Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

CMPUT 657

Approximation Algorithms for Combinatorial Games

Approximation Algorithms

CMPUT 65

- Goal of approximation algorithms: play sums well
- Use when exact methods are too slow
- Main approach: simplify subgames
- Biggest simplification: reduce information about game to single number = temperature
- Other possible approaches: make game tree smaller (e.g. cooling, selective search)
- If even computing temperature is too hard: approximate temperature

Mean, Temperature and Thermograph

CMPUT 65

- What are mean and temperature of a game?
- How to use temperature of games?
- Simple strategy: play in hottest subgame
- What are thermographs?
- Other sum game strategies: Sentestrat, Thermostrat better in theory, not in practice
- Better in practice: combine global alphabeta search with local analysis based on temperature (Müller and Li 2004)
- We study temperature first, then come back to algorithms later

Two main questions of CGT

CMPUT 657

Approximation Algorithms for Combinatorial Games

Two main questions about a game:

- Who is ahead, and by how much?
 - Exact answer: value (a game in canonical form, often complicated)
 - New, approximate but simpler answer: mean (a rational number)
- 2 How big is the next move?
 - Exact answer: incentive

 (a game in canonical form, often complicated)
 - New, approximate but simpler answer: temperature (a rational number)
 - Thermograph (TG): a data structure to compute mean and temperature efficiently

Review: Leftscore and Rightscore

CMPUT 657

- Minimax scores of a game, assuming we stop playing at integers
- Leftscore: Score if Left plays first
- Rightscore: Score if Right plays first
- Shorter notation:
 - LS(G) = Leftscore(G)
 - RS(G) = Rightscore(G)
- We can compute LS, RS for a sum by (global) minimax search
- Much faster: just compute LS, RS of a single subgame by (local) minimax
- The difference LS RS tells us something about the value of moving first

LS and RS - Sums vs. Subgames

CMPUT 657

- $G = G_1 + ... + G_n$
- If each subgame is reasonably small:
- Can compute $LS(G_i)$, $RS(G_i)$ for each subgame (relatively) quickly
 - However, this is **not** enough information to compute LS(G) and RS(G)
- We can use LS(G_i) RS(G_i) for approximating move value
- It is useful for understanding sums of hot games better, without adding them up
- Temperature is better than LS-RS

Example: LS and RS for Subgames vs Sum

CMPUT 65

•
$$G = G_1 + G_2 = \{2|0\} + \{5|4\}$$

•
$$LS(G_1) = 2$$
, $RS(G_1) = 0$

•
$$LS(G_2) = 5$$
, $RS(G_2) = 4$

- What is LS(G) and RS(G)?
- Not 7 and 4!
- LS(G) = 6, RS(G) = 5 (from minimax play of G)
- $7 = LS(G_1) + LS(G_2)$ is a valid upper bound for LS(G)
- $4 = RS(G_1) + RS(G_2)$ is a valid lower bound for RS(G)
- Sometimes, such bounds are enough
- Bounds get weaker the more subgames we add

Mean

CMPUT 65

- First question: how good is a game G?
- Just G itself, without playing any moves
- Answer: Mean, written m(G) or sometimes $\mu(G)$
- What is the mean?
- Different ways to define it, same result
- Intuition: "average expected result" of adding G to your sum
 - Example: play sum of many copies of the same game G
 - How much is it worth adding another copy of G?

Facts about Mean

CMPUT 65

- Fact: $LS(G) \ge m(G) \ge RS(G)$
- Notation: nG = G + ... + G = sum of n copies of game G
- Theorem: Difference LS(nG) RS(nG) stays bounded
 - This is true no matter how large *n* gets
 - See proof of Theorem 5.17 in Siegel
- Consequence: First definition of mean
 - m(G) is the limit of LS(nG)/n ...
 - ...as n goes to infinity
- Second definition (later, much better in practice): use the thermograph

Examples for Mean

CMPUT 657

- Just examples no proof here.
- m(4) = 4
- m(4|-4)=0
- m(6|-4)=1
- m(4||-4|-10) = -3/2
- m(4||-4|-20) = -4
- Sometimes we can "see" the mean by playing several copies of a game (do examples)

Main Property of Mean: Means Add

CMPUT 657

Approximation Algorithms for Combinatorial Games

Theorem, e.g. (Siegel 3.26)

$$m(G+H)=m(G)+m(H)$$

- Intuition/Example:
- You have about 3 points advantage in G
- You have about 4 points advantage in H
- You have about 7 points advantage in G + H

Temperature

CMPUT 657

- Each game has a temperature a rational number
- Idea: measure how much making a move is worth to the players
- Two ways to define it: by tax, or by using coupons
- We study tax first, coupons later

Temperature - Example

CMPUT 657

- Compare G = 1|-1 and H = 10|-10
- Clearly, playing in H is more valuable
- Whoever goes first gets 10 extra moves in H, only one in G
- We can use incentives to prove that: $H^L H > G^L G$
- However, incentives are games, can be complicated
- Temperatures are an easier way, "often" correct
- Idea: find out roughly how many extra moves does a move gain for the first player?
- Here, temperature of G is 1, but temperature of H is 10

Defining Temperature by Tax for Games

CMPUT 657

- Introduce a tax t on each move:
 - -t for Left, +t for Right
- Game G changes to taxed game G_t
- At what tax rate t will players stop playing a game?
 That tax rate is the temperature of the game
- Principle:
 - Stop taxing at smallest *t* where *G_t* is "infinitesimally close" to a number (see next slide)
 - What does it mean?
 - Answer: $LS(G_t) = RS(G_t)$

CMPUT 65

- What exactly is an infinitesimal?
- Answer (Siegel Proposition 4.3):
- Any game G for which LS(G) = RS(G) = 0
- Examples of infinitesimals:

•
$$* = \{0|0\}$$

- 0
- Any clobber position
- Any nim value, e.g. *5
- All tinies and minies: $+_n = 0||0| n$, $-_n = n|0||0$
- Fact: if G is an infinitesimal, and $\epsilon > 0$ a number, then $-\epsilon < G < \epsilon$
- G and H are called infinitesimally close iff G H is an infinitesimal

Temperature Example

CMPUT 657

- Game G = 1 | − 1
- Both players are eager to play in G, get an extra move
- New games G_t : pay a tax t on each move
 - \bullet -t for Left
 - +*t* for Right
 - stop when tax makes games "almost a number"
- | 1 t | 1 + t
- At t = 1/2, the game becomes 1/2 | 1/2 = 1/2 + *.
- Answer: $LS(G_t) = RS(G_t) = 1/2$
- Therefore, temperature t(G) = t(1|-1) = 1/2

Another Temperature Example

CMPUT 657

- Game G = 10|-2
- Temperature t(10|-2) = 6.
- Let's work out why.

Temperature - Discussion

CMPUT 657

- Temperature t(G): measures urgency of move in G
- Higher temperature usually means more urgent to play
- Not a strict ordering
 - In some sumgames, playing in a lower temperature subgame is better
 - Why? We'll discuss details later, but it has to do with getting more good moves than the opponent
- Temperature is very often a good measure of urgency
- In some sense, it is the best possible single number for ordering moves by urgency

More Examples for Temperature

CMPUT 657

- Temperature t(4) = -1 (Why?? See next slide)
- t(4|-4) = 4
- $t(4|\{-4|-10\}) = 11/2$
- $t(4|\{-4|-20\}) = 8$
- $t(4|\{-4|-100\}) = 8$
- (work out some cases in detail, using tax)

Temperature of an Integer

CMPUT 657

- Temperature t(4) = -1
- Why??
- $G = 4 = \{3|\}$
- Left loses one point from playing from 4 to 3
- With a positive tax, Left would lose even more
 - Example: At t = 1/2
 - Left option in G_t to 3 1/2 = 2.5 (worse than 3)
- Left loses something even with a negative tax
 - Example: t = -1/2
 - Left option to 3 (-1/2) = 3.5, still worse than the original game 4
- Finally, with a negative tax of t = -1, Left becomes indifferent, no loss from playing
 - Example: t = -1, Left option to 3 (-1) = 4

Temperature of Sums

CMPUT 657

Approximation Algorithms for Combinatorial Games

- Theorem (Siegel 5.18): $t(a+b) \le max(t(a), t(b))$
- Example: $a=4 \mid -4, b=5 \mid -5, c=5 \mid |-4 \mid -6$
- Temperatures of single games:

$$t(a) = 4$$

$$t(b) = 5$$

$$t(c) = 5$$

Temperature of sum of two games:

$$t(a + b) = 5$$

$$t(b+c)=1$$

$$t(b+b)=0$$

Switch (Review + Mean + Temperature)

CMPUT 657

- Game of the form a|b, $a \ge b$
- Each player has exactly one move
- Then game becomes a number

•
$$m(a|b) = (a+b)/2$$

•
$$t(a|b) = (a-b)/2$$

• Example:
$$G = 10|-3$$

•
$$m(G) = 7/2$$

•
$$t(G) = 13/2$$

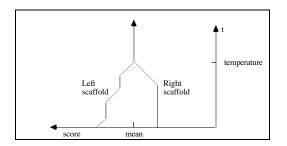
How to Compute Means and Temperatures?

CMPUT 657

- Given a (maybe complicated) game *G*
- How to compute its mean and temperature?
- Trying out many tax rates is not practical
- We would like:
 - A recursive rule for $G = \{G^{\mathcal{L}} | G^{\mathcal{R}}\}$
 - Given: means, temperatures of all Left and Right options $G^{\mathcal{L}}$, $G^{\mathcal{R}}$
 - Compute the mean and temperature of G
 - Problem: this is impossible in general
 - Not enough information...
- Solution: compute thermographs instead
 - They do contain enough information...

Thermograph

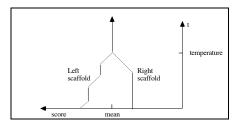
CMPUT 657



- Temperature t on the y-axis
- Thermograph = two functions LS(t) and RS(t)
 - They are the LS and RS of G_t
- Note: the graph is not shown like your usual function graph. t is the variable, and Left is positive

Thermograph (TG) Components

CMPUT 657



- Consists of left and right scaffold, LS(t) and RS(t)
- Scaffolds first meet at value m(G) and at t = t(G), the mean and temperature of game G
- Left and right scaffolds = mast for all $t \ge t(G)$
- The mast starts at coordinate (m(G), t(G))

Thermograph - Motivation

CMPUT 657

- Big improvement in terms of representation:
 - A game (and its canonical form) may be very complex
 - Temperature and mean are only two numbers, not enough information
 - Thermograph has a "just right" amount of information
- Thermograph: describes characteristics of a game at an intermediate level of complexity
- Idea: simplify game by tax t on each move, plot LS(t) and RS(t) until they coincide
- Stop when the taxed game is "close" to a number

Tax and Thermograph Fundamentals

CMPUT 65

- The lowest tax rate is -1
- Negative tax means you actually get paid for making a move!
- All thermographs start at t = -1
- Thermographs of integers are vertical *masts*, starting at t = -1 and infinitely high
- Thermographs of all other games are constructed recursively from the thermographs of its options
- Remark: all you really need is the thermograph of 0.
 You can construct TG for all other integers from the (one) option using the simplest number rule (see later slide)

Thermograph Base Case: Integers

CMPUT 657

- Thermograph of integer n is a vertical mast: LS(t) = RS(t) = n for all $t \ge -1$
- Used to construct other games

Constructing a Thermograph

CMPUT 657

- Example:
 - http://senseis.xmp.net/?Thermograph
- Recursive construction:
- Base case: TG of integers are masts
- TG constructed from TG of all left and right options
- Tax right scaffold of each left option by t
 - Tilt to right: diagonal-left lines become vertical, vertical become diagonal-right
- Tax left scaffold of each right option by -t
 - Tilt to left: diagonal-right lines become vertical, vertical become diagonal-left

Constructing a Thermograph, Part 2

CMPUT 657

- Example: http://senseis.xmp.net/?Thermograph
- Compute a single scaffold for each player
- How? Take the max (min) over all left (right) options
- Find the intersection of the taxed left, right scaffolds
- Cut off scaffolds there, replace by vertical mast
- Let's do some examples

Sub-Zero Thermographs

CMPUT 657

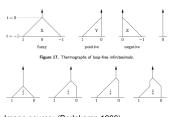
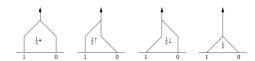


Image source: (Berlekamp 1996)

- In older texts, thermographs are defined only for t ≥ 0.
- For computation, it is better to always start from t = −1
- "Sub-zero thermography" (Berlekamp 1996, Section 2.5)
- Numbers are exactly the games that have a temperature below 0
- Integers are exactly the games that have temperature -1
- My C++ implementation of sub-zero thermography is available for this course

Sub-Zero Thermograph Examples

CMPUT 657



- "Number-ish" games:
 - number plus non-zero infinitesimal
 - temperature 0
 - non-straight thermograph below 0

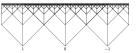
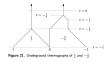


Figure 20. The foundations of number-ish thermographs.



Problems of Old-style (start from zero) Thermography

CMPUT 65

- Remember the definition of temperature by tax
- We magically needed to stop taxing when the game became infinitesimally close to a number
- How do we know when that happens?
- In practice, determining this is only feasible for simple games, and with much manual case-by-case analysis
- This is only practical for small games that are already in canonical form
- But we do not want to compute canonical forms all the time!
- So how can we compute thermographs in general, bottom-up, for any game (number or other)?

Advantage of Subzero Thermography

CMPUT 657

- With subzero thermographs all the problems go away
- We can construct everything bottom-up in a uniform way
- Numbers are dealt with automatically and correctly at some t < 0
- Example: $5/8 = \{1/2 \mid 3/4\}$ (do on whiteboard)
- But wait there is still one thing missing
- In fact it was even missing for "classical" thermography

Thermographs and Simplest Number Rule

CMPUT 657

- We defined thermograph masts using the intersection point of taxed scaffolds
- What if they never intersect?
- Example: zugzwang games, e.g. {-5|3}
 (do example on whiteboard)
- Solution: use the simplest number rule
- If the taxed scaffolds of G^L , G^R do not intersect, then:
 - $G = \text{simplest number between } RS(G^L) \text{ and } LS(G^R)$
 - Simplest = smallest birthday (it is unique)
 - The thermograph of G is the thermograph of this number
- Example: $G = \{-5 \mid 3\}$
 - G = 0, thermograph is mast at 0

Sente and Gote

CMPUT 657

- Sente and Gote are terms from the game of Go
- Sente: the initiative
 - To keep sente: the opponent must answer our move, or loses something
- Gote: losing the initiative, opposite of sente
 - Playing a move that the opponent can ignore

Gote and Sente Examples in Go

CMPUT 65

Approximation Algorithms for Combinatorial Games

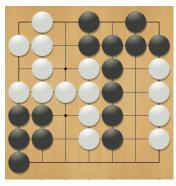
Note: all stones except the two white ones on the right are assumed safe here

Note: all stones except the four white ones on the right are assumed safe here

- Gote move for both players
 - G = 4|0
 - mean 2, temperature 2
 - LeftScore 4
 - RightScore 0
- Sente move for White, Gote for Black
 - G = 9||8|0
 - mean 8, temperature 1
 - LeftScore 9
 - RightScore 8
 - Move to 8|0 raises temperature to 4
 - Usually, Black will answer, move to 8

Double Sente Example

CMPUT 657



- Double sente
- G = 14|2 ||| -2||-14|-16
- mean -1/4, temperature 8 1/4
- LeftScore 2
- RightScore -2
- both sides have a big threat
- If opponent answers: free profit (2 vs -2)

Examples - Sente and Gote Thermographs

CMPUT 657

- Three examples:
 - Gote
 - One-sided sente
 - Double sente
- All examples will have LS = 4, RS = 0.
- They all appear the same to a local minimax search
- But they are very different games when played in a sum
- They have very different TG
- Let's draw them for practice

Gote

CMPUT 657

- Temperature drops after move (or move sequence)
- Example: 4 | 0
- LS = 4, RS = 0
- mean = 2, temperature = 2

One-sided Sente

CMPUT 657

- One side has big threat, can usually force the opponent to answer
- Game: 22 | 4 | | 0
- LS = 4, RS = 0
- mean = 4, temperature = 4
- Reverse sente: take away opponent's sente move
 - Right's move to 0 in the example is a reverse sente

Double Sente

CMPUT 657

- Game: 13|4 || 0|-11
- LS = 4, RS = 0
- Mean = 3/2, Temperature = 7
- With large threats, temperature can become arbitrarily high: G = {{100002|4} | {0|-100000}}
- Mean = 3/2, Temperature = 100003/2

Why Temperature is Important

CMPUT 65

- Assume we want to play by local minimax searches only
- Compute LS(G), RS(G) for each subgame G
- Two minimax searches
- Then, play the subgame where the difference LS(G) -RS(G) is largest
- We call this greedy play
- It only considers each subgame separately, then chooses greedily
- It ignores the fact that we're playing a sum
- If we keep sente, we also get the next-biggest move

Why Greedy Play can be Bad

CMPUT 657

• Assume
$$G = G_1 + G_2$$
, Left to play $G_1 = 4|0$, $G_2 = 10|-3||-5$

- Minimax G₁ only: LS = 4, RS = 0, difference = 4
- Minimax G₂ only: LS = -3, RS = -5, difference = 2
- A "locally greedy" left player would play in G_1 first, and let right play in G_2 .
 - Final score of playing $G_1 + G_2$ this way:

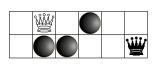
•
$$4-5=-1$$

- Globally optimal play:
 - take the sente move in G₂ first, right should answer
 - Left still gets to play first in G₁
 - final score 4-3 = **+1**

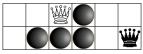
Why even Locally Greedy Play can be Bad

CMPUT 65

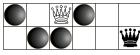
Approximation Algorithms for Combinatorial Games



G



$$G^{R1}=0$$



$$G^{R2} = 1||-2|-4$$

•
$$G = \{2 | || 0, 1 || -2 |-4 \},$$

- Black's only move is to 4-2=2
- White has two good moves

• Move to
$$G^{R1} = 0$$
, so $LS(G^{R1}) = 0$

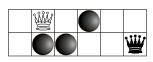
• Move to
$$G^{R2} = 1||-2|-4$$
, $LS(G^{R2}) = 1$

•
$$RS(G) = min(0,1) = 0$$

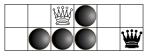
Why even Locally Greedy Play can be Bad

CMPUT 65

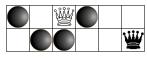
Approximation Algorithms for Combinatorial Games



G



$$G^{R1}=0$$



$$G^{R2} = 1||-2|-4$$

- The greedy move to 0 is only good at low temperatures
- With other games around, this move loses "on average" one point:

•
$$m(0) = 0$$

•
$$m(\{1||-2|-4\}) = -1$$

- At higher t, better to keep the option to invade open
- At low t, go for cash locally

Summary

CMPUT 65

- Mean and temperature approximately describe
 - The value of a (sub)game (mean)
 - The urgency of moving in it (temperature)
- Thermographs contain enough information to compute mean and temperature recursively from the options
- Can be computed much more efficiently than canonical form
 - size stays bounded in practice (rare to have more than 10 corner points in a graph)
- Very useful tool, especially with subzero thermographs
- Will be used in several algorithms
- Approximation algorithms also exist (TDS, TDS+ exist in both exact and approximate versions)