of 9×9 and smaller, books
are very powerful. On 7×7, the MOGO program has shown better than professional
performance thanks to its huge opening book built by self-play by a “meta” MCTS
algorithm, using a MCTS algorithm as default policy [17]. Importantly, the process
still involves some human intervention and trial-and-error.

For big boards (13× 13 and 19× 19), books can also be used for joseki, local
opening sequences. The corners and sides are very important in Go, since it is much
easier to build territories and eyes there. “Joseki” refers to standard sequences in
a single corner, which are usually but not always played out in the opening phase.
In contrast, the term fuseki refers to full board openings, and in part deals with
the interaction between different corners and sides. Many current MCTS programs
include large-scale patterns, covering josekis and even full board positions. They are
usually used for soft pruning, as explained in Section 3.2.2, rather than hardcoded
moves.

3.5 Parallelizing MCTS for Go

Despite some inherent limitations as discussed above, MCTS generally scales well
with increasing time and memory. More simulations and larger trees result in
stronger play, with no apparent upper limit in complex games such as Go. To achieve
good performance on current hardware such as multicore machines, computer clus-
ters and supercomputers, it is necessary to parallelize MCTS.

Unfortunately, this is a highly nontrivial problem. It is easy to run simulations
in parallel. However, the returns from running more simulations on the same node
diminish very quickly [72]. The true power of MCTS comes from using the results
of previous simulations to grow the tree and choose where future simulations start
from, so it is inherently a sequential algorithm. This imposes both theoretical limits
and practical challenges to parallelization.

The two main types of parallel MCTS are differentiated by the memory model.
Multi-core machines such as workstations provide a single shared memory, while
clusters with distributed memory architecture require an approach using message-
passing. On large-scale modern machines with fast networks and a multi-level mem-
ory hierarchy this formerly clear distinction begins to blur. We discuss the main al-

Monte Carlo Tree Search in Go 21

gorithms for different architectures, then present theoretical scalability issues which
limit the efficiency of parallelization.

Besides the works discussed in more detail below, other important publications
on parallel MCTS in Go include [11, 15, 37, 32].

3.5.1 Shared Memory Parallelization on a Multi-core Machine

Parallelizing MCTS on a multi-core machine is usually performed by running the
loop of MCTS (Section 2.2) simultaneously on each core, with each core updating
the same game tree in memory. The two main limitations are memory contention
and diversity of simulations. Memory contention occurs whenever different threads
access the same memory location representing the same node. Increasing the num-
ber of threads also puts strain on the memory bus systems. Locking the tree for each
update is not a realistic option - lock-free algorithms are required [20, 26]. The other
risk is that without global control, all cores will run very similar simulations. The
technique of virtual loss [15] temporarily adds a loss to the tree before the simula-
tion is run. This encourages other threads to explore different parts of the tree. If
the simulation turns out to be a win, the virtual loss is changed accordingly. Some
authors have also experimented with virtual wins.

3.5.2 Parallelization with message passing

On message-passing machines such as off-the-shelf clusters, it is too slow to share
memory directly. A classical solution [11, 5] used in MOGO works as follows:

• A separate MCTS runs on each machine.
• With low frequency, such as three times per second, all nodes broadcast statistics

such as number of simulations, number of wins, number of RAVE simulations,
and number of RAVE wins for all “heavy” nodes which have been included in at
least some percentage of the total number of simulations. Such broadcast can be
performed in time logarithmic in the number of machines if the network structure
supports it.

• Each node augments its statistics using these messages and keeps running.

3.5.3 Parallelization with Distributed Tree and Depth-First UCT

One severe disadvantage of the solution above is the large amount of duplication.
Many trees are built concurrently, each starting from the root, and due to the par-
tial synchronisation there is a large amount of overlap between them. It is therefore
tempting to develop methods where a single tree is distributed over all nodes in
a parallel system. UCT-Treesplit is one such approach, used in the program GO-
MORRA [32]. Another major bottleneck to parallelization is that in the classical for-
mulation of MCTS, each simulation result is propagated all the way to the root node.

22 Adrien Couëtoux and Martin Müller and Olivier Teytaud

This causes heavy memory contention near the root, which limits speedup. Depth-
first UCT [73] is a reformulation of UCT which drastically reduces the number of
such updates at only a small loss in precision of in-tree move selection. It is used
in conjunction with a distributed transposition table in MPFUEGO, the massively
parallel version of FUEGO.

3.5.4 Limits to Scalability

Each parallel MCTS algorithm suffers from a loss of information compared to a
sequential one, since the information about the result of the concurrently running
simulations is not available for decision-making. Segal investigates the theoretical
limit of parallel MCTS and concludes that current programs are still very far from
reaching that limit [58]. Sections 5.1 and 5.2 discuss several situations for which in-
creasing the computation time within reasonable limits does not help for current Go
programs. Many programs suffer from limits in their scalability as a consequence.
For the case of MOGO, this is shown in Table 1.

N =Number Success rate of 2N Success rate of 2N
of simulations simulations against N simulations against N

simulations in 9×9 Go simulations in 19×19 Go
1 000 71.1 ± 0.1 % 90.5 ± 0.3 %
4 000 68.7 ± 0.2 % 84.5 ± 0.3 %

16 000 66.5 ± 0.9 % 80.2 ± 0.4 %
256 000 61.0 ± 0.2 % 58.5 ± 1.7 %

Table 1 Scalability of MCTS for MOGO. These results show a decrease of scalability as compu-
tational power increases.

4 The Current Performance of MCTS Go Programs

4.1 A Brief History of Computer Go Since The Beginning of MCTS

MCTS was born in 2006. Since that time, it has completely dominated the computer
Go scene.

• The UEC Cup is the largest tournament for 19×19 Go and has been held since
2007. It has always been won by MCTS programs: CRAZY STONE in 2007, 2008
and 2013; KCC IGO in 2009; FUEGO in 2010; and ZEN in 2011.

• Since 2007, all Computer Olympiads in 19× 19 Go have been won by MCTS
programs: in 2007 MOGO; 2008 the MCTS version of THE MANY FACES OF
GO; 2009, 2011 and 2013 ZEN; 2010 ERICA.

Monte Carlo Tree Search in Go 23

• On 9× 9, MCTS programs have won every Olympiad since 2006 with CRAZY
STONE, followed by STEENVRETER in 2007, THE MANY FACES OF GO in
2008, FUEGO in 2009, MYGOFRIEND in 2010, and ZEN in 2011 and 2013.

• A 13× 13 competition has been held since 2010 and all tournaments were won
by MCTS programs: THE MANY FACES OF GO in 2010, and ZEN in 2011 and
2013.

4.2 Performance against Professional Human Players

As of the end of 2013, computer programs are on a par with the top human players
on 9× 9, and about 4 handicap stones weaker on the big 19× 19 board. Figures 8
and 7 summarize the most important wins against humans in 9×9 and 19×19 Go
respectively [67]. The first significant wins in even games were achieved in 9× 9
Go. The first such win against a pro was achieved by MOGO in 2008, the first win
against a world champion-level 9P was by FUEGO in 2009, and the first such win
with the disadvantageous side (black) was by MOGO later in 2009.

However, despite a considerable number of further wins, even in 2013 there is
still no proven superiority of computers against the best humans in 9× 9 Go. A
recent negative result was when the top program ZEN was beaten in six straight
games by human professionals So Yokoku 8P, Ohashi Hirofumi 5P and Ichiriki Ryo
2P in November 2012.

In 19×19 Go, the best current programs CRAZY STONE and ZEN are ranked as
6 Dan amateur, the highest “normal” amateur rank. As of November 24th, 2013, a
version of ZEN is playing on KGS (Kiseido Go Server) holds a stable 6 dan rank.
The difference to a top professional is about 4 ranks, corresponding to 4 handicap
stones. This is confirmed by recent demonstration games [67].

5 Limitations of Current Go Programs

This section describes cases in which MCTS usually fails in Go:

• Situations in which many symmetries are involved (Section 5.1);
• Situations in which several local fights interact, leading to a complex strategic

problem (Section 5.2);
• Situations in which the game requires the player to think about a distant move

(Section 5.3);
• Situations which involve long term effects (Section 5.4).

In such situations, increasing the computational power does not improve the out-
come, and MCTS has weak scalability of MCTS. Therefore, parallelization as in
Section 3.5 is not sufficient to overcome these problems.

24 Adrien Couëtoux and Martin Müller and Olivier Teytaud

Date Human player & rank Handicap Program
2008/8 Kim Myungwan 8P 9 stones MOGO
2008/9 Kaori Aoba 4P 8 stones CRAZY STONE
2008/12 Kaori Aoba 4P 7 stones CRAZY STONE
2009/2 Li-Chen Chien 1P 6 stones MOGO
2009/2 Chun-Hsun Chou 9P 7 stones MOGO
2009/3 James Kerwin 1P 6 stones Many Faces of Go
2010/11 Kaori Aoba 4P 5 stones ZEN
2011/8 Kozo Hayashi 6P 5 stones ZEN
2011/12 Meiko Tei 9P 6 stones ZEN
2012/3 Masaki Takemiya 9P 5 stones ZEN
2012/3 Masaki Takemiya 9P 4 stones ZEN
2012/7 Chun-Hsun Chou 9P 4 stones ZEN
2012/8 Catalin Taranu 5P 4 stones CRAZY STONE
2012/11 Chun-Hsun Chou 9P 4 stones ZEN
2013/3 Yoshio Ishida 9P 4 stones CRAZY STONE

Fig. 7 Selected computer wins against professionals in 19× 19 Go. Only wins are shown, even
when they were accompanied by losses (e.g. one win out of three games). Wins against former
world championship winners in bold.

Date Human player & rank Program
2008/3 Catalin Taranu 5p MOGO
2009/2 Shih Chin 2p MOGO
2009/5 Catalin Taranu 5p MOGO
2009/8 Chun-Hsun Chou 9P FUEGO
2009/8 Fan Hui 2p MOGO
2009/10 Chun-Hsun Chou 9P MOGO
2010/1 Chi-hyeuong Nam 1p ZEN

Fig. 8 Selected computer wins against professionals in 9×9 Go. Only even games with no hand-
icap and estimated fair Komi of 6.5, 7 or 7.5 are shown.

5.1 Exploiting Symmetry

Humans excel at visual perception, including recognizing and understanding sym-
metries. This is true for reading; humans can easily read mirrored characters, char-
acters written with reversed colors, as well as randomly rotated characters. Maybe
more importantly, humans can also understand partial symmetries.

In terms of Go, humans do not waste time analyzing equivalent moves separately.
Large numbers of equivalent moves, or move sequences, can lead to combinatorial
explosion, and the wasted time becomes huge. A critical case in Go are capturing
races called semeai. In semeai, many move sequences which reduce the liberties of
opponent blocks are exactly equivalent. A MCTS algorithm will waste time trying
to prove which of these equivalent moves is best, and reach only shallow depths,
while humans use very deep, focused reading up to capture or up to a standard
situation that can be evaluated statically. Simulation policies usually do not have
enough knowledge to resolve all but the simplest semeai. Learned patterns also do

Monte Carlo Tree Search in Go 25

Fig. 9 White to play. In the 8 vs 8 liberty semeai at the bottom, White must immediately attack
the black group J4 by taking one of its liberties. This also saves M4.

not help since the liberty-filling moves are usually not good shape and have no other
meaning than to kill.

As a consequence, no current MCTS program can distinguish reliably between
situations like Fig. 9, which is a semeai which must be played immediately, and Fig.
10, a semeai which has been decided.

5.2 Local Search for Divide and Conquer

MCTS has provided great improvements in the general fighting ability of Go pro-
grams. However, they have trouble handling multiple simultaneous fights. Huang
and Müller study two such cases, termed “two safe groups” and seki (coexistence)
[36]. They develop a test suite of such problems and test it against most of the cur-
rent top programs. These problems contain simple local fights, but are too deep to be
jointly resolved by global search. Only very few programs have enough knowledge
in their simulation policy to do well. A famous example of a professional game
where two local fights interact in a complex way is shown in Fig. 11.

Divide and conquer approaches have been successful for endgame puzzles [44]
and for small isolated life-and-death problems [38], but not yet in the context of a
full board MCTS program. Sheppard [59] proposed the use of MCTS with macro-

26 Adrien Couëtoux and Martin Müller and Olivier Teytaud

Fig. 10 Black to play is ahead by 8 vs 6 liberties and should not play in the semeai - it would be a
wasted move.

actions. This looks reasonable, but as far as we know has not yet been successfully
implemented.

5.3 The Art of Tenuki

One of the simplest expert rules used in MCTS algorithms is locality: very often, the
best move is close to the previous one. Deciding when to answer locally, and when
to “tenuki”, i.e. switch to elsewhere on the board, is considered as a key competence
for playing Go. In terms of combinatorial game theory, it amounts to evaluating and
comparing the temperature - urgency of playing in - different parts of the board.
Patterns and human expertise are good for helping MCTS in soft pruning, hence
partially counterbalance the bonus for local play.

An illustrative proverb says “If it’s worth only 15 points, play tenuki”. MCTS
works by simulations and wins and losses; the concept of points is not included in
MCTS.

One computational inefficiency of the full-board, global search used in MCTS
is that it needs to spend computational effort on a candidate tenuki move each time
while playing out a local sequence. It cannot re-use computations about other parts
of the board performed during earlier moves, since they are all embedded in an
ever-changing global context. In many cases, the value of a move can be computed

Monte Carlo Tree Search in Go 27

Black starts a ladder in the top left, which
will have an impact on the bottom right.
In that corner, a large-scale joseki has
ended peacefully. The three white groups
have won a semeai against the eight black
stones that split them.

The ladder attack fails, as even a weak Go
player can read out.

Black played the bad ladder on purpose: he
uses forcing moves to reverse the state of
the semeai, kill all the white stones in the
bottom right, and also builds strong influ-
ence towards the top right.

The game at a later stage. Black has a
huge territory on the right side and wins.

Fig. 11 Lee Sedol (black) plays against Hong Jansik (2003, April 23rd).

(mostly) locally. Humans can estimate such a local move value and switch at the
appropriate time, recalculating only if the global context changes. While specialized
programs can deal efficiently with the case where local situations are completely
separate, humans can handle the much more frequent case of several approximately
independent fights on the same Go board.

28 Adrien Couëtoux and Martin Müller and Olivier Teytaud

5.4 Long-Term Effects

Some situations require subtle moves which have a long-term impact. Similarly,
moves can be bad because of a long-term negative effect. Long-term effects are
difficult for MCTS since they can not be handled in the tree - they are only resolved
in the (noisy, low quality) simulation phase. Avoiding moves with such bad long-
term effects is a major open problem for MCTS in Go, and is discussed in some
detail in this section.

MCTS simulations consist of two parts:

• an in-tree part containing (reasonably) good moves;
• Monte Carlo simulations or playouts, which are randomized and contain many

blunders.

As a consequence, later parts of the game are very poorly simulated. This is actually
much improved when heavy playouts are used. Yet, the quality is much better for
in-tree moves. This implies that a move which has bad long term consequences
is not reliably evaluated as bad by the simulations. Besides the cases of two safe
groups and seki mentioned in Section 5.2, Ko fights are a classic example. In Figure
12, White can save the group at the top late in the game because White has a Ko
threat at the bottom. However, most MCTS programs would have played the forcing
exchange F2 for F1 much earlier in the game, and as a consequence they would be
out of Ko threats at this stage. Therefore, it is important to not to waste threats, and
keep them for Ko fights that might materialize later. Most MCTS programs are not
able to do that, for (at least) two reasons. One problem is that locally, F2 is a good
move, gaining one point in sente. However, it is more important to keep it in reserve
as a threat until late in the endgame. Another problem is specific to MCTS with
its evaluation of a node as the weighted average of its children. A threat which has
only one good reply will have a too-high value, since it inherits some of the high
evaluations for all the other branches where the opponent ignored the threat. In the
example, if White plays F2 and Black answers anywhere else but F1, then all these
positions will be big wins for White.

6 Conclusions

Currently all strong Go programs are based on MCTS. In the early days of MCTS for
Go, it was possible to design such a program without any expertise in Go, using just
light playouts. However, introducing human expertise is now critical for reaching
a competitive playing level; all strong programs use such knowledge in the play-
outs and in the tree. This knowledge can be partially learnt offline, automatically,
on databases of games; and online, thanks to RAVE values. Also results can be im-
proved by the parallelization on multi-core machines or clusters. Unfortunately, as
with classical programs, the key bottleneck remains the encoding of human exper-

Monte Carlo Tree Search in Go 29

Fig. 12 The importance of keeping Ko threats. Left: Black captures the Ko with C8, leading
to the middle position. Middle: White can not immediately recapture at C7 due to the Ko rule, but
White can play a Ko threat at F2, leading to the position on the right. Right: if Black ignores the
threat, White will play F1 next and kill the bottom side. If Black plays F1, White can now recapture
at C7. Black has no threats, so White can also connect at C8 and live. Thanks to the threat at F2,
White won the Ko fight and lived.

tise, despite progress in automated methods such as large-scale learning of pattern
weights.

Future Work and Open Problems

There are many clearly defined situations which are poorly handled by MCTS Go
programs, such as divide and conquer problems, semeai, and long term effects such
as Ko threats. While a lot of research has been devoted to these problems, including
online or offline learning, many challenges still remain unsolved.

Acknowledgments

We are grateful to Shi-Jim Yen for fruitful discussions.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed bandit prob-
lem. Machine Learning, 47(2/3):235–256, 2002.

2. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: the ad-
versarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science, pages 322–331. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

3. H. Baier and P. Drake. The power of forgetting: Improving the last-good-reply policy in Monte
Carlo Go. IEEE Transactions on Computational Intelligence and AI in Games, 2(4):303–309,
2010.

30 Adrien Couëtoux and Martin Müller and Olivier Teytaud

4. D. Benson. Life in the game of Go. Information Sciences, 10:17–29, 1976. Reprinted in
Computer Games, Levy, D.N.L. (Editor), Vol. II, pp. 203-213, Springer Verlag, New York
1988.

5. A. Bourki, G. Chaslot, M. Coulm, V. Danjean, H. Doghmen, J.-B. Hoock, T. Hérault, A. Rim-
mel, F. Teytaud, O. Teytaud, P. Vayssière, and Z. Yu. Scalability and parallelization of monte-
carlo tree search. In Proceedings of Advances in Computer Games 13, 2010.

6. B. Bouzy and T. Cazenave. Computer Go: An AI-oriented survey. Artificial Intelligence,
132(1):39–103, 2001.

7. B. Bouzy and G. Chaslot. Bayesian generation and integration of k-nearest-neighbor patterns
for 19x19 go. In G. Kendall and Simon Lucas, editors, IEEE 2005 Symposium on Computa-
tional Intelligence in Games, Colchester, UK, pages 176–181, 2005.

8. R. Bozulich. The Go Players Almanac 2001. Kiseido, Tokyo, 2001.
9. C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE
Trans. Comput. Intellig. and AI in Games, 4(1):1–43, 2012.

10. B. Bruegmann. Monte-carlo Go, 1993. Unpublished draft, http://www.althofer.de/
Bruegmann-MonteCarloGo.pdf.

11. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Proceedings of CGW07,
pages 93–101, 2007.

12. G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte Carlo Tree Search: A New Framework
for Game AI. In C. Darken and M. Mateas, editors, AIIDE. The AAAI Press, 2008.

13. G. Chaslot, M. Winands, I.Szita, and H. van den Herik. Parameter tuning by cross entropy
method. In European Workshop on Reinforcement Learning, 2008.

14. G. Chaslot, M. Winands, J. Uiterwijk, H. van den Herik, and B. Bouzy. Progressive Strategies
for Monte-Carlo Tree Search. In P. Wang et al., editors, Proceedings of the 10th Joint Confer-
ence on Information Sciences (JCIS 2007), pages 655–661. World Scientific Publishing Co.
Pte. Ltd., 2007.

15. G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den Herik. Parallel Monte-Carlo Tree
Search. In Proc. Comput. and Games, LNCS 5131, pages 60–71, Beijing, China, 2008.

16. B. E. Childs, J. H. Brodeur, and L. Kocsis. Transpositions and move groups in Monte Carlo
Tree Search. In P. Hingston and L. Barone, editors, IEEE Symposium on Computational
Intelligence and Games, pages 389–395. IEEE, 2008.

17. C.-W. Chou, P.-C. Chou, H. Doghmen, C.-S. Lee, T.-C. Su, F. Teytaud, and O. Teytaud. To-
wards a solution of 7x7 Go with Meta-MCTS. In Proceedings of Advances in Computer
Games 2011, pages November 20–23, 2011, Tilburg University, The Netherlands, 2011.

18. R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In P.
Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th International Conference
on Computers and Games, Turin, Italy, 2006.

19. R. Coulom. Computing elo ratings of move patterns in the game of go. In Computer Games
Workshop, Amsterdam, The Netherlands, 2007.

20. R. Coulom. Lockless hash table and other parallel search ideas, 2008. http://www.
mail-archive.com/computer-go@dvandva.org/msg07611.html.

21. R. Coulom. Clop: Confident local optimization for noisy black-box parameter tuning. In
Advances in Computer Games, pages 146–157. Springer Berlin Heidelberg, 2012.

22. M. Crasmaru and J. Tromp. Ladders are PSPACE-complete. In Computers and Games, pages
241–249, 2000.

23. P. Drake. The last-good-reply policy for monte-carlo go. ICGA Journal, 32(4):221–227, 2009.
24. P. Drake and Y.-P. Chen. Coevolving partial strategies for the game of go. In International

Conference on Genetic and Evolutionary Methods. CSREA Press, 2008.
25. M. Enzenberger. Evaluation in go by a neural network using soft segmentation. 10th Advances

in Computer Games Conference, Graz, 2003.
26. M. Enzenberger and M. Müller. A lock-free multithreaded Monte-Carlo tree search algorithm.

In J. van den Herik and P. Spronck, editors, Advances in Computer Games, volume 6048 of
Lecture Notes in Computer Science, pages 14–20, Pamplona, Spain, 2010. Springer Verlag.

Monte Carlo Tree Search in Go 31

27. S. Flory and O. Teytaud. Upper confidence trees with short term partial information. In
Procedings of EvoGames 2011, pages 153–162. Springer, 2011.

28. Free Software Foundation. GNU Go, 1989-2013. Date retrieved: Nov 18, 2013. http:
//www.gnu.org/software/gnugo/.

29. S. Gelly. Une contribution à l’apprendissage par renforcement ; application au Computer
GO. PhD thesis, Université Paris-Sud - Paris XI, September 2007. Paris Universities Award
and 2nd Prize at Gilles Kahn - Académie des Sciences Awards.

30. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In ICML ’07:
Proceedings of the 24th international conference on Machine learning, pages 273–280, New
York, NY, USA, 2007. ACM Press.

31. S. Gelly and D. Silver. Monte-carlo tree search and rapid action value estimation in computer
go. Artif. Intell., 175(11):1856–1875, July 2011.

32. T. Graf, U. Lorenz, M. Platzner, and L. Schaefers. Parallel Monte-Carlo Tree Search for HPC
Systems. In Proc. 17th Int. Euro. Conf. Parallel Distrib. Comput., LNCS 6853, pages 365–376,
Bordeaux, France, 2011.

33. M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algo-
rithm for matrix games. Operations Research Letters, 18(2):53–58, Sep 1995.

34. S. Huang. New Heuristics for Monte Carlo Tree Search Applied to the Game of Go. PhD
thesis, National Taiwan Normal University, 2011.

35. S.-C. Huang, R. Coulom, and S.-S. Lin. Monte-carlo simulation balancing in practice. In H. J.
van den Herik, H. Iida, and A. Plaat, editors, Computers and Games, volume 6515 of Lecture
Notes in Computer Science, pages 81–92. Springer, 2010.

36. S.-C. Huang and M. Müller. Investigating the limits of Monte Carlo tree search methods in
computer Go, 2013. Accepted for Computers and Games 2013. 12 pp.

37. H. Kato and I. Takeuchi. Parallel Monte-Carlo Tree Search with Simulation Servers. In Proc.
Int. Conf. Tech. Applicat. Artif. Intell., pages 491–498, Hsinchu City, Taiwan, 2010.

38. A. Kishimoto and M. Müller. Dynamic decomposition search: A divide and conquer approach
and its application to the one-eye problem in go. In IEEE Symposium on Computational
Intelligence and Games (CIG’05), pages 164–170, 2005.

39. A. Kishimoto and M. Müller. Search versus knowledge for solving life and death problems in
Go. In Twentieth National Conference on Artificial Intelligence (AAAI-05), pages 1374–1379,
2005.

40. L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In 15th European Confer-
ence on Machine Learning (ECML), pages 282–293, 2006.

41. L. Kocsis and C. Szepesvari. Discounted-UCB. In 2nd Pascal-Challenge Workshop, 2006.
42. T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied

Mathematics, 6:4–22, 1985.
43. M. Müller. Playing it safe: Recognizing secure territories in computer Go by using static

rules and search. In H. Matsubara, editor, Game Programming Workshop in Japan ’97, pages
80–86, Computer Shogi Association, Tokyo, Japan, 1997.

44. M. Müller. Decomposition search: A combinatorial games approach to game tree search, with
applications to solving Go endgames. In Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), pages 578–583, Stockholm, Sweden, 1999.

45. M. Müller. Review: Computer Go 1984 - 2000. In T. Marsland and I. Frank, editors, Com-
puters and Games 2000, number 2063 in Lecture Notes in Computer Science, pages 426–435.
Springer Verlag, 2001.

46. M. Müller. Computer Go. Artificial Intelligence, 134(1–2):145–179, 2002.
47. M. Müller. Rave problems, 2009. http://www.mail-archive.com/

computer-go@dvandva.org/msg12189.html.
48. X. Niu, A. Kishimoto, and M. Müller. Recognizing seki in computer Go. In J. van den Herik,

S.-C. Hsu, T.-s. Hsu, and H. Donkers, editors, Advances in Computer Games, volume 4250 of
Lecture Notes in Computer Science, pages 88 – 103. Springer, 2006.

49. X. Niu and M. Müller. An open boundary safety-of-territory solver for the game of Go. In
J. van den Herik, P. Ciancarini, and H. Donkers, editors, Computers and Games, volume 4630
of Lecture Notes in Computer Science, pages 37 – 49, Torino, Italy, 2007. Springer.

32 Adrien Couëtoux and Martin Müller and Olivier Teytaud

50. X. Niu and M. Müller. An improved safety solver in Go using partial regions. In J. van den
Herik, X. Xu, Z. Ma, and M. Winands, editors, Computers and Games, volume 5131 of Lecture
Notes in Computer Science, pages 102–112, Beijing, China, 2008. Springer.

51. W. Reitman and B. Wilcox. The structure and performance of the Interim.2 Go program. In
IJCAI-79, pages 711–719, 1979.

52. A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R. Tsai. Current Frontiers
in Computer Go. IEEE Transactions on Computational Intelligence and Artificial Intelligence
in Games, page in press, 2010.

53. B. Robertie. Backgammon. Inside Backgammon, 2(1):4, 1980.
54. J. M. Robson. The complexity of go. In IFIP Congress, pages 413–417, 1983.
55. A. Saffidine, T. Cazenave, and J. Méhat. UCD : Upper confidence bound for rooted directed

acyclic graphs. Knowl.-Based Syst., 34:26–33, 2012.
56. J. Schaeffer. The history heuristic and alphavbeta search enhancements in practice. IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-11, pages 1203–1212, 1989.
57. N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal difference learning of position

evaluation in the game of go. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, NIPS,
pages 817–824. Morgan Kaufmann, 1993.

58. R. Segal. On the scalability of parallel UCT. In H. van den Herik, H. Iida, and A. Plaat,
editors, Computers and Games, volume 6515 of Lecture Notes in Computer Science, pages
36–47. Springer Berlin / Heidelberg, 2011.

59. B. Sheppard. A pro-game which is computer-unreadable, 2011. http://www.
mail-archive.com/computer-go@dvandva.org/msg04207.html.

60. D. Silver, R. Sutton, and M. Müller. Sample-based learning and search with permanent and
transient memories. In A. McCallum and S. Roweis, editors, Proceedings of the 25th Interna-
tional Conference on Machine Learning, pages 968–975. Omnipress, 2008.

61. D. Silver and G. Tesauro. Monte-carlo simulation balancing. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML ’09, pages 945–952, New York,
NY, USA, 2009. ACM.

62. R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press., Cambridge,
MA, 1998.

63. T. Thomsen. Lambda-search in game trees - with application to Go. ICGA Journal, 23(4):203–
217, 2000.

64. E. van der Werf, H. van den Herik, and J. Uiterwijk. Solving Go on small boards. ICGA
Journal, 26(2):92–107, 2003.

65. E. van der Werf and M. Winands. Solving Go for rectangular boards. ICGA Journal, 32(2):77–
88, 2009.

66. Y. Wang and S. Gelly. Modifications of UCT and sequence-like simulations for Monte-Carlo
Go. In IEEE Symposium on Computational Intelligence and Games, Honolulu, Hawaii, pages
175–182, 2007.

67. N. Wedd. Human-computer Go challenges, 2013. Date retrieved: Nov 18, 2013. http:
//www.computer-go.info/h-c/index.html.

68. Wikipedia. Go (game), 2013. [Online: http://en.wikipedia.org/wiki/Go_
(board_game); accessed Nov 29, 2013].

69. Wikipedia. Rules of go, 2013. [Online: http://en.wikipedia.org/wiki/Rules_
of_Go; accessed Nov 29, 2013].

70. B. Wilcox. Computer Go. In D. Levy, editor, Computer Games, volume 2, pages 94–135.
Springer-Verlag, 1988.

71. T. Wolf. Forward pruning and other heuristic search techniques in tsume go. Information
Sciences, 122:59–76, 2000.

72. H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura. Monte Carlo Go has a
way to go. In AAAI, pages 1070–1075. AAAI Press, 2006.

73. K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa. Scalable distributed
Monte-Carlo tree search. In D. Borrajo, M. Likhachev, and C. L. López, editors, Symposium
on Combinatorial Search, pages 180–187. AAAI Press, 2011.

74. A. L. Zobrist. A hashing method with applications for game playing. Technical Report 88,
Computer Sciences Department, University of Wisconsin, 1970.

