Computing Science (CMPUT) 657

Algorithms for Combinatorial Games

Martin Miller

Department of Computing Science
University of Alberta
mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

Proof-Number
SEE)]

Proof-Number Search

Proof-Number Search - Motivation

£o0FNumber @ Some branches are (much much) easier to prove than

SEET]

others
@ Good move ordering helps

@ Uniform-depth search (as in standard alphabeta) can
be inefficient

@ A deep but mostly forced line may be much easier to
prove

@ In many games, branching factor is far from uniform
@ In many games, strongly forcing move sequences exist

Examples for Non-uniform Branching Factor

Proof-Number @ Chess Example: king in check must escape from check

SEET]

@ much reduced branching factor
e much increased chance of finding a checkmate
@ Checkers
o must capture if possible
e reduced branching factor, close to 1
e captures help simplify the game - closer to endgame
databases
@ Go, Life and Death example

o Often only small set of relevant attacking moves (all
others will fail trivially)

Proof-Number
SEET]

Proof-Number Search Motivating Example

MAX

MIN

0 =loss, 1 = win

@ Partially searched tree

@ Some nodes proven as
wins or losses

@ Most nodes still unknown
@ Where to expand next?

@ Expand node that may
lead to quick proof!

@ Here: bottom left node

Proof-Number
SEET]

Proof-Number Search Motivating Example (2)

MAX
@ Search bottom left node
MIN @ If win: parent is win,
grandparent is win, ...
root is win!
MAX

@ Ifloss: (do in class)

@ In both cases, solving
.) '
MIN () (o) 0= loss, 1 = win this node is VERY useful!

Proof-Number Search (PNS)

Proof-Number

Search @ Invented by Victor Allis
(AlJ paper 1994, see optional readings)

@ Builds on earlier ideas by McAllester, conspiracy
numbers

@ Flexible, balanced: can find either proof or disproof

@ Grow both at the same time: a potential proof and a
potential disproof tree

@ Incremental: grow one node at a time

Concepts - Search Tree vs Game States

@ Properties of current search tree in PNS:
@ Some leaf nodes may be terminal states of game, wins

Proof-Number
SEET]

Depth-First

Proof-Number or IOSSeS

Search (df-pn)

@ All other leaf nodes have unknown result
non-terminal game state, result not yet computed
@ Interior node nin PNS search tree:

o Originally, n has unknown result

o Expanded later - generate children of n

@ Over time, some interior nodes become proven or
disproven, by propagating results up from children

@ PNS stops as soon as root is proven or disproven

Proof-Number Search Idea

Proof-Number
SEET]

@ Given an incomplete (dis-)proof:

o How far is it from being complete?
o What is the most promising way to expand it?
@ Find (dis)proof set of minimal size:

o A smallest set of leaf nodes that must be (dis-)proven to
(dis-)prove the root.

Proof-Number Search Idea (2)

Broot Number @ Principle: optimism in face of uncertainty

Search (seen also in Monte Carlo tree search)

@ Assume cost of proving each unproven node is 1
(this is optimistic, lower bound)

@ Try to complete a proof:
reduce size of smallest proof set to 0

@ Same mechanism for disproof, disproof set

@ Main idea:

e There is always a node n in both the min. proof and
disproof set
o Expand it!

Most-Promising Node

Proof-Number

Search @ Key insight of PNS: there is always a most-promising
p node (MPN)
voh (at o) Allis called it most-proving node
@ MPN is in the intersection of
@ a minimal proof set and
e a minimal disproof set
@ Solving MPN will help either a proof or a disproof of the
root:

e proving MPN reduces min. proof set of root
o disproving MPN reduces min. dispproof set of root

Proof and Disproof Number of a Node

Proof-Number
SEET]

@ Proof number pn of a node n:

@ size of min. proof set for n

o Optimistic estimate of cost of proving n
@ Disproof number dn of n:

@ size of min. disproof set for n
@ Optimistic estimate of cost of disproving n

PNS Algorithm Outline

Proof-Number
SEET]

@ Initialise tree with just the root
@ Set pn and dn of root
@ Repeat until root proven or disproven:

e Find MPN
o Expand MPN
o Recompute proof and disproof numbers

Initialize (Dis-)Proof numbers at Leaf Nodes

Proof-Number
SEET]

@ Notation:

@ n.pn = proof number of n
@ n.dn = disproof number of n

@ Leaf node, not terminal: n.pn = n.dn =1
@ Leaf node, win: n.on =0, n.dn = oo
@ Leaf node, loss: n.pn = oo, n.dn =20

(Dis-)Proof numbers at Interior Nodes

Proof-Number

Search @ Back to basics: to prove win,
must prove one child at OR-node,
all children at AND-nodes

@ Assume we have proof and disproof numbers of
children

@ Set pn of OR node to minimum pn of all children
@ Set dnto sum of dn of all children

@ AND node is dual: pnis sum, dnis minimum of
children’s numbers

Basic Assumptions of Proof Number Search

Proof-Number
SEET]

@ Assumption 1: optimism works (see earlier discussion)
@ Assumption 2: solving each subtree of a node is
independent from solving the others (therefore the
sum)
o True if state space is a tree
e Can be very wrong in a DAG

Basic Proof Number Formulas

@ OR node:

Proof-Number
SEET]

npn=__min cpn ndn= > can
cechilaren(n) cechildren(n)

@ AND node:

P = Z cpn ndn= min c.dn
cechildren(n) cechildren(n)

@ Note: Infinities 00 behave as expected, e.g.
o0+ 1 =00+ 00 =00, Min(c,00) =c¢

Wins and Losses

@ nis proven win:
n.pn=0,n.dn= oo
@ nis proven loss:
n.pn = oo,n.dn =20
@ Wins and losses back up as expected, e.g.
@ Child ¢; of OR node is win:

Proof-Number
SEET]

n.pn = min(cy.pn,...,ci.pn,...) =min(...,0,...) =0

ndn=> (ci.dn,..,c.dn,..)=> (..,00,..) =00

@ Similarly for AND nodes, for losses

PNS Algorithm

Proof-Number
Search

ProofType PNS (Node root)
root.InitializePnDn ()
while (root.pn

0 AND root.dn != 0
AND ResourcesAvailable())
Node mpn = SelectMPN (root)
ExpandNode (mpn)

if

UpdateProofNumbers (mpn)
(root.pn)

return PROVEN
else if

(root.dn ==

else

)
return DISPROVEN

return UNKNOWN

Select Most Promising Node

Node SelectMPN (Node node)
while

Proof-Number

Search

(NOT node.IsTerminal ())
if (node.Type ()

== OR_NODE)
node = FindEqualChildPN (node.children,
node.pn)
else
node = FindEqualChildDN (node.children,
node.dn)
return node
Node FindEqualChildPN (NodeList nodes, int parent_pn)
forall (c in nodes)
if (c.pn == parent_pn)
return c
Node FindEqualChildDN (NodeList nodes, int
(same, replace pn by dn)

parent_dn)

Expand Node

Proof-Number
SEE)]

ExpandNode (Node node)
forall

(legal moves m from node)
Node c =

node.Play (m)
c.InitializePnDn ()

node.AddChild (c)

Update Proof Numbers

// updates are bottom—-up starting with MPN

Proof-Number UpdateProofNumbers (Node node)

Search if (node.Type() == OR_NODE)
node.pn = min_pn(node.children)
node.dn = sum_dn (node.children)

else
node.pn = sum_pn (node.children)
node.dn = min_dn (node.children)
if (node.parent)
UpdateProofNumbers (node.parent)
// Eliminate tail-end recursion:
// use while loop as in the paper
// Optimization: stop recursion
// as soon as a node does not change,
// restart SelectMPN from there

Comments on PNS

@ “Best-first”, great for unbalanced search trees

Proof-Number

Search @ Adapts to find deep but narrow proofs
Depth-First

Proof-Number @ Memory hog - needs to store all nodes in memory

Search (df-pn)

(df-pn is better)

@ No guarantee on finding short win or small proof tree -
ignores cost of proof so far

@ Behaves more like greedy best-first search in
single-agent search than like A*

@ There is AO*, an equivalent to A* for finding least-cost

solutions in AND/OR trees. We will not discuss it (some
info in optional resources)

Successes of PNS

Proof-Number
SEET]

@ Victor Allis solved connect-four, qubic, Go-moku (5 in a
row)

@ Used in endgame solvers e.g. for Awari, Lines of Action

@ Depth-first reformulation: df-pn

@ Used in proof of checkers (our reading)
o Use to solve very hard checkmating problems in shogi
o Use to solve very hard life and death problems in Go

PNS on a DAG

Proof-Number
SEET]

@ Still well-defined (apply formulas bottom-up)
@ Problem 1: node has more than one parent
@ Problem 2: overcounting proof and disproof numbers

PNS on a DAG - Multiple parents

Sy Problem 1: node has more than one parent
Search
- @ Backup to all? Cost can explode, go from ©(log n) to

Depth-First

oof-Number @(n) per iteration

Search (df-pn)

@ Backup to one parent only? Then values become
inconsistent (other parents out of sync) and MPN
computation becoms flawed

@ Still, we usually accept the single parent backup

o repair other parents’ values if and when they are
revisited

@ Research question: is there a better way?

Proof-Number
SEET]

Depth-First
oof-Number
Search (df-pn)

PNS on a DAG - Overcounting

Problem 2: overcounting proof and disproof numbers

D OR node
O AND node

Figure 7: Example of overestimating pn(A)

@ Back to basics: pn, dn count
number of leaf nodes that must be
solved

@ In DAG, the same leaf node may
be counted along multiple paths

@ This overcounting can be
exponentially bad (do an example)

@ Effect: an easy to prove node can
look very hard

@ It happens in practice!
@ How to fix? see Section 6 of paper

Overcounting Can Get Arbitrarily Bad

ox < oum*"mg X A (sue)
Proof-Number PDG& MS g L’ OQ (W—‘-“\ -)
T DAG
L AnD (S)
) }; > OR (e)

2 AVD (sum)
/r;j{ P\D@\(1 e ok (win)
S')ia.—‘i\-} AMD
Soure 1 7

Cowmled & 15mas along 8 oliffes! il

Proof Numbers - Heuristic Initialisation

Proof-Number
SEET]

@ Heuristic initialisation of pn, dn

@ Back to basics:
pn, dn are lower bounds on cost of solving node

@ Initializing them with 1 is naive
@ Are pn and dn inversely related? Not really. Discuss.
@ Heuristic initialisation is a huge improvement in practice

Heuristic Initialisation - Examples

Proof-Number
SEET]

@ How to find better estimates?

@ |dea: use features of the position, domain knowledge
@ Chess and shogi: estimate king safety

@ Chess and shogi: count attacking pieces

@ Go: “distance to life” in life and death problems

@ Huge improvement in these tasks

Example: Pseudo One Move Lookahead
initialisation

@ What happens if we expand a node with k children?
Proof-Number @ before expand: pn = dn = 1 in both AND and OR nodes

Search
DepthFirst @ Assume no wins/losses among children
Search (dhony @ After expansion:
e ORnode:pn=1,dn=k
o AND node: dn=1,pn=k
@ In some games, it is cheap to compute or approximate
the number of children k
e Example in Go: number of empty points is a good
approximation
@ Initialize dn of OR, pn of AND with (estimate of) k

@ How does this compare/combine with other heuristic
initialisations?

PNS - Extension to More than Two Game
Results

Proof-Number
SEET]

@ PNS is defined for the two results case (win/loss)
@ Can extend as in boolean minimax

o Series of boolean searches, e.g. binary search or
sequential search

o Each search divides results into “good” and “bad”
groups as in minimax

@ Other approaches: see Section 9 of survey paper

Checkers Case Study

@ Checkers solution (Schaeffer 2007)

@ Uses seed for proof tree:
strongest lines proposed by human experts
@ Pseudo-proof:

@ assume everything with evaluation > 150 is win
@ assume everything < -150 is loss

o Create “proof tree”

e For “win”, all leaf nodes in proof have eval > 150

Proof-Number
SEET]

@ After 150 is proven, change bounds to +£200, re-search
@ Keep increasing bounds to 250, etc.
@ Once bounds reach +oo, proof is complete

Good Cases for PNS

Proof-Number
SEET]

@ Uneven branching factor
@ Early wins/losses found in some branches

@ Number of moves correlated with winning chance
@ Example: checkmating problems
o If defender has fewer moves it may be trouble
e King in check: only a few moves
@ Search of these critical positions can become very deep
very quickly

Bad Cases for PNS

Proof-Number
SEET]

@ “Everything looks the same”
@ Uniform branching factor, no early wins/losses
@ PNS becomes an expensive way to do blind search

Proof-Number
SEET]

Depth-First
oof-Number
Search (df-pn)

Really Bad Cases for PNS

AL BRIGH DHIEL FUIGH I

i]
18 I
Nz %» »
5 ==

15
14 H|J
T

13

@ Proof numbers can be actively misleading

@ Example: short proof needs set of 3 nodes,
but there exists a huge subtree with pn < 2.

@ Lots of “forcing moves”, but they don’'t work. Only a
“quiet” move works
@ Example in Go:
@ branching ladder, all branches fail, can be hundreds of
nodes with pn = 2, search depth 100 or more
o Capture locally in net: pn > 2, but depth < 10

Negamax Formulation of PNS

Proof-Number
SEET]

Used in df-pn algorithm
Proof numbers for current player in each node

Only one set of formulas
Define:

@ n.¢ = n.pnin OR node, n.dnin AND node
@ n.d = n.dnin OR node, n.pnin AND node

Formula: n.¢ = min(c¢y.9, ..., cp.0)
Formula: n.o = (¢1.9, ..., Cn.0)
Do you see how it is equivalent to normal PNS?

Depth-First
Proof-Number
Search (df-pn)

Depth-First Proof-Number Search (df-pn)

Depth-First Proof-Number Search (df-pn)

e @ Depth-first version of proof-number search (Section 4 in

arch

ang Survey)

Search (df-pn) @ Developed in (Nagai 1999; 2002)

@ Reduces re-expansions of interior nodes

@ Uses transposition table for memory

@ Works well even with severely limited memory

@ df-pn(r) (Kishimoto and Muller 2003, Kishimoto 2005)
improves df-pn in case of repetitions (e.g. checkers, ko
in Go)

Main Contributions of Df-pn

Depth-First @ Efficiency
Proof-Number

Search (df-pn) @ Good use of memory
@ Multiple iterative deepening at interior nodes
@ Extensions to address double-counting in DAG’s

@ Another extension: df-pn+ algorithm

@ adds cost function for edges
e can find optimal solutions in AND/OR graphs with costs

Main ldea of Df-pn

@ In PNS, search often stays in one subtree for a long

time
78 o PNSrepeatedly expands MPN uniil tree solved as win
Search (df-pn) or loss
@ Main idea:

@ As long as we can determine the MPN ...
@ ...we do not need to compute proof and disproof
numbers exactly

@ We can compute thresholds for how long we stay in a
subtree

@ We can use them to delay updates and gain efficiency

Example of Delayed Updates

o @ Example: compute pn from children
- n.pn = min(100, 90, 20, 60, 50, 75) = 20
Soaroh () o Initially, we will stay in the subtree with pn = 20

@ How long? Until its proof number exceeds pn, = 50
@ Why 507 Smallest proof number among other children

@ We must also check if a child selection would change
higher up in the tree.

@ How? Can pass down a threshold pt from parent
@ Formula for new threshold: min(parent.pt, pn. + 1)

Main Idea of Df-pn for Sum Computation

@ n.pn = sum(c1.pn,...cn.pn)
Depth-First

Proof-Number @ Assume we have threshold n.pt for node n
Search (df-pn)

@ Say we are working on child ¢;. How long?
@ Answer:

until either n.pn > n.pt,

or the increase in ¢; exceeds the difference n.pt — n.pn.
@ Set threshold of child

¢i.pt = c;.pn+ (n.pt — n.pn)

Df-pn Negamax Formulation

Depth-First @ n.¢ proof number for current player

Search (o) @ n.o disproof number for current player
@ Formula: n.¢ = min(c.9, ..., cp.9)
@ Formula: n.6 =3 (¢1.¢, ..., Cn.0)

@ n.¢ defined in terms of children’s §

@ n.0 defined in terms of children’s ¢

@ Write thresholds in these terms: see code

Equivalence Between PNS and df-pn

Depth-First

Proof-Numb i P’ i
e @ Theorem 2.3 in Nagai’s thesis:

df-pn always expands an MPN

@ Comment: there may be multiple MPN -
PNS and df-pn may do tiebreaking differently

@ See Nagai’s thesis for detailed proof

Multiple lterative Deepening (MID)

Depth-First

e @ lterative “deepening” in each node, not just root

earcl -pn
@ “Deepening” here means increase threshold, not depth
@ Reason:

@ (dis-)proof numbers can decrease as well as increase
o Example: some children of an AND node are proven
— sum decreases

Df-pn Pseudocode

Depth-First
Proof-Number
Search (df-pn)

@ Nagai’s thesis, Appendix A, or PNS survey paper
Figure 5

@ Calls MID for root with thresholds +co
@ Uses transposition table

Df-pn+

Depth-First @ Two ldeas:

Proof-Number
Search (df-pn) @ Heuristic initialization of leaf nodes

o Measure difficulty of (dis-)proof of leaf
@ Edge costs

o Measure “desirability” of exploring this move
e High edge costs: favor shallow trees, breadth-first like
o Low edge cost: favor depth-first

Performance with Low Memory

oof-Number @ Can run with (incredibly) little memory
Depth-First @ Efficient pruning techniques (Nagai): SmallTreeGC and
A SmallTreeReplacement
@ SmallTreeGC: garbage collect nodes with small
subtrees

@ SmallTreeReplacement: Hashing with open
addressing, try multiple entries (e.g. 10), replace one
with smallest subtree

@ Alternative: hashing with chaining - store more than
one entry at one location

Summary of PNS and Df-pn

@ Algorithms specialized for finding quick proofs

@ Work well for unbalanced trees with deep forcing lines
@ PNS is memory hungry

@ Df-pn is an efficient alternative

°

o

°

Depth-First
Proof-Number
Search (df-pn)

Many enhancements
Serious problem: overcounting nodes in DAG
For proving games, these are often the best choices

	Two Player Games
	Proof-Number Search
	Depth-First Proof-Number Search (df-pn)

