Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Winter 2022

How to Play Sums of Games?

- Special case impartial games
 - Solved by Nim analysis, MEX rule
 - Or, by more efficient algorithms (Nimbers paper)
- General case minimax solution
 - Exact solution
 - Approximate solution

Preview - Integer Avoidance Theorem

- How to simplify analysis?
- Which moves are the least urgent to play?
- Integer Avoidance Theorem: Integers are the least urgent to play
- (we will discuss why when we talk about incentives of moves)
- So if we have a sum game, with some integers in it, focus on all the other games first
- Practical problem: recognize when a game is an integer
- More general idea: incentive of a move precisely measures the improvement from making the move

Sums of Hot Games

- Computing a sum directly can be very complex
- Example: a = 1 | -1, b = 2 | -2, c = 3 | -3, d = 4 | -4
- Canonical form of sums:
 - $a+b=\{\{3|1\}|\{-1|-3\}\}$
 - $a+b+c = \{\{\{6|4\}|\{2|0\}\}|\{\{0|-2\}|\{-4|-6\}\}\}\}$
 - $a+b+c+d=\{\{\{10|8\}|\{6|4\}\}|\{\{4|2\}|\{0|-2\}\}\}\}|\{\{\{2|0\}|\{-2|-4\}\}|\{\{-4|-6\}|\{-8|-10\}\}\}\}$
- More CGSuite examples in class notes

Sums of Hot Games (2)

- Worst case example:
- No simplification
- Basically, sum contains the complete search tree
- In many cases we get some simplification
- Example: several small subgames add to a constant
- Example: $\{2|0\} + \{5||3|0\} + \{6|4\} = \{11||9|6\}$
- Why? $\{2|0\} + \{6|4\} = \{2|0\} + 6 + \{0|-2\} = 6$

Sums of Hot Games (3)

- Computing sums often leads to combinatorial explosion
- Need a better approach
 - Compute a best move, or at least a good move in a sum game...
 - ...without adding the games
- One reason for complexity: canonical form of sum is overly general...
- ...if we just want to know the result of one specific sum under alternating play
- We do not need to know how this sum game behaves in summation with any other game
- How to be more efficient?
- First step: let's revisit minimax search

Minimax Solution

- Can use standard alphabeta search
- Generate all moves in each subgame
- New approach: stop play in integers (discuss)
- Add the scores when all games are played out to integers
- If the score is 0, previous player wins
- Example: $\{5||3|2\} + \{10|4||-2\} + \{7|6||1|0\},$ Left to play

Minimax Solution (2)

- Disadvantage: such search does not use local structure
- Can we solve sum games more efficiently?
- Yes! (Most of the time)
- Algorithm ideas:
 - Prune moves based on incentive
 - Sort moves by temperature

Leftscore and Rightscore

- Minimax scores of a game
- Leftscore: Left plays first
- Rightscore: Right plays first
- Example: 5||3|2 + 10|4|| 2
 - Leftscore = 9
 - Rightscore = 3
- Can compute (much) faster than by addition

Example - Leftscore and Rightscore with Minimax

- Play G = 5||3|2 + 10|4|| 2, Left moves first
- option 1 (bad): Left moves to 5 + 10|4|| 2,
 - Right moves to 5-2=3 = final result
- option 2 (correct): Left moves to 5||3|2 + 10|4
 - Right best move is to 5||3|2+4
 - Left moves to 5 + 4 = 9 = leftscore(G)
 - Right's mistake: to 3|2 + 10|4
 - Left best move to 3|2 + 10,
 - Right to 2 + 10 = 12 > 9
- Exercise: what is rightscore(G)?

The Incentive of a Move

- Incentive: exact measure of move value
- Improvement in position from making a move from $G = \{G^L | G^R\}$
- Incentive for Left: G^L G
- Incentive for Right: G G^R
- Note the asymmetry in the definition
- For incentives, larger is always better, for both players!

Incentive Examples

- Left incentive: $G^L G$, Right incentive: $G G^R$
- Examples:
- G = 6, $G^L = 5$
 - Left's incentive = -1
 - Right's incentive does not exist. There is no G^R
- G = 10|5, $G^L = 10$, $G^R = 5$
 - Left's incentive = $10 \{10|5\} = 5|0$
 - Right's incentive = $\{10|5\} 5 = 5|0$
- $G = *, G^L = 0, G^R = 0$
 - Left's incentive = 0 * = *
 - Right's incentive = * 0 = *
- Are both player's incentives always the same?

- Are both player's incentives always the same? No
- Example 1: G = 2||1|0
 - Left's incentive = $G^L G = 2 2 || 1 || 0 = 2 || 1 || 0$
 - Right's inc. = $G G^R = 2 || 1 | 0 1 | 0 = \{1, \{2|1\}|0\}$
- Example 2: $G = \uparrow = \{0 | *\}$
 - Left move to $G^L = 0$
 - Incentive for Left: $0 \uparrow = \downarrow$
- Right move to *
 - Incentive $G G^R = \uparrow * = \uparrow *$

- If one player has several different (incomparable) options
- Then that player has several different (incomparable) incentives
- Example 2: $G = \{2, \{3|1\}|0\}$
- Left option 1: $G^{L1} = 2$
 - Incentive 1 for Left: $2 G = \{2|0, \pm 1\}$
- Left option 2: $G^{L2} = \{3|1\}$
 - Incentive 2 for Left: $\{3|1\} G = \{3|1||0\}$
- Right move to 0
 - Incentive $G G^R = G$

Pruning using Incentives

- Theorem (easy): if moves m_1 and m_2 have incentives $l_1 \ge l_2$, then can safely prune m_2 .
- Note: it does not matter if the moves are in the same subgame or not
- Leads to a powerful optimal solving algorithm (decomposition search)

Pruning using Incentives

- Given sum game $S = G_1 + ... + G_n$
- Compute incentives of all moves in all subgames
- Incentives can be computed locally in each subgame
- Prune: remove all moves with dominated incentives
- Can be very effective

Incentives can be Computed Locally

- Given sum game $S = G_1 + ... + G_n$
- Play in subgame G_i to some option G^L_i
- e.g. Left Incentive = $S^{L} S = G_{1} + ... + G_{i}^{L} + ... + G_{n} (G_{1} + ... + G_{i} + ... + G_{n})$ = $G_{i}^{L} - G_{i}$
- Incentive in sum game S = incentive in subgame G_i
- Same for Right incentive
- Other subgames all unchanged, cancel in the subtraction

Pruning using Incentives

- In Go:
 - Endgames typically have strong ordering of incentives
 - Often, one move dominates all others
 - Used in Decomposition Search (Müller 1995, 1999)
- Amazons: effective, but less so than in Go. More positions that have several nondominated moves.
- Bad case: lots of games, incomparable incentives no pruning
- Worst case: impartial games no dominated incentives
 - However: can still prune other options with equal incentive

Summary

- Part 1: Looked at sums of hot games
- Leftscore and rightscore defined if we know how to stop at an integer
- Difference leftscore rightscore gives some measure of urgency in playing a game
- Part 2: Incentive is exact measure of value of a move
- It is another game
- Incentives can be computed locally in a subgame, and used for pruning dominated moves, both locally and globally in a sum