Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

CMPUT 657

Preview -What's Next in Combinatorial Games

Types of Combinatorial Games

Preview - What's Next in Combinatorial Games

What's Next? Program for Next Few Weeks

CMPUT 657

Preview -What's Next in Combinatorial Games

- Types of games some classifications
- Impartial games introduction (Example Nim)
- Impartial games algorithms, MEX rule, Lemoine and Viennot's algorithm, Sprouts and Cram results
- How to play sums of games; incentives of moves
- All-small games (Example Clobber)
- Temperature and thermographs
- Temperature-based algorithms

CMPUT 65

Preview -What's Next ir Combinatorial Games

Types of Combinatorial Games

Review - Combinatorial Games

CMPUT 657

Preview -What's Next ir Combinatorial Games

- $\bullet \ G = \{G^L | G^R\}$
- A game is given by sets of left and right options
- Recursively, each option is again a game
- Can build a whole theory from this one definition
- What games are there?
- Many ways to classify games
- Review what we have so far, then introduce more types

Types of Games - Finite vs Infinite

CMPUT 657

Preview -What's Next ir Combinatorial Games

Types of Combinatorial Games

Finite vs infinite games

- We mostly ignore infinite games
- Example of an infinite game:

•
$$G = \{G_1|\}$$

•
$$G_1 = \{G_2|\}$$

•
$$G_2 = \{G_3\}$$

•
$$G_3 = \{G_4|\}$$

- ..
- Infinitely many moves for Left

Types of Games - Loopy vs Loop-free

CMPUT 657

Preview -What's Next ir Combinatorial Games

Types of Combinatorial Games

Games with loops ("loopy" games) vs loop-free games

- We mostly ignore games with loops
- Examples of loopy games
- $G = \{G|0\}$
 - Left can play back to the same position here
 - Right can break out of the loop, move to 0
- $G = \{G|G\}$ this one never ends...
- $G = \{1|H\}, H = \{G|-1\}$
 - This is like a "ko" situation in Go
 - Players can move back and forth between G and H

More Classification

CMPUT 657

Preview -What's Next in Combinatoria Games

- From now, focus on finite, loop-free games
- Can classify them further
- Next step: numbers vs not-numbers
- Which games are (finite) numbers?

Games that are Integers

CMPUT 657

Preview -What's Next ir Combinatoria Games

Types of Combinatorial Games

- So far: integers = free moves for one player
- $\bullet \ 0 = \{ \, | \, \}, \, 1 = \{ 0 \, | \, \}, \, -1 = \{ \, | \, 0 \}$
- Recursive definition of integers:

$$n+1 = \{n \mid \}$$

- $(n+1) = \{ \mid -n \}$

 From having n + 1 free moves, player can "use up" one move and have n moves left

Fractions

CMPUT 657

Preview -What's Next in Combinatoria Games

- Fractions: other games behave like fractions
- In finite games, we can only construct fractions where the denominator is a power of 2
- "Dyadic" fractions of the form $\frac{n}{2^m}$ for integer n, m

Fractions Example

CMPUT 657

- Example: the game 0|1
- Claim: 0|1 "behaves like" the number 1/2
- Claim: 0|1+0|1=1
- Let's do the proof play the difference game 0|1+0|1-1
- If this is a second player win, then:
- 0|1+0|1-1=0
- 0|1+0|1=1

Fractions Examples

CMPUT 65

Preview -What's Next ii Combinatoria Games

- Definition: 0|1 = 1/2
- "Average" advantage = 1/2 move for Left
- If we have 2 copies of this game, Left gets exactly 1 more move than Right, 0|1 + 0|1 = 1
- If we have 1000 copies of this game, Left gets exactly 500 more moves than Right, etc.
- In finite games, all fractions are "dyadic": they have denominator that is a power of 2.
- Examples: 1/2, 3/4, -5/16, ...

- Theorem (Siegel Th. 3.6):
- Let $n \ge 1$ and m odd. Then

$$\frac{m}{2^n} = \{\frac{m-1}{2^n} | \frac{m+1}{2^n} \}$$

- Examples:
- $5/8 = \{4/8 \,|\, 6/8\} = \{1/2 \,|\, 3/4\}$
- $3/4 = \{2/4 \mid 4/4\} = \{1/2 \mid 1\}$
- $1/2 = \{0/2 \mid 2/2\} = \{0 \mid 1\}$
- $\bullet \ -5/16 = \{-6/16 \, | \ -4/16\} = \{-3/8 \, | \ -1/4\}$

Numbers and Outcome Classes

CMPUT 657

Preview -What's Next in Combinatoria Games

- All positive numbers: L-positions, Left wins
- All negative numbers: R-positions, Right wins
- 0: \mathcal{P} -position, second player wins
- No numbers are \mathcal{N} -positions (no first player wins)

More Classification - Games that are not Numbers

CMPUT 657

Preview -What's Next ir Combinatorial

- Impartial games, Nimbers
- All-small games, infinitesimals
- Hot games

Impartial Games

CMPUT 657

Preview -What's Next ir Combinatorial Games

- Impartial games are a special type of combinatorial games
- Both players always have the same options
- Example: Nim heap with n tokens, *n
- Impartial games have their own specialized algorithms
- We'll talk about them soon
- Theorem: all finite impartial games are equal to some nim heap
- Opposite of impartial: partizan games
- Partizan: players may have different options

Impartial Games and Outcome Classes

CMPUT 657

Preview -What's Next in Combinatoria Games

- No L-positions
- $\bullet \ \ \text{No} \ \mathcal{R}\text{-positions}$
- \mathcal{P} -position: *0 = 0
- All others are \mathcal{N} -positions (first player wins)

Infinitesimals

CMPUT 657

Preview -What's Next ir Combinatoria Games

Types of Combinatorial Games

- Game G such that $-\epsilon < G < \epsilon$ for any number $\epsilon > 0$
- Examples so far: 0, *, Nimbers *n
- More examples: $up = \uparrow = 0 | *, down = \downarrow = * | 0$
- Try to prove: \downarrow < 0 < \uparrow
- Also true: $-\epsilon < \downarrow$ and $\uparrow < \epsilon$
- Examples: tiny and miny: for integer n, $+_n = 0||0| n$, $-_n = -(+_n) = n|0||0$

Future lecture: definition of infinitesimals by using "Leftscore" and "Rightscore"

Infinitesimals (2)

CMPUT 657

Preview -What's Next ir Combinatoria Games

- Infinitesimals occur frequently in games such as Amazons, cooled Go (see later).
- Tinies and minies correspond to threats
- Threat: From tiny 0ll0l-n, miny nl0ll0:
 - Move to n|0 or 0|-n threatens some (large) profit, n or -n, with the next move
 - Usually, opponent will reply to the threat and move to 0
- Outcome classes of infinitesimals: all four, e.g. ↑, ↓, 0, *

All-Small Games

CMPUT 657

Preview -What's Next in Combinatoria Games

- Clobber is an all-small partizan game -
- All values are infinitesimals
- Outcome classes: all four, e.g. ↑, ↓, 0, *

Hot Games

CMPUT 657

Preview -What's Next in Combinatorial Games

- Hot game: first player can earn extra moves by playing
- Moves in such games are more valuable than moves in infinitesimals, or in numbers
- \bullet Examples: $\{1|0\},\{2|-2\},\{5|-2\},\{-1|-6\},\{15|12\}$
- In all these examples, Left moves to a larger number than Right
- There are many other, more complex hot games
- Outcome classes: all except P (0 is a number, not hot)

Preview: Types of Games and Temperature

CMPUT 657

Preview -What's Next ir Combinatoria Games

- Soon we will talk about the temperature of a game G
- A single number t(G)
- Roughly: how many points (= free moves) would we pay for the right to go first?
- Temperature is closely related to the type of game
 - Hot game: t(G) > 0
 - Most infinitesimals: t(G) = 0
 - Non-integer numbers (fractions): −1 < t(G) < 0
 - Integers: t(G) = -1

Summary and Outlook

CMPUT 657

Preview -What's Next ii Combinatoria Games

- Covered the most important types of games
- For many specialized types, not all four outcome classes can happen
- Several of these types allow specialized algorithms
- We can analyze sumes of those games more efficiently
- Hard problem: play sums of hot games (or a mix of hot and other games)