
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

CMPUT 657

How to Play Sums of Games?

Special case - impartial games
Solved by Nim analysis, MEX rule
Or, by more efficient algorithms (Nimbers paper)

General case - minimax solution
Exact solution
Approximate solution

CMPUT 657

Preview - Integer Avoidance Theorem

How to simplify analysis?
Which moves are the least urgent to play?
Integer Avoidance Theorem: Integers are the least
urgent to play
(we will discuss why when we talk about incentives of
moves)
So if we have a sum game, with some integers in it,
focus on all the other games first
Practical problem: recognize when a game is an integer
More general idea: incentive of a move precisely
measures the improvement from making the move

CMPUT 657

Sums of Hot Games

Computing a sum directly can be very complex
Example: a = 1| − 1,b = 2| − 2, c = 3| − 3,d = 4| − 4
Canonical form of sums:

a + b = {{3|1}|{−1| − 3}}

a + b + c = {{{6|4}|{2|0}}|{{0| − 2}|{−4| − 6}}}

a + b + c + d = {{{10|8}|{6|4}}|{{4|2}|{0| −
2}}}|{{{2|0}|{−2| − 4}}|{{−4| − 6}|{−8| − 10}}}

More CGSuite examples in class notes

CMPUT 657

Sums of Hot Games (2)

Worst case example:
No simplification
Basically, sum contains the complete search tree
In many cases we get some simplification
Example: several small subgames add to a constant
Example: {2|0} + {5||3|0} + {6|4} = {11||9|6}
Why? {2|0} + {6|4} = {2|0} + 6 + {0|-2} = 6

CMPUT 657

Sums of Hot Games (3)

Computing sums often leads to combinatorial explosion
Need a better approach

Compute a best move, or at least a good move in a sum
game...
...without adding the games

One reason for complexity: canonical form of sum is
overly general...
...if we just want to know the result of one specific
sum under alternating play
We do not need to know how this sum game behaves
in summation with any other game
How to be more efficient?
First step: let’s revisit minimax search

CMPUT 657

Minimax Solution

Can use standard alphabeta search
Generate all moves in each subgame
New approach: stop play in integers (discuss)
Add the scores when all games are played out to
integers
If the score is 0, previous player wins
Example:
{5||3|2}+ {10|4|| − 2}+ {7|6||1|0},
Left to play

CMPUT 657

Minimax Solution (2)

Disadvantage: such search does not use local structure
Can we solve sum games more efficiently?
Yes! (Most of the time)
Algorithm ideas:

Prune moves based on incentive
Sort moves by temperature

CMPUT 657

Leftscore and Rightscore

Minimax scores of a game
Leftscore: Left plays first
Rightscore: Right plays first
Example: 5||3|2 + 10|4|| − 2

Leftscore = 9
Rightscore = 3

Can compute (much) faster than by addition

CMPUT 657

Example - Leftscore and Rightscore with
Minimax

Play G = 5||3|2 + 10|4|| − 2, Left moves first
option 1 (bad): Left moves to 5 + 10|4|| − 2,

Right moves to 5− 2 = 3 = final result
option 2 (correct): Left moves to 5||3|2 + 10|4

Right best move is to 5||3|2 + 4
Left moves to 5 + 4 = 9 = leftscore(G)

Right’s mistake: to 3|2 + 10|4
Left best move to 3|2 + 10,
Right to 2 + 10 = 12 > 9

Exercise: what is rightscore(G) ?

CMPUT 657

The Incentive of a Move

Incentive: exact measure of move value
Improvement in position from making a move from
G = {GL|GR}
Incentive for Left: GL −G
Incentive for Right: G −GR

Note the asymmetry in the definition
For incentives, larger is always better, for both players!

CMPUT 657

Incentive Examples

Left incentive: GL −G, Right incentive: G −GR

Examples:
G = 6, GL = 5

Left’s incentive = -1
Right’s incentive does not exist. There is no GR

G = 10|5, GL = 10, GR = 5
Left’s incentive = 10− {10|5} = 5|0
Right’s incentive = {10|5} − 5 = 5|0

G = ∗, GL = 0, GR = 0
Left’s incentive = 0− ∗ = ∗
Right’s incentive = ∗ − 0 = ∗

Are both player’s incentives always the same?

CMPUT 657

Examples - Different Incentives for Both Players

Are both player’s incentives always the same? No
Example 1: G = 2||1|0

Left’s incentive = GL −G = 2− 2 ||1 |0 = 2 |1 ||0
Right’s inc. = G −GR = 2 ||1 |0− 1 |0 = {1, {2|1}|0}

Example 2: G = ↑= {0|∗}
Left move to GL = 0
Incentive for Left: 0− ↑= ↓

Right move to ∗
Incentive G −GR = ↑ −∗ = ↑ ∗

CMPUT 657

Examples - Different Incentives for One Player

If one player has several different (incomparable)
options
Then that player has several different (incomparable)
incentives
Example 2: G = {2, {3|1}|0}
Left option 1: GL1 = 2

Incentive 1 for Left: 2−G = {2|0,±1}
Left option 2: GL2 = {3|1}

Incentive 2 for Left: {3|1} −G = {3|1||0}
Right move to 0

Incentive G −GR = G

CMPUT 657

Pruning using Incentives

Theorem (easy): if moves m1 and m2 have incentives
I1 ≥ I2, then can safely prune m2.
Note: it does not matter if the moves are in the same
subgame or not
Leads to a powerful optimal solving algorithm
(decomposition search)

CMPUT 657

Pruning using Incentives

Given sum game S = G1 + ...+ Gn

Compute incentives of all moves in all subgames
Incentives can be computed locally in each subgame
Prune: remove all moves with dominated incentives
Can be very effective

CMPUT 657

Incentives can be Computed Locally

Given sum game S = G1 + ...+ Gn

Play in subgame Gi to some option GL
i

e.g. Left Incentive = SL − S =
G1 + ...+ GL

i + ...+ Gn
− (G1 + ...+ Gi + ...+ Gn)
= GL

i −Gi

Incentive in sum game S = incentive in subgame Gi

Same for Right incentive
Other subgames all unchanged, cancel in the
subtraction

CMPUT 657

Pruning using Incentives

In Go:
Endgames typically have strong ordering of incentives
Often, one move dominates all others
Used in Decomposition Search (Müller 1995, 1999)

Amazons: effective, but less so than in Go. More
positions that have several nondominated moves.
Bad case: lots of games, incomparable incentives - no
pruning
Worst case: impartial games - no dominated incentives

However: can still prune other options with equal
incentive

CMPUT 657

Summary

Part 1: Looked at sums of hot games
Leftscore and rightscore defined if we know how to stop
at an integer
Difference leftscore - rightscore gives some measure of
urgency in playing a game
Part 2: Incentive is exact measure of value of a move
It is another game
Incentives can be computed locally in a subgame, and
used for pruning dominated moves, both locally and
globally in a sum

	Two Player Games
	Introduction to Combinatorial Games

