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Abstract. In recent years the Monte Carlo tree search revolution has
spread from computer Go to many areas, including computer Hex. MCTS
Hex players now outperform traditional knowledge-based alpha-beta search
players, and the reigning Computer Olympiad Hex gold medallist is the
MCTS player MoHex. In this paper we show how to strengthen Mo-

Hex, and observe that — as in computer Go — using learned patterns in
priors and replacing a hand-crafted simulation policy with a softmax pol-
icy that uses learned patterns can significantly increase playing strength.
The result is MoHex 2.0, about 250 Elo stronger than MoHex on the
11×11 board, and 300 Elo stronger on 13×13.

1 Introduction

In the 1940s Piet Hein [22] and independently John Nash [26–28] invented Hex,
the classic two-player alternate-turn connection game. The game is easy to im-
plement — in the 1950s Claude Shannon and E.F. Moore built an analogue Hex
player based on electrical circuits [29] — but difficult to master, and has often
been used as a testbed for artificial intelligence research.

Around 2006 Monte Carlo tree search appeared in Go Go [11] and soon spread
to other domains. The four newest Olympiad Hex competitors — MoHex from
2008 [4], Yopt from 2009 [3], MIMHex from 2010 [5], Panoramex from 2011
[20] — all use MCTS.

In this paper we show how to strengthen MoHex, the reigning Computer
Olympiad Hex gold medallist [20]. Among several improvements, we observe that
— in Hex as in Go — replacing a hand-crafted MCTS simulation policy with
one based on learned board patterns can increase a player’s strength. Following
Go players such as Erica, we apply a minorization-maximization algorithm [12]
to measure the win correlation of board patterns, and use the resulting pattern
weights in both the leaf selection and simulation phases of MCTS. The result
is MoHex 2.0, a player that is about 250 Elo4 stronger than MoHex on the
11×11 board, and 300 Elo stronger on 13×13.

In §2 we review computer Hex. In §3 we review MoHex. In §4 we describe
MoHex 2.0. In §5 we give experimental results.

4 The Elo gain from win rate r is 400 ∗ − log((1/r)− 1).



2 Computer Hex

We begin with the rules of Hex. One player has black stones and is assigned two
opposite sides, or borders, of the board. The other player has white stones and
is assigned the other two sides. Players alternate placing a single stone of their
color on an empty cell. The winner is the player who joins their two sides with
their stones. Black plays first. To mitigate the first-player advantage, this extra
rule is adopted: the first player places a black stone, and the second player then
chooses whether to play as white or as black. See Figure 1. For more on Hex,
see [8, 9, 21].

Fig. 1. A Hex game won by White.

In the 1950s, as part of his seminal research into games and artificial in-
telligence, Claude Shannon (with help from E.F. Moore) built electrical circuit
machines to play the connection games Birdcage [17] and Hex [29]. Birdcage —
also known as Gale or Bridg-It — is similar to Hex, except it is played on the
edges of a graph rather than on the nodes [9].

In Shannon’s Birdcage circuit, cells have resistors (respectively shorted or
removed if occupied by the player or opponent), voltage is applied across the
board, and the cell with largest voltage drop is selected as the next move.

This model can also be used for Hex, and cross-board conductance is a
good indication of position strength. Following Anshelevich [2], recent alpha-
beta search Hex players such as Hexy [1], Six [19], and Wolve [4] use eval-
uations that are based on an augmented circuit that adds information about
virtual connections.

A virtual connection, or VC, (respectively virtual semi-connection, or VSC) is
a second-player (first-player) point-to-point connection strategy, where a point is
an empty cell, or a chain (as in Go, namely a maximal group of stones connected
by adjacency), or a board side. Thus a VC between a player’s two sides is a
winning strategy. Many Hex players find a restricted class of VCs defined by an
algebra described by Anshelevich [2]: initialize a set of base VCs, then find larger
VCs by applying the closure of two combining rules. The and-rule combines VCs
in series to form a new VC or VSC. The or-rule combines sets of collectively
non-interfering VSCs in parallel to form a new VC. See Figure 2.

In addition to strengthening the augmented circuit whose conductance is the
evaluation function, VCs and VSCs are useful in move pruning: if an opponent
has a side-to-side VSC, then a player move that fails to interfere with this VSC



Fig. 2. The left and middle diagrams each show the cells of a side-to-side White VSC.
The right diagram shows Black’s corresponding mustplay region: a Black move outside
this region leaves White with a winning VSC.

is losing. With respect to the set of (known) opponent side-to-side VSCs, a
player’s mustplay region is the set of cells that interferes with all of these VSCs.
See Figure 2.

Another form of move pruning is based on inferior moves, especially those
deducible from board patterns. A cell is dead if it is provably (without changing
the win/loss value of the game) never needed by either player. A cell set is
captured if it can be provably assigned to the capturing player (again, without
changing the win/loss value of the game). See Figure 3. Some Hex players have
inferior cell engines, which identify these and other kinds of inferior moves. See
[7, 23] for more on inferior cell analysis.

Fig. 3. Some inferior cell patterns. In the first three (from left) patterns, the empty
cell is dead and so can be filled for either player. In the last three patterns, the empty
cell set is Black-captured and so can be filled for Black.

3 MoHex

MoHex is a relatively simple first-generation MCTS player [6]. It is built on top
of Fuego, an open-source game-independent MCTS platform especially well
known for its Go player [15]. MoHex uses UCT (MCTS plus UCB as in [30])
and the RAVE all-moves-as-first UCT heuristic [18]. When a node becomes heavy
(i.e. the number of node visits reaches a threshold), it runs its virtual connec-
tion and inferior cell engines on that position, yielding information that often
prunes inferior moves. In simulations it uses uniformly random moves augmented
by only one (up to symmetry) Hex-specific pattern, savebridge: if an opponent
move attacks a player’s bridge (a virtual connection with two empty cells), the



player deterministically replies to save the bridge; if the opponent move simulta-
neously threatens more than one bridge, the player randomly saves one bridge.
See Figure 4.

Fig. 4. The bridge (left). In a MoHex simulation, when the opponent (White) threat-
ens a bridge, the player (Black) replies to save it (middle, right).

MoHex is 180 Elo weaker without RAVE, and a further 100 Elo weaker with-
out savebridge. For comparison, doubling the number of simulations strengthens
MoHex by 36 Elo. See [6] for further details.

3.1 MoHex weaknesses

Although MoHex has won three of the past four Olympiad Hex competitions [6,
3, 5, 20], its success is arguably due more to the strength of its virtual connection
engine than to its MCTS engine. For example, in recent Olympiad competitions
the MCTS players Panoramex, MIMHex, and Yopt each played into winning
positions against MoHex only to eventually play outside of the mustplay region
and then lose the game (whenever an opponent misses the mustplay, MoHex

plays out the win without further use of MCTS).
MoHex is rather weak without its virtual connection and inferior cell en-

gines. This is presumably due to its simulation policy, which is oblivious to
global virtual connectivity. In Hex, as in Go, a position can decompose into sep-
arate subgames. Consider a position with two subgames in which Black must
win both to win the game. If Black’s winning probability is .6 for each subgame,
then Black’s game-winning probability is min{.6, .6} = .6, whereas the simula-
tion win rate will be closer to .6 × .6 = .36. Such mismeasurement is a serious
flaw, especially against an opponent capable of reasoning about positions with
multiple subgames.

Figures 5 and 6 show examples of weak MoHex performance.

4 MoHex 2.0

Given the success of patterns in UCT Go players, we wanted to revise MoHex to
also use patterns. This required substantial revision, so we took the opportunity
to add other updates as well. One update is to the virtual connection engine:
we now use an algorithm of Jakub Pawlewicz that finds smaller connection sets,
but in about half the time. Another update is to tune parameters using the
optimization tool CLOP of Remi Coulom [14]. Other changes concern the MCTS
engine, as follows.
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Fig. 5. MoHex (Black) loses to MIMHex (left) and Wolve (right) in 2010.

4.1 Extend on unstable search

MCTS is unstable if the move with the highest win rate differs from the move
with the highest visit count. MoHex moves are frequently unstable, so we im-
plement a search extension policy similar to that of [25]: extend an unstable
search by half of its original search time. We extend a search at most once.
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Fig. 6. MoHex (left) and Wolve (right) losing to Panoramex (White) in the 2011
Olympiad. The latter position is hard for MCTS players: 27.W[j8] connects 13.W[i9]
directly to the side but loses; 27.W[i10] connects indirectly to the side and wins.

4.2 Improved MCTS formula

In Fuego, the score for a move j is computed using the formula

Score(j) = (1− w)× U + w ×R+ E, (1)



where U is the UCT mean (wins over visits), R is the RAVE mean (wins over
visits), w is the computed weight of the RAVE term, and E is the exploration

term. E is the usual UCT exploration formula, ie, E = cb ×
√

lnn
nj

, where n is

the parent visit count, nj is the node visit count, and cb is a constant.
The RAVE weight w is calculated taking into account the ratio of RAVE

visits to UCT visits [18]. For details on Fuego’s RAVE implementation, see [15].
When nj is small, w is nearly 1, and so Score(j) is almost exactly the RAVE
score. As nj increases, w decays to 0 and the RAVE score becomes less important.

Notice that the exploration term is separate and outside of the RAVE and
UCT terms. Thus large exploration terms (as in the case of a rarely visited
child of a popular parent node) can overwhelm the RAVE information, possibly
forcing exploration where it is not needed. Indeed, Fuego and MoHex both
find the best setting of cb to be 0, so such unneeded exploration never occurs.
But a negative side effect of this setting is to rely solely on RAVE for exploration.

As with other recent MCTS players, we find that moving the exploration
term inside the UCT term improves performance:

Score(j) = (1− w)× (U +E) + w ×R. (2)

(2) allows exploration to rely on RAVE initially, but to occur for already visited
children, which could not happen with (1) with cb = 0.

4.3 Patterns

Following Go players such as Erica, we apply the supervised learning algorithm
minorization-maximization (MM) [12] to learn the win correlation of board pat-
terns, and use the resulting pattern weights in both the leaf selection and simu-
lation phases of MCTS.

For learning we used two data sets of about 35 000 games. One set consists
of 19 760 13×13 games among strong human players on the Little Golem site,
extracted in July 2012. The other consists of 15 116 games among MoHex and
Wolve, and also recent Olympiad games.

Most of the computer games in our training data set come from tournaments
in which we iterate over all possible opening moves, so the first moves in these
games are generally not the strongest available move. Also, the human games
are played with the swap rule, so the first moves in those games are also not
the strongest for that position. Thus, as input for the MM pattern-learning
algorithm, for all games we used every move except the first.

The human games often end with a resignation, specifically before either
player has an absolute connection between their two sides. By contrast, most
of the computer games end with an absolute connection. We obtained the best
results when learning on the combined data set rather than on just one of the sets.
This suggests that perhapsMoHex benefits from learning how to play endgames
to completion, which is perhaps not surprising given that the simulations have
no virtual connection knowledge.



We considered 6-patterns, 12-patterns, and 18-patterns, where a 6t-pattern
consists of the 6t cells nearest the pattern center.

In Hex it matters where a player’s two sides are. For example, in order to
know whether to extend a ladder, a player should know whose side the ladder
runs into. Thus, in recording patterns, we allowed only one symmetry, namely
rotation by 180 degrees.

Figure 7 shows some patterns learned by MM. In the figures, a is the number
of times the pattern appeared, p is the number of times it was played when an
option, and γ is the feature weight (as defined in [12]) learned by MM, where
a larger value is more urgent. Not surprisingly, many of the high-γ patterns are
some version of savebridge.

The patterns with high-γ do indeed look urgent. P1, with (γ, p, a) =(886,
439, 479), is the pattern with largest γ, played 439 times out of 479: Black splits
two White chains and threatens to connect to the Black side. In P3 Black joins
two chains and splits the White chain from the White side. In P13 Black joins
two chains and splits White chains; this is the highest γ pattern with no side
cell. As with most high-γ patterns, this one probably occurs most often near the
end of a game. In P16 Black splits White and virtually connects to the Black
side via bridges. In P36 Black splits White with a bridge.

Fig. 7. Learned 12-patterns. Black to move to dot. Shaded cells are board sides.
From left: P1 (γ, p, a) = (886, 439, 479), P3 (754, 179, 194), P13 (754, 179, 194), P16
(321, 48, 64), P36 (213, 52, 65).

Figure 8 shows more patterns. P138 is the 6-pattern with largest γ. Black
saves the bridge and splits White from the side.

The default γ-value for moves about which we know nothing is 1.0, so patterns
such as P35518, P35474, P35461 — with γ less than .1 — are probably bad
moves. P35461 is provably inferior: playing on the other side of the White bridge
kills the dotted cell.

A pattern is global if it matches anywhere on the board, and local if it includes
the opponent’s most recent move. From our data sets we extracted 65 932 global
patterns (33 212 asymmetric: 565 6-patterns, the rest 12-). The maximum γ is
5 820, the minimum is 6.6× 10−5. We then ran our inferior cell engine on these
patterns; 30 593 of them are prunable, namely correspond to a move that is dead,
captured, or dominated.

Similarly, we extracted 11 602 local patterns (5 869 asymmetric: 550 6-patterns,
the rest 12-), of which 3 659 are prunable. The maximum γ is 11 281, the mini-



Fig. 8. More learned patterns. P49 (194,2247,3259), P135 (100,86,182), P138
(98,94,191), P35518 (.04,0,10190), P35474 (.05,3,14270), P35461 (.05,6,17351).

mum is .0262. Prunable patterns corresponding to dead or captured (respectively
dominated) moves have γ reset to .00001 (.0001). Patterns that did not occur in
the data sets have γ set to 1.0.

4.4 Estimating Prior Knowledge

Following common MCTS practice [18], we use pattern weights as prior knowl-
edge, namely to estimate the relative strengths of a node’s unvisited children.
When a tree node is visited for the first time, for every empty cell in that po-
sition, we identify its unique pattern. If the move is prunable, the move is not
considered as a child option for this node. For non-prunable moves, we add the
global and local γ-values, and then scale by dividing by the sum of the global
and local γ-values over all non-prunable moves.

We use the resulting value as the prior estimated strength value ρ for that
move. In addition to the above, an unvisited node has its RAVE value set to
.5 and its RAVE count set to 8. Using 12-patterns (respectively 6-patterns, 18-
patterns).

4.5 Progressive bias

Following MCTS practice, e.g. as in Mango [10], we added a progressive bias term
to the UCT formula. In our experiments, following Timo Ewalds’s Havannah
program [16], adding a square root to the denominator of the progressive bias
term works best. Here ρ is the prior estimate from §4.4.

Score(j) = (1− w)× (U +E) + w ×R+ PB. (3)

Here PB = cpb × ρ/
√

nj + 1, where cpb = 2.47 from CLOP.

4.6 Probabilistic simulations

Having learned the pattern weights, we implemented probabilistic simulations,
in which moves are generated stochastically according to a softmax policy [25].
This worked well only after capping the maximum global γ value to a constant,
g = .157 from CLOP. Thus moves with γ ≥ .157 are equally likely to be played.



By contrast, Timo Ewalds (private communication) found no improvement from
using probabilistic simulations in the Havannah program Castro, possibly be-
cause any such improvement is overwhelmed by dynamic factors such as the
sudden-death threat from rings.

Notice that resetting the γ values for inferior moves effectively prunes these
moves in the simulation without our having to call the inferior cell engine.

We are not sure why capping the global γ values is so critical. One possible
factor is that the frequency of local moves in the simulations drops if the global
values are not capped. In a typical MoHex 2.0 simulation on an empty 13×13
board, about .50 of the moves are local.

Fig. 9. Part way through a simulation.
Figure 9 is a screenshot from a simulation. The number in a cell is the corresponding
move’s total γ (local plus global). Notice that many cells have γ = 0, i.e. less than
0.0005, and so are bad moves or provably inferior, and so unlikely to be selected. The
last move played was black g2, which threatens a win at g3. The totalγ at g3 is high —
much higher than the capped global value of .157 — due to an urgent local pattern —
so this move is likely to be selected next. If there was no global cap, this local response
would be swamped by global values. It is a coincidence that this response blocks a win
threat, because the simulation algorithm knows nothing about global connectivity.
Implementing probabilistic simulations is expensive and requires significant optimiza-
tion for this feature to not have a negative effect on performance. In MoHex 2.0, this
feature increased performance only slightly but was strong enough to overcome a sig-
nificant (more than a factor of 2) decrease in simulation speed. We chose to keep this
feature because we expect it will be useful in future development.



4.7 Ideas that did not work

In addition to the updates mentioned so far, we considered other changes. Most
were not beneficial and so are not included in the final revision. Here are some
that did not work out.

We were unable to find a stronger hand-crafted simulation policy. Here is
a typical attempt: in addition to the 4-cell savebridge pattern, include 4-cell
patterns for breakbridge (break the connection when the opponent’s last move
leaves a partly broken bridge) and ladder continuation. For this set of three
patterns, a promising win rate of .6 at 10K simulations per move dropped to .5
at 100K per move.

Degrading RAVE weight by distance to the last move, as in Fuego [24], did
not work. Adding criticality (a measure of a cell’s importance to the winner [13],
perhaps less important in Hex than in Go) did not work.

5 Experiments

We ran 11×11 and 13×13 tournaments between MoHex 2.0 and the 2011
Olympiad version of MoHex. Each tournament iterated multiple times over
all possible opening move. Each player had 4 cores, 1.5Gb memory, and time
per game up to 5 minutes. Each thread ran MCTS, so neither player used the
single-thread solver that MoHex has run in recent Olympiads. Over more than
1000 games, MoHex 2.0 had respective win rates of .81 and .85, about 252 and
310 Elo. See Figure 10.

allotted time per player

board size 1 min 3 min 5 min

11×11 .811 ± .010

13×13 .853 ± .006 .852 ± .006 .856 ± .010

Fig. 10. MoHex 2.0 v MoHex win rates. ± is standard error, 68% confidence.

We also ran a 3000-game 3min/game 13×13 tournament comparing these
programs against the current version of Wolve. The MoHex and MoHex 2.0
win rates are respectively .587±.008 and .854±.006. This is a 245 Elo gain,
showing that the improvements to MoHex are not just an artefact of self-play.

6 Future Work

While MoHex 2.0 is stronger than MoHex, it is still far from perfect. For
example, it does not find the winning move from the Panoramex-Wolve game
shown in Figure 6. There are several things to try next.

Larger patterns could be used, both in the tree and simulations. Global con-
nectivity information could be added to the simulations, which currently know



program/feature Elo gain

MoHex 1.0 —

new VC algorithm/MCTS formula *

extend on unstable search 35

patterns in tree 175

probabilistic simulations *

CLOP 46

total: MoHex 2.0 310

Fig. 11. Feature contributions to MoHex 2.0 on 13×13 board. * entries are not easily
measurable in current framework.

nothing about winning or losing even when only one move away. Simulation bal-
ancing could be used to learn simulation weights [25], which are currently those
learned by MM and also used in the tree. Adaptive simulation policies could be
used.
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