Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Fall 2025

Temperature Discovery Search - Heuristic Search

- Motivation: solve sum games with complex subgames
- TDS so far: exact solutions for mean and temperature
 - Complete search
 - ullet Small-enough δ
- Next: heuristic search
- Refinements, TDS+
- Experiments

Heuristic TDS - Motivation

- Exact searches do not scale well to complex subgames
- Temperatures can have large denominators, e.g. t = k/32 would need $\delta = 1/64$
- Temperatures can get hot, e.g. with t = 10, $\delta = 1/64$ the search depth becomes over $11 \times 64 = 704$
 - 11 because playing down to t = -1
 - Game can be even longer if we need to play out an integer game using several -1 coupons at the end

Heuristic TDS

CMPUT 657

Approach

- Search with larger δ
- Guess a lower initial temperature for the stack $C(t, \delta)$
- Limit search depth and/or time
- Use heuristic evaluation in non-terminal leaf nodes of search
- Find some temperature approximately in $[t(G),\hat{t}(G,p)]$,
 - This is good enough to play well: remember discussion of one-sided sente
 - Do not need to try to lower t estimate to t(G)

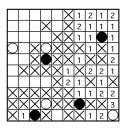
Consequences

- Result is approximate, not exact
- Several re-searches may become necessary
- Several Types of result

Heuristic Evaluation

- Exact evaluation if board is played out completely:
 - Score = difference in coupons taken
- Exact evaluation if game engine recognizes integers (e.g. territories in Amazons):
 - Score = difference in coupons taken + board evaluation (integer)
- Heuristic Evaluation in non-end position:
 - Heuristic board evaluation
 - + coupons taken
 - $\bullet \, \pm \, \text{minimax}$ value of remaining stack (depending on toPlay)
- Can also be used to speed up alphabeta: iterative deepening, move ordering
- In Amazons: use min-distance heuristic

Min-distance Heuristic



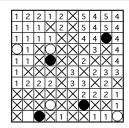


Figure 20: Min-distance function for Black and White

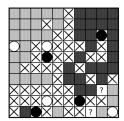
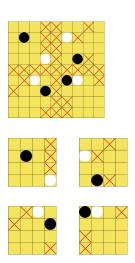


Figure 21: Evaluation using min-distance

Heuristic TDS - results and Re-search

- Heuristic Search G + C
- Result PV $[m_1, \ldots, m_k]$
- Fail high: All m_i are coupon moves. Re-search with lower t in $C(t, \delta)$
- Fail low: m_1 is in G. Re-search with higher t in $C(t, \delta)$
- Regular: PV starts with one or more moves in C, but has at least one move in G
- Questions:
 - How to choose initial t?
 - How to choose depth, time limits?
 - How to choose δ ?

Amazons example

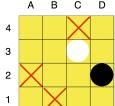


- Sum of four subgames
- Here, each subgame is 4x4, 1 queen each, 3 random obstacles
- We have a random subgame generator
- Can vary number of subgames, subgame size, obstacles, queens

Search Example

CMPUT 657

АВС

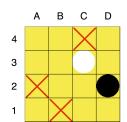


- 4 × 4 Amazons position G
- Coupon stack C with t = 3, $\delta = 1$, no negative coupons
- Minimax search of G + C
- Assume Black goes first

Search Example - Principal Variation

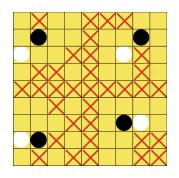
CMPUT 657

+



- Principal variation (PV) in alphabeta = sequence of strongest moves by both players
- C(n) means: take coupon of value n
- In this example, start of PV:
 - B: C(3)
 - W: C3 C2 x C3
 - 3 B: C(2)
 - W: C(1)

Hotstrat-TDS Implementation Issues



- Which move to play?
- For hottest subgame: search $G + C(t, \delta)$, set t to estimated temperature, force the first move to be in G, play first move from PV
- Cache and re-use subgame temperatures (only 1 or 2 subgames change)
- Which coupon stack, which time settings to use?
- Get rough idea of t first, then refine if time
- End of game, t = -1: use global search to avoid zugzwangs

TDS Experiments

- Verify exact mean and temperature by TDS
- **2** Measure approximation performance with larger δ
- Evaluate depth-limited heuristic TDS in Amazons
- Games against full-board alphabeta

Verify exact mean and temperature

- n point rooms: 1 black amazon, 1 white amazon, n-2 empty
- Built complete database for n = 4, 5, 6, with over 4000 distinct positions
- Solved them using retrograde analysis, thermographs
- Ran TDS on all of them. t and δ set as in paper
- All results agree with DB

Measure approximation performance with larger δ

- Same test set
- Vary δ from 1, 1/2, ..., down to value needed in worst-case by theory
- Measure average and maximum errors for mean and temperature
- Very good approximations even for $\delta = 1/2!$

Average Approximation Error with larger δ

$\delta \setminus \text{Size}$	4	5	6
$\delta = 1$	0.155 / 0	0.334 / 0.086	0.306 / 0.150
$\delta = 1/2$	0 / 0	0.0029 / 0.024	0.0099 / 0.020
$\delta = 1/4$	0 / 0	0.0014 / 0	0.0016 / 0.005
$\delta = 1/8$	_	0 / 0	0.0008 / 0
$\delta = 1/16$	_	_	0 / 0

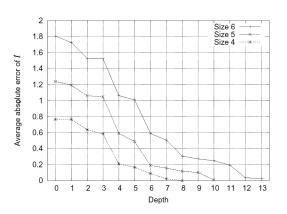
Table 1: Average absolute errors of t/μ

Maximum Approximation Error with larger δ

$\delta \setminus Size$		4	5	6
$\delta = 1$	1	/ 0	1.5 / 0.75	1.5 / 0.75
$\delta = 1/2$	0	/ 0	0.25 / 0.25	0.375 / 0.25
$\delta = 1/4$	0	/ 0	0.125 / 0	0.125 / 0.125
$\delta = 1/8$	_		0 / 0	0.0625 / 0
$\delta = 1/16$	_		_	0 / 0

Table 2: Maximum errors of t/μ

Evaluate depth-limited heuristic TDS in Amazons



- TDS with increasing depth limit
- Heuristic evaluation in leaf nodes
- Error decreases to 0

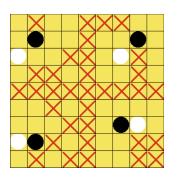
Test Games on sum games

- Players
 - Hotstrat-TDS: see next slide
 - Arrow Amazons program doing full board alphabeta minimax search
 - For 4x4 subgames only: Hotstrat-TDS version using database with exact temperatures
- Sum game:
- Subgames size 4×4 , 5×5 , 6×6
- Queens and arrows in random locations
- Number of subgames: 2, 4, 6

Classic Full-Board Approaches

- Alpha-beta (Arrow program, tested)
- Monte Carlo Tree Search (Arrow2 program, not yet tested)
- Full board searches do not exploit any subgame structure
- Alphabeta scales badly with full-board branching factor, full-board search depth
- Best case $b^{d/2}$ for constant b, d
- Of course b, d not constant here, but still they are much larger than for one subgame
- I suspect Monte Carlo will behave similarly to alphabeta, maybe a bit better? Project idea

Sum Game Player: Hotstrat-TDS



- Hotstrat: play in subgame with highest temperature
- Hotstrat-TDS: estimate temperature of each subgame by TDS
- Example: 4 subgames
 - Top left: t=2
 - Top right: t=1
 - Bottom left: t=3
 - Bottom right: t=0
- Bottom left is hottest play there

Results

N	4×4	5×5	6×6
2	-1.7(2.5) 43%	$1.2(5.7)\ 55\%$	$7.8(10.2)\ 67\%$
4	$2.3(4.9)\ 57\%$	13.5(11.5)69%	41.2(18.3) 90%
_ 6	8.1(6.2)72%	32.5(15.3)88%	81.2(26.8)96%

Table 3: Game results depending on the number N and the size of the subgames. Each entry shows the mean score, the standard deviation of the score and the percentage of wins

- Advantage for Hotstrat-TDS grows quickly with both number and size of subgames
- Global search only reaches depth of 2 for larger games
- Local searches can go deeper
- Temperature-based play not perfect, but pretty good: even approximation is enough
- Advantage accumulates step by step over whole game

Summary of TDS

- Local search algorithm
- Discovers temperature by minimax search
- Exact version computes mean and temperatures
- Excellent approximation algorithm
- Hotstrat-TDS beats global alphabeta search
- Application to Amazons, future: Go

TDS+ (Zhang and Müller 2015)

- Series of five improvements to TDS
- Addresses some search inefficiencies
- Orders of magnitude improvements in speed
- Updated sum game results on much faster hardware

Search State

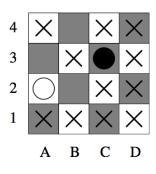
- Consider states in the search tree for G + C
- Search state in TDS:
- $S(g, c, \Delta, toPlay)$
 - g ... current game position, reached by some move sequence from G
 - c ... current remaining coupon stack
 - Δ ... aggregate score of coupons taken so far
 - toPlay ... color to play next

Search State and Moves

- Search state $S(g, c, \Delta, toPlay)$
- All moves change toPlay to opponent
- Move in g: changes g to g'
- New state $S(g', c, \Delta, opp)$
- Move in c: changes both c and Δ
- New state $S(g, c', \Delta', opp)$

Scaling Problems of TDS

CMPUT 657



- Very bad scaling with decreasing delta
- Bad scaling with increasing t_{max}
- Example from TDS paper

•
$$\mu(G) = \frac{3}{4}, t(G) = \frac{5}{4}$$

• δ required from theory: $\delta = \frac{1}{8}$

Example - Scaling with Delta

- PV for $\delta = 1/2$, $t_{max} = 2 + \delta$
- 9 ply search, fast
- Pretty good approximation to $t(G) = \frac{5}{4}$
- **1.** $C(\frac{5}{2})$ **2.** $C(\frac{4}{2})$
- 3. $C(\frac{3}{2})$ 4. A1–A2×B1
- **5.** $C(\frac{2}{2})$ **6.** $C(\frac{1}{2})$
- **7.** $C(\bar{0})$ **8.** $C(-\frac{1}{2})$
- 9. C2-B3×C2.

- Exact search, $\delta = 1/8$
- Deep 23-ply search
- Long sequences of coupons
- t_{max} estimate too high: many coupons at start
- **1.** $C(\frac{17}{8})$ **2.** $C(\frac{16}{8})$ **3.** $C(\frac{15}{8})$
- **4.** $C(\frac{14}{8})$ **5.** $C(\frac{13}{8})$ **6.** $C(\frac{12}{8})$
- 7. $C(\frac{11}{8})$ 8. A1-A2×B1 9. $C(\frac{10}{8})$
- **10.** $C(\frac{9}{8})$ **11.** $C(\frac{8}{8})$ **12.** $C(\frac{7}{8})$
- **13.** $C(\frac{6}{8})$ **14.** $C(\frac{5}{8})$ **15.** $C(\frac{4}{8})$
- **16.** $C(\frac{3}{8})$ **17.** $C(\frac{2}{8})$ **18.** $C(\frac{1}{8})$
- **19.** C(0) **20.** $C(-\frac{1}{8})$ **21.** $C(-\frac{2}{8})$
- **22.** $C(-\frac{3}{8})$ **23.** C2–B3×C2.

Simple Tree Search Model and TDS

- Fixed branching factor b, depth d
- Best case time complexity of $\alpha\beta$: $\Theta(b^{\lceil d/2 \rceil})$
- Compare $\alpha\beta$ search of G + C with $\alpha\beta$ search of G:
- b increases by one for the coupon move
- d increases massively:
 - By number of coupons taken before reaching terminal position in G
 - Can be about $(t_{max} + 1)/\delta$
 - Plus possibly several final coupons of value -1

Improving TDS

- Avoid long sequences of coupons
 - At the beginning of the search
 - After a temperature drop from a move in G
- Approach: fast pre-searches with larger δ
 - Quickly gain information about a game state
 - Set up t_{max} for the final, most expensive search as well as possible
- Algorithm-specific improvements
 - Better, specialized transposition table in $\alpha\beta$ search
 - Use properties of coupon stacks for finding more transpositions

Implementing Temperature Drops in Search

- Temperature drop from t to t' < t corresponds to taking long sequence of coupons
- We will have several such cases recognized in TDS+
- How to implement?
- We chose simplest way:
- Unbranched "search": take only coupons, forbid all moves in G until t = t'

Five Enhancements of TDS+

- E₁: Fast Pre-Searches With Decreasing Values of δ
- E₂: Avoid Search at Impossible Temperatures
- E₃: Generalized Transposition Table
- E₄: Recursive TDS
- E₅: Improved Handling of "Pseudo-terminal" Positions

E_1 : Fast Pre-Searches With Decreasing Values of δ

- Original TDS: $t_{max} = bound + \delta$
- Worst-case bound game-specific limit on max. temperature
 - Amazons, n empty squares: bound = n 1
- Temperature of most positions is much lower than worst-case bound
- Idea: search with a larger δ to quickly get a better t_{max} estimate

- Notation: Search $TDS(G, \delta, t_{max})$
- Returns t_{δ} , temperature estimate from search with δ -spaced coupons
- Pre-search algorithm:
- Search G+C repeatedly with decreasing $\delta=1,\frac{1}{2},\cdots,\frac{1}{2^n}$
- Set t_{max} using the t_{δ} estimate of previous search:
- $t_{max} = t_{\delta} + 2\delta$

2δ -Conjecture

- Empirical observation: estimated temperature returned from search with large δ never underestimates by much
- Approximate temperature computed for some δ :
- $t_{\delta} = TDS(G, \delta, t_{max})$
- 2δ -Conjecture: t(G) is upper bounded by $t(G) \leq t_{\delta} + 2\delta$
- This was always true in every TDS run we did, many thousands
- But maybe our test cases were too simple?
- I have no strong intuition whether conjecture is true or not

Benefits of Pre-search

- Choose lower, position-dependent t_{max}
- Fewer coupons in the final, most expensive search
- Ideal case: PV starts with single coupon, followed by a move in G
- Reduces search depth

E₂: Avoid Search at Impossible Temperatures

- Assume $\delta = 1/8$
- At negative t, coupon stack would be
 -1/8, -2/8, -3/8, -4/8, -5/8, -6/8, -7/8, -1, -1, ...
- Many of these t cannot happen in CGT, so searching them is useless.
- The only possible negative t are of form $-1/2^n$, so here: -1/8, -2/8 = -1/4, -4/8 = -1/2, -1, ...
- Similarly, if we know bound on birthday $b(G) \le n$, we can restrict set of t > 0 (next slide)
- As discussed before, we simply skip moves in G at those impossible t
- Amazons position G with n empty squares: $b(G) \le n$.
- Note: we can adjust birthday bound after each move!

- Game *G* born by day $n \in \mathbb{N}$
- $t(G) \in T_n$:
- $T_n = \{-\frac{1}{2^b}, 0, \frac{1}{2^b}, \frac{3}{2^b}, \dots, a + \frac{1}{2^b} | 0 \le a \le n 2, 0 \le b \le n 1\}$
- $\mu(G) \in M_n$:
- $M_n = \{0, \pm \frac{1}{2^b}, \pm \frac{3}{2^b}, \dots, \pm (a + \frac{1}{2^b}), \pm n | 0 \le a \le n 2, 0 \le b \le n 1\}$

E₃: Generalized Transposition Table

- original TDS: standard hash table for transpositions in $\alpha\beta$
- Hash function for coupon stacks "top down": top coupon has hashcode[0], 2nd coupon hashcode[1], etc.
- No re-use for re-search with new t_{max}
- Three improvements in TDS+
 - Better hashing for coupon stacks to allow re-use
 - Deal with *graph history interaction* issue (later)
 - Generalized entries in hash table

Better Hashing for Coupon Stacks

- Zobrist hashing (standard in game tree search)
- Table of hash codes for each point × state pair on board
- Code of board = XOR of all pointwise codes
- Zobrist hash for coupon stack:
 - Map each temperature t to a hash code h(t)
 - Hash code of stack c: XOR codes of all coupons C(t) with t > -1
 - Advantage: same G + C hashes to same code even when starting with different t_{max}
 - Search with different δ produces different codes
 - Can keep, re-use table between searches

Generalized Table Entries

- Full state $S(g, c, \Delta, \text{toPlay})$
- What is its minimax score?
- Δ + (search score for g + c with toPlay going first)
- Same search if only Δ is different only search once!
- Always store search results for S(g, c, 0, toPlay)
- Just remove Δ from table entries
- Update ∆ incrementally during search
- Add to table lookup score

Example

- G + C where $C = C_{-1}(4, 1)$
- Line 1: 1. C(4), 2. C(3), 3. play in G
- Assume this line has finished search
- The entry in table is for $S(G, C_{-1}(2, 1), Black)$
- The value $\Delta = 4 3 = 1$ is added in search node
- Now search G + C where $C = C_{-1}(2, 1)$
- We can lookup its value directly from table, no search!
- If this is some state in middle of other search, we add the new ∧ from that state

E₄: Recursive TDS

- E_1 was very good to lower t_{max} at the beginning of the search
- Can do the same after each move from G to G' (some option in G^L or G^R)
- Run a pre-search with large δ to get an idea of t(G')
- If temperature drop: skip search by forcing unbranched sequence of coupon moves
- This can skip many coupons in the main search
- Greatly reduce search depth
- In running example: PV had 14 coupons between first and second move in G
- We can skip most of them cheaply by pre-search

Summary so far

- Heuristic TDS excellent approximation for $\delta=1/2$ or smaller
- Only forward search method to compute means and temperatures that works for general games (including undetected numbers, zugzwangs,...)
- Clobbers global search in sums with many hot subgames
- TDS+ addresses some search inefficiencies in original TDS
- Main problem: avoid long sequences of coupons in search
- Discussed 4 enhancements
- Still to do: GHI, fifth enhancement, experimental results

E₅: Improved Handling of "Pseudo-terminal" Positions

- Graph history interaction (GHI) problem
- How can it happen in a loop-free game? (Surprise!)
- Remark on general solution
- Simple fix for GHI in TDS+

Graph History Interaction (GHI) Problem

- Problem: same position, different value
- Usually caused by positon repetition rules, e.g. in checkers, chess, Go
- Ko in Go: same position, is capture on a legal?
- Answer depends on history
- Was same position on path leading to state or not?

GHI in TDS

- Assume game G has no history dependency (e.g. Amazons)
- GHI can appear when searching G + C (!)

Pseudo-terminal Position (PTP)

- In search, how does play of G + C end?
- Normal terminal position
 - Value of G can be statically recognized
 - Example: game over, value 0
 - Example: game-specific recognition of integers
- Pseudo-terminal position (PTP)
 - Both players took a -1 coupon as their last move
 - Example: Zugzwang
 - PTP evaluated as 0 by simplicity rule of CGT

How does PTP cause GHI?

- End of game defined by successive -1 coupons
- We have path dependence!
- Example: Coupon stack $c_{-1} = C_{-1}(-1, \delta)$, only -1 coupons left
- play *G* + *c*_{−1}
- Assume there are moves Black a and White b, such that order of playing them does not matter
 - E.g. both fill their territory in Amazons
- Now we can get two sequences with 1. equal game position, 2. equal stack, but 3. different evaluation!

GHI Example

CMPUT 657

Play $G + c_{-1}$, Black goes first

Line 1: ends in PTP	Line 2: does not end in PTP
1. Black <i>a</i>	1. Black <i>C</i> (−1)
2. White <i>b</i>	2. White <i>b</i>
3. Black <i>C</i> (−1)	3. Black <i>a</i>
4. White <i>C</i> (-1)	4. White <i>C</i> (-1)

- Line 1: evaluated as 0 by simplicity rule
- Line 2: Play will continue
 - Might have any minimax score, not necessarily 0
 - Example: Amazons, other moves (e.g. on integers) may still exist for one or both players

Discussion

- Both sequences result in identical board positions G'
- Both sequences result in identical stack c₋₁
- There is a hidden loop here:
- A move from c_{-1} leads back to c_{-1} , since we have arbitrary many -1 coupons

Why was this Not a Problem in Original TDS?

- In TDS, transposition table only used very conservatively
- States reached after consecutive -1 coupons never stored or looked up in table
- In contrast, TDS+ uses tables in every search step, stores everything

General GHI Solution

- Kishimoto (PhD 2004) and me developed first efficient GHI solution
- Applied in Life and Death solver, and in proof that checkers is a draw (Schaeffer et al)
- Several algorithmic ideas to solve such games about as efficient as when no GHI present
- Not needed here, a much simpler fix suffices

GHI Fix for TDS+

- The only history dependence is from most recent moves being -1 coupons
- Just extend the state and store how many were taken
- State without handling GHI: S(g, c, toPlay)
- State with handling GHI: S(g, c, toPlay, n)
 - Where $n \in \{0, 1, 2\}$ is number of latest moves which were -1 coupons
 - Keep counter for *n* during search
 - Any non-coupon move resets the counter
 - States with n = 2 are terminal with value 0

GHI Example Revisited

- Play $G + c_{-1}$, Black goes first
- 1. Black a 2. White b 3. Black C(-1) 4. White C(-1)
 - Resulting state $S(G', c_{-1}, \Delta, Black, \mathbf{2})$
- 1. Black C(-1) 2. White b 3. Black a 4. White C(-1)
 - Resulting state $S(G', c_{-1}, \Delta, Black, 1)$
- Recognized as different
- Search is not stopped after line 2 because it no longer confuses it with PTP terminal state after line 1

Experiments

- Evaluate all 5 enhancements
- Define a standard test set
- Measure individual, and subsets of enhancements
- Measure scaling with time limit
- Measure scaling with smaller δ
- Measure approximation error as function of time limit
- Re-run sum game experiments

Enhancements and their Dependencies

- ullet E₁: Fast Pre-Searches With Decreasing Values of δ
- E₂: Avoid Search at Impossible Temperatures
- E₃: Generalized Transposition Table
- E₄: Recursive TDS: requires both E₁ and E₃
- E₅: Improved Handling of PTP States: requires E₃

Standard Test Set

- TDS paper: complete database with 4, 5, 6 squares (2, 3, 4 empty)
- This paper: subset sampled from complete database of 4 × 4 Amazons positions with one queen each
- 600 positions total, randomly sampled from each "layer":
 - 17 cases with two empty squares
 - 50 test cases each for 3 to 13 empty squares
 - 33 cases with 14 empty squares
- We know exact means, temperatures from database

Experiment: Coverage for selected subsets of TDS enhancements

CMPUT 657

Time	1s	2.5s	10s	25s	100s	250s
TDS	69	73	73	74	76	76
TDS ₁	78	88	100	107	116	116
TDS ₂	69	73	73	75	76	76
TDS ₃	73	76	85	95	117	117
TDS ₁₃₄	81	108	129	135	137	141
TDS ₃₅	73	76	86	96	117	117
TDS ₁₃	99	117	130	131	136	141
TDS ₂₃₅	73	77	91	102	117	117
TDS ₁₃₄₅	82	109	129	135	137	141
TDS ₁₂	78	89	100	108	116	116
TDS ₁₂₃₅	96	118	130	135	150	157
TDS ₁₂₃₄	83	111	133	136	153	157
TDS ₁₂₃₄₅	82	111	133	136	153	159

Table: Coverage (number solved) as function of time limit.

Discussion

- Experiment with exact search
- Old TDS scales poorly with time limit
- TDS₁ solves many more cases already
- TDS₁ scaling at higher time limits is not good
- TDS₂: E₂ alone helps little
- TDS₁₃₄₅ vs TDS₁₂₃₄₅: E₂ helps a lot for more complex test cases, at higher time limits

Discussion (2)

- E₃ by itself is similar to E₁
- Complementary strengths: see TDS₁₃ vs TDS₁, TDS₃
- Adding E₄: strong improvement over TDS₃ but not over TDS₁₃
- TDS₁₂₃₄₅ better vs TDS₁₂₃₅ for high temperature test cases
- E₅: improvement, but below 1% in runtime

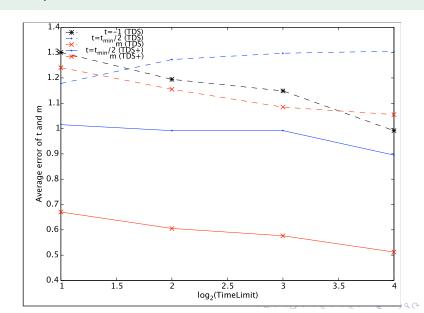
Experiment: approximate TDS vs approximate TDS+

CMPUT 657

$\delta = 1$	1s	3s	10s	30s	100s
TDS	85	165	188	214	246
TDS+	178	195	240	261	305
$\delta = 1/2$	1s	3s	10s	30s	100s
TDS	84	143	165	180	197
TDS+	156	171	190	232	257
$\delta = 1/4$	10	20	100	00-	400
0 - 1/4	1s	3s	10s	30s	100s
$\frac{\delta = 1/4}{\text{TDS}}$	79	95	131	156	100s 170
TDS	79	95	131	156	170
TDS TDS+	79 116	95 155	131 175	156 195	170 239

Table: Coverage for approximate TDS and TDS+.

Experiment: approximation errors for temperature and mean as function of time limit



Discussion

- TDS+ approximates both mean and temperature better than TDS
- How to approximate t what search times out?
- Good case: if PV contains move in G: use coupon value just before
- Only coupons in PV: tried different heuristics, $t = t_{min}/2$ is good

Experiment: Sum Games

- Players:
 - Arrow, full-board $\alpha\beta$
 - Hotstrat-TDS
 - Hotstrat-TDS+
- 10 seconds per move

Hotstrat-TDS+ vs Arrow

CMPUT 657

Ν	4 × 4	5 × 5	6 × 6
2	-2.20(6.06) 44.0%	-1.62(8.95) 52.3%	0.58(11.8) 57.3%
4	-2.60(8.49) 49.3%	2.54(12.3) 58.6%	25.4(19.7) 77.5%
6	-1.58(10.1) 50.1%	16.4(16.9) 72.8%	53.9(25.4) 86.8%

Table: Results depending on number *N* and size of subgames.

- All numbers from Hotstrat-TDS+' point of view:
- mean score
- (standard deviation of score)
- win percentage

Discussion

- Hotstrat-TDS+ improves strongly with size and number of subgames
- For 4 \times 4 subgames, full board $\alpha\beta$ is slightly superior
- Compared with 2004 TDS experiment: $\alpha\beta$ much improved for simple subgames due to extra search depth reached
- $\alpha\beta$ plays perfectly in the limit, Hotstrat does not
- Superior scaling of local search remains very clear for more complex subgames

Hotstrat-TDS+ vs Hotstrat-TDS

CMPUT 657

Ν	4 × 4	5×5	6 × 6
	9.77(5.53) 82.5%		
4	19.7(7.59) 90.0%	39.7(12.2) 94.7%	61.1(16.2) 97.7%
6	29.9(9.85) 93.3%	50.7(15.5) 96.7%	76.6(21.6) 98.8%

Table: Results Hotstrat-TDS+ vs Hotstrat-TDS.

- Hotstrat-TDS+ much better than Hotstrat-TDS
- TDS+ computes better approximations in the same time
- Advantage increases with both size and number of subgames

Future Work

- Prove or disprove 2δ-Conjecture
- Use TDS+ to generalize Kao's Mean and Temperature Search (MTS)
- extend TDS+ to Go endgames, deal with ko
- hybrid algorithm, combine local TDS+ with shallow global search as in (Müller + Li) paper

Summary

- 5 enhancements greatly speed up TDS
- E₄ promises to scale well for even larger subgames
- Still lots of room for improvement
 - Only of 159 of 600 test cases solved exactly within 250 seconds
 - Only 305 of 600 solved approximately within 100 seconds, even with large $\delta=1$