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Abstract
Thermography ��� is a powerful method for analyzing combinatorial games	 It has
been extended to games that contain loops in their game graph by Berlekamp �
�	
We survey the main ideas of this method and discuss how it applies to Go endgames	
After a brief review of the methodology� we develop an algorithm for generalized
thermography and describe its implementation	 To illustrate the power and scope of
the resulting program� we give an extensive catalog of examples of Ko positions and
their thermographs	

We introduce a new method related to thermography for analyzing ko in the con�
text of a speci�c ko threat situation	 We comment on some well�known Go techniques�
terminology� and 
exotic� Go positions from a thermography point of view	 Our anal�
ysis shows that a framework based on generalized thermography can be useful for the
opening and midgame as well	 We suggest that such a framework will serve as the
basis for future strong Go programs	



� Analysis of Go Endgames

Generalized thermography ��� is an e�cient method for playing well in �loopy� Go endgames con�
taining ko� Solving such endgames by traditional minmax�based methods is feasible only for very
tiny boards or extremely late endgames� A program based on combinatorial game theory can solve
loopfree endgames containing many independent local positions� where each is of moderate size� up
to about 	
 local moves ���� Generalized thermography can deal with endgame positions of compa�
rable size that may contain ko� The technique does not guarantee perfect play� but the imprecision
is small� and becomes zero in the case of an �enriched environment��
The method gives good results in all but the rarest ko �ghts� It gives advice on when to start a

ko �ght� how big ko threats have to be� and when to �nish a ko� There is evidence that the move
chosen by generalized thermography is sound in the large majority of real game situations� It is
provably optimal in several simpli�ed models of endgame play�
In a few cases of �strange loops� the method fails� These are just the kind of positions which are

handled di
erently by variants of the Go rules� such as Japanese� Chinese or Ing rules� The theory
of generalized thermography provides deeper insight into the speci�c di�culty of such positions�
Computer implementations of thermography need to address several issues� First of all� support�

ing data structures and detailed algorithms are needed� The speed of algorithms will depend on the
size of the game graph and its loop structure� Another important practical issue is the representation
of a loopy game� The simplest representation is by a tree� where each terminal node indicates either
a terminal position or a loop�closing move that repeats a position on the path to the root�
However� in loopy games transpositions occur very frequently� Using these transpositions reduces

the graph size dramatically� Transpositions in e
ect change the tree into a general graph� where
there is no a priori order that can be used for structuring the thermograph computation as a one�
pass process� In section � we develop an iterative algorithm that allows us to compute thermographs
using this e�cient data structure�
An implementation of generalized thermography can be used as a building block for the analysis

of ko in Computer Go� Ko occurs in every su�ciently complex local �ght� In earlier experiments
with small corner situations� ko �ghts were found to a
ect the local game in all situations of seven
or more empty spaces �		�� Current Go programs are still poor at playing ko� Strong future Go
programs will need to deal with ko in complex and intricate ways� and generalized thermography
can provide the necessary theoretical framework for such programs�
To illustrate the power of the theory� we give a large catalog of examples� proceeding from simple

kos to iterated and multi�step ko� We analyze a large number of ko problems taken from textbooks
and master games� and discuss exotic cases such as mannen ko and �� Points Without Capturing��
Section �� by Bill Spight� extends the method to analyze ko in the context of a speci�c set of

threats�

� Loopfree Combinatorial Games

This section reviews prior work on combinatorial game theory for Go endgames and its implemen�
tation� We study models for endgame play based on combinatorial game theory� starting with the
loopfree case in preparation for later models that include ko �ghts� We obtain a framework de�
scribing how to decompose a game into a sum of subgames� analyze the resulting local games� and
evaluate the sum game to �nd a good or optimal move�

��� The Combinatorial Game Approach to Go Endgames

The steps necessary for the solution of Go endgames by the methods of combinatorial game theory
are board partition� local analysis and evaluation� and move selection in the sum game� We give a
brief overview of these phases� Detailed descriptions can be found in ����

	



����� Board Partition and Subgame Identi�cation
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Figure 	� Board partition

The precondition for applying combinatorial game theory is that a game decomposes into a sum of
subgames� In Go� this happens when parts of the board are separated by walls of safe stones� Moves
in one part have no e
ect on other parts across such a wall� In the loopfree case� without ko �ghts�
this independence is strong ��� ��� With ko� a limited kind of interaction is introduced� ko threats
played in one subgame a
ect the status of the ko in another subgame�

����� Local Search and Evaluation

Local search is exhaustive in principle� all possible moves are generated� Furthermore� in contrast
to minmax�style search� successive moves by the same player have to be considered� Capturing a
ko restricts the set of legal moves for followup positions� However� the ko ban is a non�local feature
of the full board and can be broken by a play elsewhere� Therefore it is necessary to generate all
moves without any ko restrictions for local analysis�
Local search is stopped as soon as the value of a local situation can be determined� This happens

when there are no more good moves� or when the value of the position is known from transposition
into a previously analyzed one�

����� Sum Game Evaluation and Move Selection

Each local game is analyzed independently at �rst� Increasingly detailed methods of analysis are
computing the �mast value� and the temperature� the thermograph� or the full mathematical game
expression of a local game� To select a move� di
erent algorithms compare temperatures� thermo�
graphs or incentives of moves�

����� Exact Solution of Endgames

Loopfree late endgames can be solved exactly ����

Board partition Find absolutely safe stones� territories and dame points� then partition the rest
of the board into connected components�

Local search and evaluation A brute force search inside the local area� with a few re�nements
to cut down the search space while retaining exactness �		��
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Figure �� Switches

Move selection in sum game Determine all moves whose incentives are not dominated by other
moves� If a unique such move exists it is selected immediately� If there are several nondom�
inated moves� a more expensive summation of games is done to �nd a move that retains the
minmax value of the whole game�

��� Combinatorial Game Theory for Loopfree Games

����� Basic Concepts

The mean measures how many points a game is worth on average� when playing sums of many
games� The mean is linear�

mean�A � B� � mean�A� �mean�B�
Leftscore and Rightscore are the minmax values of a game when players move alternately and

Left �Right� plays �rst�
Cooling is a technique for simplifying games by subtracting a tax from every move� Cooling

simpli�es a game while retaining much of its structure� It does not a
ect the mean� The temperature

of a game is the smallest amount of cooling that makes the Leftscore and the Rightscore of the cooled
game equal�
Figure � shows several games that stop immediately after a single play by either player� Such

games are called switches� and are of the form x y� where x and y are numbers and x � y� The
mean is �x � y��� and the temperature �x� y����

����� Simpli�cation of Games and Sums

Loopfree games can be brought into a canonical form by repeatedly removing dominated options
and reversing reversals �	�� This process also removes all but one of several options when they have
the same value�
The analysis of sum games can be simpli�ed by removing null games� integers� and pairs of games

and their inverses G� ��G�� All these games can be added to yield a single integer� None of these
simpli�cations may be used directly in sums containing ko� However� thermography provides some
related concepts that can still be used �see section �����

��� Thermography

De�nition � Let Gt be the game G cooled by t� Then the thermograph of G is a graph that shows

both the Leftscore �Gt� and the Rightscore�Gt� plotted along the reversed x�axis� as a function of the

temperature t on the y�axis�

�
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Figure �� Sample thermograph

Classical thermographs for loopfree games� such as the example in Figure �� have slopes that are
vertical or 	 or �	�
Thermographs provide a powerful tool for determining mean values and temperatures� The ther�

mograph of a game G can be easily computed from the thermographs for GL and GR by translating
their inner boundaries�

LeftWall�G� � maxGL�Rightscore�G
L
t �� t�

RightWall�G� � minGR �Rightscore�G
R
t � � t�

The temperature of G is the value of t at which these walls meet� At values of t less than the
temperature of G� the sca
olds become the boundaries of G� At values of t higher than the temper�
ature of G� the tax exemption takes e
ect� and the left and right boundaries of the thermograph of
G coincide to form a vertical mast� The vertical mast continues upward from the point where the
sca
olds meet�
If G is in�nitesimally close to a number n� both sca
olds coincide in a mast at n�
Leftscore�Gt� � Rightscore�Gt� � n for all t � 

A pass is optimal at t if Left wall and Right wall are the same� and the slope of the wall is vertical

or descending in the player�s direction �this can occur in hyperactive ko� see section ������� In one�
sided sente situations� both playing and waiting will be optimal for one player in some temperature
range�

��� Temperature Based Pruning Methods

Dominance and reversability are classical concepts of combinatorial game theory� They have the
following counterparts in thermography ����

Thermographic dominance A move is thermographically optimal at temperature t i
 its taxed
sca
old coincides with the game sca
old at t� Other moves� which have an inferior sca
old
value at t� are thermographically dominated�

Thermographic reversability If a move increases the local temperature� players following a
thermography�based strategy will keep playing locally as long as the temperature is greater or
equal to the starting temperature�
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Figure �� Ambient

��� Sum Game Evaluation

����� Ambient Temperature

Endgame play generally proceeds from the most valuable �hottest� plays� which may be worth �

points or more� to the smallest moves worth only a fraction of a point� Playing a sente move
temporarily increases the temperature� Replying to such a move is urgent� Overall� the ambient

temperature is monotonically non�increasing throughout the endgame�

����� Sentestrat

The sentestrat algorithm ��� models a slowly decreasing temperature by precisely de�ning the ambient

temperature� Often� all endgames have a temperature smaller or equal to the ambient� A player
following sentestrat answers any move that increases the local temperature above the ambient� If
both players use sentestrat� then at each time there is at most one local game hotter than the
ambient� Figure � shows such a scenario�
Sentestrat is primarily a local algorithm� there is no complicated global analysis� Information

about the global environment is reduced to a single number� the ambient�

��� Economic Model

Berlekamp ��� introduces a di
erent model for playing sums of games� where players pay a tax to
the opponent for the right to move� The tax rate is determined by auctions� A sum game continues
at the same tax rate until both players choose to pass� Then there is a new auction to determine
a lower tax rate� Berlekamp shows that in this type of play� always bidding the temperature of the
hottest game ensures achieving the game�theoretic value for an arbitrary sum game� Sentestrat is a
provably optimum strategy�

��� Enriched Environments

The enriched environment is another scenario where sentestrat can guarantee the optimal outcome�
This model assumes alternating play� but it augments a given sum game with a dense� uniformly

�



Figure �� Typical thermographs for gote� one�sided sente� and �double sente� situations

spaced sum of switches �see section ����	��
No matter how complicated a sum� as long as it contains at most one �hyperactive� position one

can add to it yet more games to obtain an even bigger sum whose score is known to an arbitrarily
high degree of precision� In the loopfree case� the scores of the augmented sum are known exactly�
The extra switches provide an �enriched environment� within which even rather wild loopfree games
assume angelic behavior under sentestrat�s supervision�
Each local position can be studied in an enriched environment� Within this environment� the be�

havior of a complicated game in a complicated sum is essentially the same as if the other complicated
games were not present� Berlekamp ��� gives more details on this algorithm�

��� Interpretation of Moves Based on Thermography

Thermography is a method for analyzing local games that summarizes the rest of the board in
one parameter� the �ambient temperature� of the sum game� The thermograph shows the value of
playing �rst in a local game for both players and all possible ambient temperatures�

����� Interpretation of Sca�old Direction

vertical sca�old both players play the same number of moves �or no move at all�� The �rst player
keeps sente�

diagonal sca�old the �rst player is also the last� he makes one move more than the opponent and
therefore takes gote�

If both players� sca
olds are vertical at a temperature t� it indicates a double sente situation� The
di
erence in sca
old values at that temperature is available as a free pro�t to the �rst player who
takes it� Sente and gote are relative to the ambient temperature� At su�ciently high temperatures�
any �double sente� situation becomes either one�sided sente or gote� Figure � shows an example�

� Endgames Containing Ko Fights

��� Drawing Game Graphs for Ko

Diagrams showing the game graph of loopy games are similar to those used for game trees �	�� Non�
loop moves are represented by a straight line� A move always leads from the higher to the lower
endpoint of the line� A two move loop is drawn as an arc� It can be traversed in both directions� In
Figure �� players can move back and forth between G and H� Terminal positions such as 
 and 	 in
Figure � are marked by their value�

�
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Figure �� Ko threat for Black

��� Ko Threats

Figure � shows the game 	
 
 �� The mean and the temperature of this game are both 
� since
Leftscore � Rightscore � 
� The thermograph is a vertical mast at 
� In classical combinatorial
game theory� the canonical form of this game is also 
� However� it provides one ko threat for Black�
We might similarly construct other games of the form

threatn � n 
 �

for any value of n� By allowing n to be very big� we obtain our standardized black ko threat� By
interchanging Black and White� we construct white ko threats �threatn � � 
 �n�
Arbitrary numbers of ko threats can be added to arbitrary sums of loopfree games with no e
ect

on the Leftscore and Rightscore of the sum� However� it is well known that ko threats can a
ect the
scores of positions involving ko�

��� Models for Sum Games that Include Ko

Games with loops are harder to analyze than loopfree games� in general such games have no canonical
form� no unique mean and no unique temperature�
To study a ko in isolation� or many copies of the same game� as in loopfree theory� gives an

incomplete view of its behavior� It is well known that a ko reacts di
erently in di
erent contexts�
so we want to study a spectrum of environments in which a ko could take place�
It is useful to begin with simple models of sums containing ko� The �rst such model assumes a

single ko in the context of an �enriched environment�� There are no explicit ko threats� but both
players have enough moves available at each temperature to ensure fair compensation for losing the
ko�
Another model adds idealized ko threats of the form big 
 � to a sum consisting of the ko plus

several other� loopfree games� which cannot be used as ko threats�
In his Ph�D� thesis ���� Kim models the urgency of playing ko by pseudoincentives� He shows

that it is often possible to treat a ko as if it had the same incentive as a carefully chosen loopfree
game�

�



����� Komaster

Berlekamp ��� models play of a loopy game under the assumption that one player is �komaster��
i�e� able to win all kos because she has a surplus of ko threats� We will call the other player the
�koloser�� The komaster cannot win ko �ghts for free� however� once she starts playing in a ko she
has to continue to play locally� This rule ensures that once a ko is started� it will be won at the same
temperature� Komaster has enough ko threats to win the ko but not enough threats to lower the
temperature during the ko �ght� Such a scenario can be realized by using an enriched environment
�see section �����

����� Placid and Hyperactive Ko

Given a komaster� we can compute the thermograph of a loopy game� The start of the vertical mast
de�nes the temperature of the game� The mast value however cannot be interpreted as a mean value
in all cases� Many kos have the same mast value independent of who is komaster� Such kos are
called �placid�� while those whose mast value depends on the komaster are called �hyperactive��
Many of the examples in section 		 are hyperactive� for example Figures �������
 and �	�

����� Decreasing the Temperature During a Ko Fight

Spight and Kim �	�� �� study decreasing the temperature during a ko �ght� This changes the
thermograph� since komaster may be able to win the ko at a lower temperature� and therefore has
to give up less in return� Conversely� koloser may initiate a ko �ght at a higher temperature than
predicted by thermography� He may even win the ko� This possibility� called �tunnelling� �	���
appears in the solution to the ��	�


 Ko� ����

� Generalized Thermography

Berlekamp develops a methodology for computing thermographs of loopy games and illustrates it
with several examples ���� In this section we brie�y review this methodology� develop details of an
algorithm� and describe its implementation�
Trying to compute the thermograph of a loopy game with the equations of loopfree thermography

leads to an in�nite loop� We consider two closely related loopfree games� the �solidhat� and �hat�
games� These games are used to de�ne the thermograph of a loopy game�

��� Methodology

Generalized thermography is based on an enriched environment model and a rule for when to win a
ko� The algorithm has three crucial steps�

Select the komaster Komaster is able to win all kos because she has a surplus of ko threats� For
each loopy game we compute a pair of thermographs� one with Black as komaster and one
with White�

The pass ban In classical thermography� players have the option of passing at each move� If
Komaster had this option as well� she could win all ko �ghts for the same price as a normal
move� she would move into a position where the opponent could not win in one move� then wait
until the temperature is very low to play the remaining moves and resolve the ko� Whenever
the opponent tried to play the ko� she would just use her surplus of threats to revert the ko to
the previous state� The �komonster� of section � models such a player�

To calculate the mast value for a ko� Berlekamp introduces the pass ban rule� once komaster
starts playing in a ko she has to go ahead and win it�

�
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Figure �� � at 	� Suicidal two�move�White�only loop

Construct solidhat and hat graphs The komaster and pass ban rules introduce two di
erent
states for some nodes in the game graph� if a node in a loop is entered for the �rst time�
all moves are allowed� and the thermograph of the node is computed from its options in the
standard way� However� when a node is entered the second time� both the komaster rule and
the pass ban rule change the computation�

The komaster rule removes loop�closing moves by the koloser� The pass ban rule removes
the option of passing for komaster� This creates a non�vertical mast� A node with pass ban
restrictions is called a solidhat node� and a node without restrictions a hat node�

��� Computing the Thermographs of Loopfree Subgames

If the subgraph below a node in a loopy game contains no ko� i�e� if it is a tree� we can compute
thermographs in this subtree using the classical algorithm� Such loopfree subtrees always exist� e�g�
the terminal nodes of the game�

��� Elimination of Single	Player Loops

From now on� we will consider each loop in a game graph to have moves by both players� In Go�
single�player loops are possible when the rules allow suicide �see Figure ��� Such loops contain at
least one bad move and can be eliminated in a preliminary step by pruning the loop�closing move ����
Another preprocessing algorithm that can eliminate bad moves and loops from a game is proposed
in section ��

��� Sample Thermograph Computation
 One Point Ko

We demonstrate the algorithm that computes solidhat and hat thermographs using the example of
the one point ko in Figure �� This loopy game can be written as follows�

G � f	 Hg
H � fG 
g

The only loopfree subgames are the nodes marked 	 and 
� Their thermographs are vertical
masts at 	 and 
 respectively�
The following computations assume that Black is komaster� This eliminates White�s move from

G to H in the solidhat node�

G � f	 g� with proviso that Black cannot pass immediately
�H � fG 
g
�G � f	 �Hg

The thermograph of G is a bent mast starting at 	 with value 	� t at temperature t�
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Figure �� Solidhat and hat thermographs of the one point ko

Given G� the hat thermographs �H and �G can be computed from the equations above�
If White is komaster� the corresponding equations are�

H � f 
g� with proviso that White cannot pass immediately

�G � f	 Hg
�H � f �G 
g

The thermograph for H starts at 
 and has value t at temperature t�

��� Computing Thermographs
 Solidhat and Hat Nodes

Before a thermograph can be computed� a loop�breaking move must be selected for each loop in the
game� In the most common case of ��move loops the choice is unique� there is only one move by
one player in the loop� The node from which this move is made is called the �solidhat� node�
After marking solidhat nodes� computation of thermograph starts� ComputeNode determines if

all necessary thermographs of moves needed to compute the hat or solidhat graph are known� It
partitions all options into KoOptions and the rest� decides which type of graph should be computed
and checks whether the necessary input is available�
When a game graph contains several stages of loops� solidhat and hat values must be computed

in turn� ComputeTree traverses the tree representation of the game graph� looking for nodes that
can be computed� The main program iteratively calls ComputeTree as long as there is work to do�

boolean ComputeNode �node� komaster�

�

computed � FALSE� �� no new graph computed yet�

	




if � not already computed�node� graph�

and � retrieve all komaster options�

solidhat graphs of nodes in loop�

hat graphs of all other nodes � �

then

�

if solidhat of node known then �� compute hat graph next

koOptions � emptyset�

else

find koOptions of koLoser�

if already computed all hat graphs of

� koLoser options 	 koOptions 


then

�

computed � TRUE�

compute Black �White� scaffold from max �min� scaffolds

of all options� and apply tax�

select type of new graph�

if koOptions exist then

type � solidhat�

else

type � hat�

make graph from scaffolds�

store�node� graph� type��







return computed�




ComputeTree traverses the tree underlying the game graph

and calls ComputeNode for each node recursively�

boolean ComputeTree �root� komaster�

�

changed � ComputeNode �root��

for all options of root

if ComputeTree �option� THEN

changed � TRUE�

return changed�




The main program repeatedly calls ComputeTree

as long as there is work to do�

while �ComputeTree �root���
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Figure 	
� Tracking the balloon�s path through a cave

��� Discussion of Thermographs for Loopy Games

��	�� Di�erences Between Loopfree and Generalized Thermographs

Generalized thermographs di
er from loopfree thermographs� the same position can have two dif�
ferent generalized thermographs depending on who is the �komaster�� The mast of pass�banned
�solidhat� graphs is non�vertical�
The left and right wall used to construct a thermograph can intersect more than once� leading

to several �cave� and �hill� regions ���� Inside a cave� the thermograph follows a �balloon�s path��
as shown in Figure 	
�
In thermographs of loopfree games� the slopes of the sca
olds indicate whether the di
erence in

the number of moves played by both players is zero or one� In �sente� regions� the di
erence is zero�
and the sca
old is vertical� In �gote� regions� the di
erence is one� and the sca
old is diagonal�
Other variations� in which a player moves several times in a row� in�uence the shape of the graph�
If a move�s followup is too big compared to the current temperature� the opponent will prevent it
by answering� If answering is too small� local play will stop after the �rst move�
Generalized thermography allows other di
erences in the number of moves played by both players

at a given temperature� The ko ban rule may force komaster to spend two or more moves in a row
to win a ko� Larger slopes� such as �� �� �� � � � indicate this situation�
Generalized thermographs can also bend backwards� in situations where the koloser starts the

ko� then forces komaster to spend two or more moves to win and eliminate the ko�

� Thermographs for Games with Ko Threats

��� What is a Ko Threat�

The naive notion of a ko threat is a play which forces a reply� so that the ko may be taken back�
Actually� there are di
erent kinds and forms of ko threats� But all threats must raise or maintain
the temperature when played� The prototypical ko threat is simply a sente� For simplicity we will
con�ne ourselves to ko threats of the form fb 
 �g for Black� or f� 
 �wg for White� where
b� w � 
� We call b or w the size of the threat� In combinatorial game theory these threats equal

	�



Figure 		� uphat and downhat di
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��� Primary� Secondary� and Tertiary Threats

We classify ko threats informally on the basis of their use� Primary threats have two uses� First� they
enable a player to win the ko� Second� since it costs one move to win a ko� kowinner may pro�t by
delaying the win until the temperature drops� Secondary threats may be answered or ignored by the
the opponent� but they raise the temperature� If kowinner ignores a secondary threat� koloser gains
something in exchange� Tertiary threats maintain the temperature� They can be used to defend
when the opponent is trying to lower the temperature before winning the ko�

��� Pseudothermography and Komonster

Since to win the ko the komaster must give up a play in the environment� she may pro�t by delaying
the win until the value of such a play �the ambient temperature� drops �	��� A komaster who has
enough primary threats to delay winning the ko until the end of the game is called a komonster�
Pseudothermographs ��� show the e
ect of lowering the temperature before winning the ko� They

represent not just the ko� but the ko with threats� The combination of a ko with other plays is called
a ko ensemble� �Here we will use a slightly di
erent form of pseudothermograph from Kim�s�� Figure
	� shows the pseudothermograph for K in Figure 	� when Black is komonster� The mast value is
��� and the temperature is 	���� To be komonster Black must have enough primary threats to lower

	�



Figure 	�� Black is komonster

Figure 	�� Black can lower temperature by �

	�



Figure 	�� White can lower temperature by �

the temperature 	��� points� In a real game that would require a prodigious number of threats� The
pseudothermograph when White is komonster is a vertical mast at ���
More realistically� suppose that Black has enough primary threats to lower the temperature �

points before winning the ko� Figure 	� shows the pseudothermograph when Black can do that�
The mast value m is 	 and the temperature t is 	
� When t � 	
� White should win the ko� When
� � t � 	
� Black should take the ko and use his extra ko threats to reduce the temperature � points
before winning the ko� When t � �� Black should take the ko and use his threats to wait until the
end of the game to win the ko�
Figure 	� shows the pseudothermograph when White has enough primary threats to reduce the

temperature � points before winning the ko� m � �� and t � 	
� Note the bent mast� When t � 	
�
Black should keep taking the ko to force White to use up her ko threats� When t � �� White can
reduce the temperature � points before having to win the ko� When t � �� White can wait until the
end of the game to win the ko� but Black may still bene�t from forcing White to use up her threats�
For a simple ko� the rise in the temperature of the ko compared to the thermograph is 	�� the

amount the komaster can reduce the temperature before winning the ko� The gain in mast value
from delaying winning the ko is 	�� the drop in temperature for the komaster who must take two
moves to win it and ��� the drop for the komaster who can win in one move�
In reality� the komaster might better save some threats to �ght another ko later� or to discourage

the other player from creating another ko� Also� the other player could use tertiary threats to cancel
the e
ects of the komaster�s extra primary threats by maintaining the temperature�

��� No	man
s Land and Secondary Threats

In position K of Figure 	�� if neither player has a ko threat� Black can take and win the ko� so he
is komaster� If White has one primary threat� she can use it to win the ko when Black takes it� and
she is komaster� For a simple ko� the di
erence between Black�s being komaster and White�s being
komaster is one primary ko threat�
There is a no�man�s land where neither player is komaster� If� after Black has played his last

primary threat� White has a secondary ko threat� this is the case� When White plays her secondary
threat� Black wins the ko and White completes her threat�
This line of play is not represented in the komaster thermographs� To represent it� we must draw
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Figure 	�� No threats

a thermograph for a ko ensemble including the ko and White�s secondary threat� Next let us discuss
how to draw thermographs for ko ensembles�

��� Methodology for Thermographs of Ko Ensembles

In this section we shall explicate a methodology for drawing the thermographs of ko ensembles and
derive the thermographs for a simple ko� that ko with a simple gote� with a threat� and with another
ko�
When one player takes a ko� or makes a move which� by the rules governing repetitive situations�

prevents the other player from making a certain reply� the resulting position is blocked� The basic
rule in our methodology is to treat the masts for blocked positions like pass�banned masts for
komaster� the mast within a cave degenerates into the Right sca
old if Left is blocked or the Left
sca
old if Right is blocked� �Remember that in a cave� the Right sca
old is to the left of the Left
sca
old��
We also assume that any play in the ko ensemble removes the block �although it may create

another one�� If the same player moves twice in succession in the ko ensemble� the other player has
moved elsewhere in the meantime and removed the block by that play�
We use the  sign to indicate a blocked ko�  A means that position A is blocked for Black� and

A means that it is blocked for White�

����� Simple Ko with no Threats

We shall use the ko in Figure 	�� We have the equations

K � L ��

L � f	� g

Figure 	� shows the thermographs for LL � 	�� L � K� and KR � ��� The thermograph for K
is the thermograph when Black is komaster�

����� Same Ko with Large Gote Play

Consider the game K �G with G � f
 ���g

K � G � fK�L �G K � ��� G� �g

We may simplify this by reversal and dominance� The mast value of K � G is the sum of the
mast values of K and G� m � 
 � 	� � �	�� If Black takes the ko and then White plays the gote�
we have L � ��� with a mast value of � � �� � �	�� which is less than the mast value of K � G�
which is �	�� Therefore Black�s taking the ko reverses� and he will go on to win the ko� for a score of
�	
� Since this is less than K� taking the ko is dominated by playing the gote� Similarly� if White
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Figure 	�� Ko plus medium gote play

wins the ko and Black plays the gote� the score is ��� which is more than K � ��� So winning the
ko is dominated� as well� The equation thus reduces to

K � G � K K � ��

Figure 	� shows the thermographs for K� K � G� and K � ��� When � � t � 	� either player
will play the gote� When t � �� the second player will play the ko after the �rst player has played
the gote� Because the second player takes the ko and gets two moves which are worth more than
the other plays� the advantage of playing �rst declines with the ambient temperature�

����� Same Ko with Medium Gote Play

G � f
 ���g

Now both players have two live options� Since� as above� taking the ko reverses to ��� we have
the equation

K �G � fK��� G� ��K � ��g

Figure 	� shows the thermographs� At temperatures where an option is thermographically dom�
inated� its thermograph is a dotted line� The thermograph for K � G looks like it forms a cave�
but it does not� The Left and Right walls kiss at t � �� Above that temperature� play is like the
previous example� but below that temperature� each player prefers to play the ko �rst�

����� Same Ko with Small Gote Play

G � f
 �	
g

After reduction we have the equations

K �G � fL � G G� �g

L � G � fG� 	� L � 	
g
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Figure �
� Big threat for White

Figure 	� shows the thermograph for L �G on the left� It forms a cave at t � �� and the mast
follows the Left sca
old above that point�
The picture on the right shows the thermograph for K � G� Each player prefers to move in the

ko �rst� and the second player will respond by playing the gote when t � ��
The thermographs of a simple ko with a simple gote look di
erent depending upon whether the

size of the gote is greater than the size of the ko� between the size of the ko and ��� the size of the
ko� and less than ��� the size of the ko�

����� Same Ko with White Threat

W � f� 
 ���g

White�s winning the ko dominates playing her threat� and Black�s taking the ko dominates
eliminating White�s threat� So we have the reduced equations

K �W � L �W ��

L �W � 	� L � f
 ���g

The left side of Figure �
 shows the construction of the thermograph L �W � It is the same as
that of L� except that the mast follows Left�s sca
old� The right side of Figure �
 shows that the
thermograph of K �W is the thermograph of K when White is komaster�

����	 Same Ko with White Threat

W � f� 
 ���g

After reduction we have the equations

K �W � L �W ��

L �W � 	� L � f
 ���g
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Figure ��� Smaller threat

with thermographs in Figure �	� The vertical line at �� in the Left wall of thermograph for
K �W re�ects Black�s preference to play the ko in L� f
 ���g when t � ��

����
 Same Ko with White Threat

W � f� 
 �	
g

After reduction we have the equations

K �W � L �W ��

L �W � 	� L � f
 �	
g

with thermographs in Figure ���

����� Sum of two Kos

Figure �� shows two simple kos� with the reduced equations

K �M � L �M M � �

L �M � 	� �M 	�

Figure �� shows the thermographs� For the thermograph of L �M � White�s taking the ko� M �
reverses to 	� through Black�s winning L and White�s winning N �
As the thermograph for K �M indicates� the di
erence between Black�s and White�s playing

�rst is constant at 	� points when t � �� This di
erence is the di
erence between the sizes of the
two kos� If they were the same size� they would form a miai pair� regardless of ko threats�
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��� Decreasing Temperature Inside a Ko Fight

Suppose that a player takes a ko� moving from position A to position B� Position B is now blocked�
and our basic rule says to treat it like a pass�banned position� However� if the temperature for B�
if unblocked� is less than the temperature for A� then the other player will not be inclined to take
the ko back� and the block does not matter� In this situation we should not treat B as pass�banned�
but draw a vertical mast for it�

Figure ��� Decreasing temperature in a ko �ght

In Figure ��� if neither player has a threat� the basic rule yields the thermograph shown to the
left� The fact that the slope of the right wall indicates only one net move for White to resolve the
ko� while if White takes the ko� there is still an open ko on the board� implies that the temperature
of the ko after White makes that move is less than the temperature in the �gure�
Indeed� after White takes the ko in the no�threat case� the position is terminal� and its thermo�

graph is a vertical mast at �	�� Using that thermograph we obtain the correct thermograph shown
on the right in Figure ��� This is the only known case to require a correction to the basic rule�
With the method outlined here we can draw thermographs for many ko ensembles without

designating a komaster� But there are still positions� such as a double ko seki� for which we cannot
draw thermographs without otherwise evaluating a position with un�lled kos�
Now let us return to the question of representing secondary threats for a simple ko�
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��� Secondary Threats

The right sides of Figures �	 and �� show thermographs for the simple ko in Figure 	� with a
secondary threat for White� When Black takes the ko and ignores White�s threat� the score after
White completes the threat is 	��w� where w is the size of the threat� Since each player makes the
same number of plays without playing elsewhere� this line of play is indicated by a vertical line at
	�� w in each case�
Figure �	 shows the thermograph when w � ��� When t � �� the left sca
old is the vertical line

at ��� Below that temperature� if Black takes the ko� White plays her secondary threat� and Black
exchanges it for the ko� The size of the ko� k� is the di
erence between the score when Black wins
the ko and the score when White wins it� The temperature below which Black should exchange
White�s threat for the ko is the di
erence between the size of the ko and the size of the threat� k�w�
Above that temperature� White�s threat is primary�
Figure �� shows the thermograph of the ko ensemble when w � 	
� When t � �� the left sca
old

is the vertical line at �� Below that temperature� if Black takes the ko� White plays her secondary
threat� and Black exchanges it for the ko� This temperature is w��� the temperature of the right
follower of White�s threat�

��
�� Comparison with Conventional Wisdom

Conventional Go wisdom says that the size of a ko threat must be greater than ��� the size of the
ko� In Figure ��� right� even though w � �k��� it is an e
ective threat when t � w��� But it is only
a secondary threat� In Figure �	� right� w � �k��� and White should always play her threat� but
it is primary only when t � k � w� When w � �k��� the vertical line at 	�� w represents White�s
option to play the threat� and when w � �k��� it represents Black�s option to ignore it�

��� Black
s Secondary Threat

Black has no need for a secondary threat unless he answers White�s primary threat� If Black initiates
the ko and then later plays a threat which White ignores� Black will complete his threat at the cost
of one move� With the ko in Figure 	� and the threat b 
 �� the line to represent that play is
v�L� � b � �� t�
Figure ��� left� shows the thermograph for the ko ensemble when White has a primary threat

and b � �� When t � �� Black can play his threat and complete it when White wins the ko� As
above� the temperature at which Black should play his secondary threat is b���
Figure ��� right� shows the thermograph when b � ��� When t � �� White ignores Black�s threat

and wins the ko� As above� the temperature at which White should do so is k � b�
Also as above� when b � �k��� the line v�L� � b � � � t represents Black�s option to play the

threat� and when b � �k��� it represents White�s option to ignore it�

��� When is White
s Threat Primary�

In the previous two cases� we simply said that White�s threat was primary� The next two �gures
show when it could be either secondary or primary�
Figure ���left� shows the thermograph when w � �� and b � �� When 	 � t � �� White�s threat

is secondary� Black ignores it and wins the ko� When t � 	� it is primary� Black answers it and
plays his secondary threat� which White ignores�
Figure ��� right� show the thermograph when w � � and b � ��� When � � t � �� White�s threat

is secondary� Black ignores it� When t � �� it is primary� Black answers it and plays his secondary
threat�
In both cases� whether and when White�s threat is primary depends upon where White�s threat

line and Black�s meet� They meet at t � b � w � k� the sum of the sizes of the threats minus the

�	



Figure ��� Left� b��� right� b���

Figure ��� Left� w���� b��� right� w��� b���
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Figure ��� Ko ensembles with threats

size of the ko� White�s threat is always secondary when b � w � k� If b � �k��� White�s threat is
always primary when b�� � w � k� If b � �k��� it is always primary when b�w�� � k� Otherwise�
it is primary when t � b� w � k�

���� The Threat Sca�old

Let Black have n threats of sizes b� � b� � � � � � bn�� and White have m threats of sizes w� � � � � �
wm��� For the simple ko in Figure 	� we can construct a threat sca
old in the following way� Draw
the threat line for White�s largest threat� v�L� � 	� � w�� Then draw the threat line for Black�s
largest threat� v�L� � b� � �� t� They meet at t� � w� � b� � ��� If t� � 
� then the sca
old below
t� is Black�s threat line� and above it is White�s� Continue to draw threat lines for the largest White
and Black threats alternately� with the last drawn line becoming the bottom of the sca
old� until
you run out of White or Black threats or the last line meets the sca
old at ti � 
� in which case it
does not become part of the sca
old�
If the threat sca
old meets the basic Left sca
old line v�L� � 	� � �t at tj � �� then the Left

sca
old above tj is that line� and� if tj � 
� the Left sca
old below that is the threat sca
old� If the
threat sca
old meets the basicbasic Left sca
old line v�L� � ��� t at tk � �� then the Left sca
old
between temperature tk and � is that line� and� if tk � 
� the Left sca
old below that is the threat
sca
old�
Figure �� shows examples of thermographs of ko ensembles with various threats�

� A Thermography View of some Exotic Go Positions

In this section we look at long loops� �ne points of scoring and eliminating ko� and consider the
problem of irremovable ko threats�

��� Long Loops

While the majority of loops in Go are two moves long� more complex types of ko with longer loops
such as chosei� round robin� triple and quadruple ko do occur� Figures �� � �	 show some examples�
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Traditionally� rules have o
ered di
erent ways to handle such cases�

� Declare the game �no result� �Japan�

� Forbid full�board repetition by a �super�ko� rule �New Zealand�

� Treat long loops like simple ko �Ing�

Discussing the relative merits of these approaches is beyond the scope of this paper� We will
concentrate on the e
ect of long loops on the computation of thermographs�

b

a

Figure ��� Double ko seki

Figure �
� Left� Triple ko� Right� White is dead in Japanese rules

Figure �	� Left� Round robin ko� Right� Chosei

To apply thermography� we must break each loop by applying the ko ban at some node in the
loop� In long loops we have a choice� In general� di
erent choices will lead to di
erent thermographs�
Koloser wants to minimize the damage from losing the ko� while komaster wants to pay a low tax
rate for her successive moves�
Our current algorithm does not attempt to �nd the optimal cut points for long loops� When

it encounters a loop longer than � moves� it will issue a warning� then arbitrarily choose one way
to break the loop� It is currently unclear what a good way to handle these situations is� Trying
all ways to cut each loop� then computing the maximum thermograph could lead to an exponential
increase in runtime in the case of many intertwined long loops�
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Figure ��� Double ko

	���� Limitations for Multiple Ko

Generalized thermography works well in local games where at most one ko is relevant at any given
time� The ko�ban methodology computes a value of playing in this ko by comparing it with the
value of moves elsewhere� If there is more than one concurrent ko locally� it must be clear which one
is currently being fought� a move in this ko must dominate all moves in other local kos�
The algorithm fails in positions with two or more simultaneous ko� as in Figure ��� In normal

ko� the komaster can eventually win any ko or series of ko by ignoring su�ciently many threats� In
double ko seki the only good moves for both players are to stay in the loop� A double ko seki can
never be resolved into a terminal position� Generalized thermography breaks all loops by force� it
does not allow to balance the capture of one ko by taking the other ko�

��� The Final Stages of Play

	���� Scoring

In regular terminal Go positions� each point on the board can be classi�ed as alive �stone or empty
point that is part of territory�� dead �part of opponent territory� or neutral �in a seki�� In Japanese
rules it costs points to capture dead stones� so competent players will not do it� If players disagree
in the end which stones are dead or alive� a special dispute�settling phase follows ����
In Chinese rules the capture of dead stones in the end is not penalized� allowing play to continue

until only alive and neutral �shared liberties in seki� points remain on the board� Scoring is very
easy with Chinese rules� all stones are worth one point for their color� Regions of empty points are
evaluated as territory for one player if they are surrounded by stones of this color� and as neutral
otherwise�
In Japanese rules� fewer positions can be �played out� by capturing dead stones at the end of the

game� These positions must be evaluated statically� Seki and unresolved ko are the most frequent
examples of problematic positions� Rules di
er signi�cantly in the evaluation of such positions� A
big collection of interesting positions can be found in Fearnley ���� Smaller collections appear in the
o�cial rules of several countries ����

	���� Playing One Point Ko and Dame

In Japanese rules� one point ko �ghts are the smallest plays� Dame are usually �lled after the last
ko �ght to make counting easier� but they are not worth any points�
In Chinese rules� dame and one point ko �ghts are both valuable but incomparable plays� Playing

them in the correct order can already be quite intricate ���� After all dame are occupied� players
can continue to play inside their own territories without losing points� This way they can eliminate
most remaining weaknesses such as potential ko or ko threats� This is also the time when positions
containing latent ko �ghts will be played out� Examples are �bent four in the corner� or �three
points without capturing��
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Figure ��� Direct ko and one move approach ko
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Figure ��� Two� three and ten move approach ko

��� Resolving Ko in Japanese Rules

If Black has more ko threats in the position on the left side of Figure ��� he could claim the
white stones and the two empty points as his territory� However under Japanese rules� Black must
eventually capture at !a�� which reduces his area by one point�
On the right side of Figure ��� White has the option to play !a� and make a direct ko� If White

does not play� the area becomes Black�s territory without a further play by him�
Figure �� shows multi�move approach kos� Black does not need to resolve these situations�
White does not gain by playing unless she has a surplus of ko threats� The proverb claims �A

three move approach ko is not a ko�� In a three or more move ko� usually Black will just remove
the white stones in the end� It would cost White too many moves to make a real ko �ght out of
such a situation� It is interesting to compare this proverb with the thermographs of approach Ko in
Figures �	 to �� and the iterated Ko in Figures �� to ���

��� Irremovable Ko Threats

It is well known that not all ko threats can be removed at the end of the game� For example� a seki
can be a source of threats� The examples usually given for such irremovable ko threats involve a
sacri�ce� White !a� in Figure �� is a threat that loses � points if answered� but threatens to gain 	�
points� However� irremovable ko threats that do not cost points exist�

a b

Figure ��� Point�losing irremovable ko threat for White
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Figure ��� Seki with cost�free irremovable ko threats

This fact becomes important when discussing the di
erences between Chinese and Japanese rules
concerning play at the end of a game in cases such as �Three Points Without Capturing� and �Bent
Four in the Corner��
The positions in Figure �� both contain free white ko threats that Black cannot eliminate ����

� Implementation Issues

This section discusses technical aspects of our implementation of generalized thermography� repe�
tition� transposition� underlying arithmetic and geometric operations� the construction of sca
olds
and thermographs� and the user interface�

��� Repetition and Transposition Detection

To identify loops� we must detect repetitive positions� If a Go position were de�ned by its history
�the sequence of moves from the starting position� there could be no repetition� Therefore a position
is de�ned as the current board state� plus the di
erence in number of captures when using Japanese
rules� The history of moves and captures is used to recognize repetitions� For details on repetition
detection see ����
Loop recognition and transpositions in the game graph are closely related� a loop is a transpo�

sition to a previous node in the game history�
A special kind of transpositions unique to Go are shift transpositions� transpositions into the

same board position� but with a di
erent number of captures� M"uller ��� describes an implementation
of local search that takes advantage of such transpositions�

��� From Thermography to Generalized Thermography

Explorer ��� is a full�featured traditional Go�playing program that has taken part in many computer
Go competitions� It contains Wolfe�s toolkit for combinatorial games �	�� and modules for exact
and heuristic endgame calculation� The thermography modules are fully integrated in the program�
They use Explorer�s display and game handling facilities to generate� store and test problems�
A previous version of Explorer contained an implementation of classical loopfree thermography�

The transition from loopfree to generalized thermography brought a signi�cant increase in complex�
ity�

Change of coordinate representation from �xed point binary to rational numbers�

��



Figure ��� The Thermograph Display of Explorer

Richer structure of thermographs with caves� hills� and bent masts�

Change of algorithm from one pass tree traversal to iteration over game graph�


���� Rational Arithmetic

Care must be taken to avoid rounding errors in geometric computation� maintaining the identity of
values is crucial to avoid additional �phantom� points on the graph� keep the slope of lines exact�
and to guarantee correctness of the algorithm�
All coordinate values arising in the calculation of loopfree thermographs are binary fractions�

Therefore the old implementation used the same �xed point arithmetic as Wolfe�s toolkit �	��� With
generalized thermography� the values appearing in calculation can be any rational number� Binary
�xed arithmetic leads to unacceptable rounding errors� All calculations now use precise rational
arithmetic� with two 	� bit values p�q� q � 	� GCD�p� q� � 	�
Computation of the intersection of two almost parallel lines in rational arithmetic produces

astonishingly large intermediate values� It was necessary to reduce these values using GCD and
to extend intermediate calculations to �� bit precision to avoid over�ows in some of the problems
presented in section 	
�


���� Layers of the Thermography Program

The following table lists the features of the layers of the program for generalized thermography�

Rational Arithmetic Arithmetic operations� comparison operators and conversions�

Points and Line Segments Points in the �value� temperature� plane with rational coordinates�
lines and line segments� intersection of lines and line segments� incidence tests for points and
line segments�

Sca�olds and Thermographs Data structures for sca
old and thermograph� consisting of line
segments plus a mast� Intersection of sca
olds� max#min of two sca
olds� locate segment at
temperature t� follow �balloon path� in a cave between two sca
olds� handle bent masts�
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Game graphs� Nodes and Properties Tree structure� tree traversal� map game graph to tree�
�nd loops in graph� store thermographs as properties in nodes� handle shift transpositions�

Move generation and evaluation Safe stones and territories� local games� move generation� ter�
minal position detection�

Interface Show local games� game graph� draw and write hat and solidhat thermograph �Figure
���� write mean values� temperatures� temperature range for moves�

� Applications to Full Board Analysis

��� Sum Game Models for Opening and Midgame

In this section� we claim that local games and thermography are natural models not only for the
endgame� but for earlier stages of the game as well� The choice of moves during opening and
midgame is often a
ected by endgame considerations� A problem is that at this stage of the game
we do not know what the real endgame situation will be later on� Most of the other subgames will
only materialize later in the game�
Still� we must choose from local moves leading to di
erent endgames early in the game� while

the situation is being �played out� locally� Examples are choosing one of several joseki moves in a
corner� or making a small living group after a deep invasion of a moyo�
Typically� a player must decide whether to �live small in sente� or �big in gote�� whether to

leave the possibility of a ko �ght behind� or whether to eliminate such danger at the cost of one or
more moves� If moves have incomparable values in the classical sense� we cannot decide on a best
move without knowing more about the context in the current sum game� If moves lead to di
erent
ko situations� again we cannot decide the best move by purely local analysis�
In the opening and midgame� we have no hope to do a full board global analysis� Since we

want to make a rational move choice� our only possibility is to play �as well as possible�� to make
educated guesses or �reasonable assumptions� about the rest of the board� In other words� we look
for a suitable model of the environment�
One reasonable�looking method is to �nd a good estimate of the current ambient temperature�

then play sentestrat�
In practice we cannot know which endgame situation will occur in the given environment� It

makes sense to look for a kind of �standard environment� against which to compare di
erent local
results� The enriched environment ��� seems a good candidate for a non�biased a priori choice of
environment�
One problem is choosing a komaster� A pessimist would always choose the opponent as komaster�

an optimist would choose himself� A realist would base this assumption on an evaluation of existing
ko threats� Further developments of the theory� such as pseudothermography� could investigate how
to adapt play to a speci�c given environment of ko threats and other endgame plays�

��� Playing Ko and Ko Threats in Real Games

Since ko �ghts can be so complex� we have been studying them in simpli�ed models such as the
�enriched environment�� This section discusses a number of issues that arise in real play�
Besides maximizing the local territory count� players have secondary objectives for choosing their

moves� For example� they want to maximize the number and size of own ko threats while minimizing
the opponent�s�
Games often are not strictly independent� and players seek to create �double threats� or other

multi�purpose moves� M"uller ��� investigates several kinds of dependencies and surveys methods
that have been proposed for dealing with them�
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Figure ��� One�sided sente play

Sets of ko threats are clearly not well�ordered� In some situations a few big threats will be
superior to many small threats� in other situations it will be the opposite� The possible existance of
local threats in a ko �ght further a
ects the value of other ko threats�
Endgame moves create or destroy ko threats as a side e
ect� Kim ��� introduces perturbation

theory for solving the simplest problem of handling a ko in a real endgame environment� to play
the �nal one point ko correctly in Japanese rules� He assigns very small values � to ko threats and
solves the corresponding combinatorial game�
One�sided sente moves behave di
erently in loopfree and loopy sum games� These moves have

a temperature range in which only the player keeping sente can play them� Above that range both
players would pass� Below the range the opponent could play a reverse sente move here� Figure ��
shows the game 	 
 ��� Black can play reverse sente when t � 
 � � �	� White can play in sente
when t � 
 � � ���
Loopfree theory advises a player to make her sente move soon� In a real game players tend to

keep these moves in reserve as long as possible� because they make very good ko threats�
If a sudden drop of temperature is imminent� sometimes both players will have several of these

moves left� That can lead to intricate sequences of forcing moves� both players are concerned about
preventing reverse sente plays� This situation can be modeled well by classical combinatorial game
theory� the objective is to get the last move at a given temperature� which means winning the cooled
game�
Pure ko threats are the ultimate one�sided sente moves� their temperature is zero� so the opponent

has no incentive to play there as an endgame move� The player can use these threats across a wide
range of temperatures�
Some games work as ko threats for both players� An example is the game 	
 
 
 ��
� The

player who does not have to play the �rst ko threat will usually eliminate these threats before the
ko starts� If she forgets to do that� the opponent should play out all these games as his �rst threat�
Combinatorial game theory takes a static view of the endgame� the partition into safe territories

and remaining �interesting� subgames is done once and for all before starting the analysis� For real
play this model sometimes must be adapted� If mutual de�ance leads to large�scale exchanges during
the endgame� territories will be destroyed and the remains turn into new endgame areas� The whole
sum game will change� and parameters such as the ambient have to be recomputed�

� Open Problems and Future Work

��� Is The Algorithm Complete�

The iterative algorithm for generalized thermography terminates when it cannot �nd any more work
to do� when there are no new solidhat or hat graphs to compute in the whole game� If the game
graph contains many intertwined loops� it is conceivable that this situation could happen before the
hat graphs of all nodes have been computed� We have not yet encountered such an example� and
suspect that it cannot happen in the game graphs that occur in Go�

�




One can easily construct abstract loopy games where our algorithm would fail to compute a
thermograph� An example is the game de�ned by A � fB g� B � f Ag� This is an �eternal ko
�ght�� since no player can ever move to a loopfree position and end it� We believe that there are
no �pure� loops without an exit to a loopfree subgame in Go� An interesting open problem is to
�nd good technical conditions that ensure termination of generalized thermography� and prove that
�most� Go positions satisfy such a condition�

��� Pruning Irrelevant Loopy Moves

As in loopfree thermography� the thermograph of a loopy game can not be a
ected by dominated
moves� Computer�generated local game graphs typically contain many more loops than human�
generated graphs� A program looks at many sequences that human players would never consider�
but are hard to dismiss beforehand with current techniques�
Most of these variations contain one or more bad moves� so for e�ciency they should be eliminated

from a game before computing the thermograph�
In �		� we used an iteration technique� based on sidling �	�� to �nd loopfree lower and upper

bounds on a loopy game� If both bounds for a node are the same� ko moves do not a
ect the game
value �they are dominated by non�ko moves�� and we can remove the loops before computing the
thermograph�
Similar techniques will yield bounds on thermographs� loops can be broken in one player�s

favor by forbidding one of the opponent�s moves in the loop� If a move�s optimistic thermograph is
dominated by another move�s pessimistic bound� it can safely be pruned� This reduces the loopyness
of the game graph�

�	
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�	 Catalog of Examples

The format of the example collection is as follows� Each example shows a picture of the Go position�
followed by its game graph� For complex graphs� we show only selected lines of play� Omitted
parts of the game graph are indicated by dots� The third picture in each example shows the uphat
thermograph using solid lines� and the downhat thermograph using dashed lines� The downhat graph
has been slightly shifted to the left� in order to see it in those regions where uphat and downhat
graphs coincide�
All examples presented here use Japanese scoring� To give an indication of the values and

temperatures involved� a scale with integer unit is drawn at temperature 	�
For many positions� one or more interesting follow�up positions are included� When the situation

is symmetrical for both players� as in many iterated ko� thermographs can be obtained from the
examples given by taking the mirror image�

���� Figures �� to ��
 Simple Ko

Simple kos contain just one loop� They di
er in the size of the ko� and possibly in the loopfree parts
of the game graph�

���� Figures �� to ��
 Sente Ko

Many ko �ghts are one�sided �hanami ko�� one player has many points at stake� while the other
has comparatively little to lose� The thermograph of such ko looks similar to the one�sided sente
situation of Figure ��
Figures �� to �� are from a problem on p��� of Kim Yonghoan�s thesis ���� Black�s capture is a

fairly big threat� and White will usually defend� This exchange leaves a one point ko which will be
played much later�
Figures �� to �� show a similar real�game position where the threat is smaller�

������ Figures �	 to �

 Throw�in Ko

A very frequent type of ko is illustrated by these examples� If White is komaster� she can throw in
a stone and start a ko �ght� threatening a capture� Black will often defend� leaving only a one point
ko� The uphat graph of the �rst example is a mast� White�s threat to start the ko �ght if Black is
komaster is not big enough� However� in the other example White can expect to gain �#� of a point
by throwing in� Further increasing the stakes by making White�s threat bigger does not a
ect the
thermographs�

���� Figures �� to ��
 Iterated Ko

������ Figures �� to ��
 ��iterated Ko

This ko frequently appears as a subgame of other� more complicated situations� for example in
Figures �������� and ���

������ Figures �� to ��
 Corner Iterated Ko

There is only a subtle di
erence between the game graphs of the ��iterated and the corner iterated
ko� but it leads to quite di
erent thermographs�

��



������ Figures �� to ��
 ��iterated Ko

The ��iterated ko shows similar thermograph shapes as the ��iterated one� Only two nodes are
shown� the symmetrical cases are omitted�

������ Figures �� to �	
 Hot ��iterated Ko

This position is much hotter than the previous one� because big black and white groups are at stake�
Notice the slope � in the uphat graph of Figure ��� corresponding to the four moves in a row that
Black has to play to win� Two symmetrical cases not shown�

������ Figures �
� �� and 	�
 Real �

A very common case of iterated ko� but with complicated�looking thermographs� Still� the ko is
placid�

���� Figure ��
 Corridor Approaching Ko

The e
ect of the ko on the thermograph becomes more visible as White pushes on and play ap�
proaches the position containing the �nal ko �ght�

���� Figures �� to ��
 Approach Move Ko �Yose Ko�

Scoring of multi�move approach ko depends on whether the rules demand capturing the stones� The
examples in Figures �	 � �� were computed under the assumption that stones must be captured
eventually�

���� Figures �� to ��
 Mannen Ko

In mannen ko� nobody wants to play for most of the game� The position in Figures �� � �� is
unusual� if Black is komaster then White is as good as dead� Both players prefer to pass even at
temperature zero� Scoring depends on the rules of the game� whether Black has to capture white or
not and whether this costs any points�

���	�� Figures 
� to 
�
 Murashima�s Ko

A very interesting position from Murashima�s ko dictionary �	��� White has two options� Figure ��
can lead to mannen ko and Figure �� to an iterated ko�

���� Figures �� to ��
 Small Hyperactive Ko

Hyperactive kos have di
erent mean values depending on who is komaster� They contain a node
where one player can choose to increase the stakes by making a hotter ko �ght than that present in
the previous position�

���
�� Figures 
	 to 
�
 The Rogue

The �rogue� position of Figure �� appears in Berlekamp and Wolfe�s catalog of �node rooms� ����
It was the �rst hyperactive ko to be studied in detail�

���
�� Figure 
�
 Kao�s Ko

Kao�s ko is a hyperactive ko in a very small area� After White takes the ko� she can increase the
stakes by pushing in from the right side�

��



���
�� Figures �� to ��
 Kato � Fujisawa Ko

An example that illustrates that interesting behavior can occur even in very small local situations
in the center of the board� White can capture a stone and create an iterated ko like position� Yet
this ko is hyperactive�

���� Figures �� to ���
 More Ko From Master Games

Most of the examples in this section have selected from a collection of Kisei title games �	
�� Many
are directly copied from the game record� In other examples a few stones have been added to
reinforce the boundary and therefore limit the size of the local area�

������ Figure ��
 Unnamed Ko

This ko will often end up as a ��iterated ko �see Figure ���� If Black is komaster� White will just
connect� If White is komaster she can do a bit better by �ghting the ko� Black�s option to extend
instead of capturing �the leftmost branch� is thermographically dominated�

������ Figure ��
 Real �

White can cut to start a ko �ght� Above temperature 	#�� this is a good strategy even if Black is
komaster�

������ Figures �� to ��
 Real �

A very simple ko which looks similar to Real � and Kao�s ko� It is not hyperactive�

������ Figures �	 to �

 Real �

A fairly hot ko of temperature � �#�� If White wins she earns the chance to pick up an extra �
stones� There is a small range between temperature � and � �#� where this is not a big enough
threat to be answered� The kinked mast in the downhat graph of node 	�� is also interesting�

������ Figures �� to ��
 Real �

A splendid example showing how complicated seemingly simple endgames can be� Who would have
predicted the zigzag sca
old$

�����	 Figure ��
 Real 


A frequently occuring type of endgame� where the ko plays only a minor role� One of the main lines
ends in a one point ko �ght�

�����
 Figures �� to �	
 Real ��

A hot ko �ght that resolves into several interesting low�temperature positions in nodes 	���� and
	�������

������ Figures �
 to ���
 Real �� and ��

If Black cuts in Real 		� White can opt for peace or �ght the ko� Real 	� is similar� with an extra
outside liberty for White�
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������ Figure ���
 Chitoku�s Ko

If White is komaster here� the game reduces to a number� White will capture a stone at an appro�
priate time and Black will respond� If Black is komaster� it is still a one�sided sente situation for
White� but at temperatures below 	 Black will �ght the ko to gain two points�

������� Figures ��� to ���
 Cho�Yu Ko

Yet another small example with very interesting thermographs�

���� Figures ��� to ���
 �� Points Without Capturing�

This is a classical position which appears in every rulebook� A detailed discussion is beyond the
scope of this paper�
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