
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca


CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search - Motivation

Some branches are (much much) easier to prove than
others
Good move ordering helps
Uniform-depth search (as in standard alphabeta) can
be inefficient
A deep but mostly forced line may be much easier to
prove
In many games, branching factor is far from uniform
In many games, strongly forcing move sequences exist



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Examples for Non-uniform Branching Factor

Chess Example: king in check must escape from check
much reduced branching factor
much increased chance of finding a checkmate

Checkers
must capture if possible
reduced branching factor, close to 1
captures help simplify the game - closer to endgame
databases

Go, Life and Death example
Often only small set of relevant attacking moves (all
others will fail trivially)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search Motivating Example

Partially searched tree
Some nodes proven as
wins or losses
Most nodes still unknown
Where to expand next?
Expand node that may
lead to quick proof!
Here: bottom left node



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search Motivating Example (2)

Search bottom left node
If win: parent is win,
grandparent is win, ...
root is win!
If loss: (do in class)
In both cases, solving
this node is VERY useful!



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search (PNS)

Invented by Victor Allis
(AIJ paper 1994, see optional readings)
Builds on earlier ideas by McAllester, conspiracy
numbers
Flexible, balanced: can find either proof or disproof
Grow both at the same time: a potential proof and a
potential disproof tree
Incremental: grow one node at a time



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Concepts - Search Tree vs Game States

Properties of current search tree in PNS:
Some leaf nodes may be terminal states of game, wins
or losses
All other leaf nodes have unknown result
non-terminal game state, result not yet computed
Interior node n in PNS search tree:

Originally, n has unknown result
Expanded later - generate children of n
Over time, some interior nodes become proven or
disproven, by propagating results up from children

PNS stops as soon as root is proven or disproven



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search Idea

Given an incomplete (dis-)proof:

How far is it from being complete?
What is the most promising way to expand it?

Find (dis)proof set of minimal size:
A smallest set of leaf nodes that must be (dis-)proven to
(dis-)prove the root.



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof-Number Search Idea (2)

Principle: optimism in face of uncertainty
(seen also in Monte Carlo tree search)
Assume cost of proving each unproven node is 1
(this is optimistic, lower bound)
Try to complete a proof:
reduce size of smallest proof set to 0
Same mechanism for disproof, disproof set
Main idea:

There is always a node n in both the min. proof and
disproof set
Expand it!



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Most-Promising Node

Key insight of PNS: there is always a most-promising
node (MPN)
Allis called it most-proving node
MPN is in the intersection of

a minimal proof set and
a minimal disproof set

Solving MPN will help either a proof or a disproof of the
root:

proving MPN reduces min. proof set of root
disproving MPN reduces min. dispproof set of root



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof and Disproof Number of a Node

Proof number pn of a node n:
size of min. proof set for n
Optimistic estimate of cost of proving n

Disproof number dn of n:
size of min. disproof set for n
Optimistic estimate of cost of disproving n



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS Algorithm Outline

Initialise tree with just the root
Set pn and dn of root

Repeat until root proven or disproven:
Find MPN
Expand MPN
Recompute proof and disproof numbers



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Initialize (Dis-)Proof numbers at Leaf Nodes

Notation:
n.pn = proof number of n
n.dn = disproof number of n

Leaf node, not terminal: n.pn = n.dn = 1
Leaf node, win: n.pn = 0,n.dn =∞
Leaf node, loss: n.pn =∞,n.dn = 0



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

(Dis-)Proof numbers at Interior Nodes

Back to basics: to prove win,
must prove one child at OR-node,
all children at AND-nodes
Assume we have proof and disproof numbers of
children
Set pn of OR node to minimum pn of all children
Set dn to sum of dn of all children
AND node is dual: pn is sum, dn is minimum of
children’s numbers



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Basic Assumptions of Proof Number Search

Assumption 1: optimism works (see earlier discussion)
Assumption 2: solving each subtree of a node is
independent from solving the others (therefore the
sum)

True if state space is a tree
Can be very wrong in a DAG



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Basic Proof Number Formulas

OR node:

n.pn = min
c∈children(n)

c.pn n.dn =
∑

c∈children(n)

c.dn

AND node:

n.pn =
∑

c∈children(n)

c.pn n.dn = min
c∈children(n)

c.dn

Note: Infinities ±∞ behave as expected, e.g.
∞+ 1 =∞+∞ =∞, min(c,∞) = c



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Wins and Losses

n is proven win:
n.pn = 0,n.dn =∞
n is proven loss:
n.pn =∞,n.dn = 0
Wins and losses back up as expected, e.g.
Child ci of OR node is win:

n.pn = min(c1.pn, ..., ci .pn, ...) = min(...,0, ...) = 0

n.dn =
∑

(c1.dn, ..., ci .dn, ...) =
∑

(...,∞, ...) =∞

Similarly for AND nodes, for losses



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS Algorithm

ProofType PNS(Node root)
root.InitializePnDn()
while (root.pn != 0 AND root.dn != 0

AND ResourcesAvailable())
Node mpn = SelectMPN(root)
ExpandNode(mpn)
UpdateProofNumbers(mpn)

if (root.pn == 0)
return PROVEN

else if (root.dn == 0)
return DISPROVEN

else
return UNKNOWN



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Select Most Promising Node

Node SelectMPN(Node node)
while (NOT node.IsTerminal())

if (node.Type() == OR_NODE)
node = FindEqualChildPN(node.children,

node.pn)
else

node = FindEqualChildDN(node.children,
node.dn)

return node

Node FindEqualChildPN(NodeList nodes, int parent_pn)
forall (c in nodes)

if (c.pn == parent_pn)
return c

Node FindEqualChildDN(NodeList nodes, int parent_dn)
(same, replace pn by dn)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Expand Node

ExpandNode(Node node)
forall (legal moves m from node)

Node c = node.Play(m)
c.InitializePnDn()
node.AddChild(c)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Update Proof Numbers

// updates are bottom-up starting with MPN
UpdateProofNumbers(Node node)

if (node.Type() == OR_NODE)
node.pn = min_pn(node.children)
node.dn = sum_dn(node.children)

else
node.pn = sum_pn(node.children)
node.dn = min_dn(node.children)

if (node.parent)
UpdateProofNumbers(node.parent)

// Eliminate tail-end recursion:
// use while loop as in the paper
// Optimization: stop recursion
// as soon as a node does not change,
// restart SelectMPN from there



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Comments on PNS

“Best-first”, great for unbalanced search trees
Adapts to find deep but narrow proofs
Memory hog - needs to store all nodes in memory
(df-pn is better)
No guarantee on finding short win or small proof tree -
ignores cost of proof so far
Behaves more like greedy best-first search in
single-agent search than like A*
There is AO*, an equivalent to A* for finding least-cost
solutions in AND/OR trees. We will not discuss it (some
info in optional resources)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Successes of PNS

Victor Allis solved connect-four, qubic, Go-moku (5 in a
row)
Used in endgame solvers e.g. for Awari, Lines of Action
Depth-first reformulation: df-pn

Used in proof of checkers (our reading)
Use to solve very hard checkmating problems in shogi
Use to solve very hard life and death problems in Go



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS on a DAG

Still well-defined (apply formulas bottom-up)
Problem 1: node has more than one parent
Problem 2: overcounting proof and disproof numbers



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS on a DAG - Multiple parents

Problem 1: node has more than one parent
Backup to all? Cost can explode, go from Θ(log n) to
Θ(n) per iteration
Backup to one parent only? Then values become
inconsistent (other parents out of sync) and MPN
computation becoms flawed
Still, we usually accept the single parent backup

repair other parents’ values if and when they are
revisited

Research question: is there a better way?



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS on a DAG - Overcounting

Problem 2: overcounting proof and disproof numbers

Back to basics: pn, dn count
number of leaf nodes that must be
solved
In DAG, the same leaf node may
be counted along multiple paths
This overcounting can be
exponentially bad (do an example)
Effect: an easy to prove node can
look very hard
It happens in practice!
How to fix? see Section 6 of paper



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Overcounting Can Get Arbitrarily Bad



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Proof Numbers - Heuristic Initialisation

Heuristic initialisation of pn, dn
Back to basics:
pn, dn are lower bounds on cost of solving node
Initializing them with 1 is naive
Are pn and dn inversely related? Not really. Discuss.
Heuristic initialisation is a huge improvement in practice



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Heuristic Initialisation - Examples

How to find better estimates?
Idea: use features of the position, domain knowledge
Chess and shogi: estimate king safety
Chess and shogi: count attacking pieces
Go: “distance to life” in life and death problems
Huge improvement in these tasks



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Example: Pseudo One Move Lookahead
initialisation

What happens if we expand a node with k children?
before expand: pn = dn = 1 in both AND and OR nodes
Assume no wins/losses among children
After expansion:

OR node: pn = 1, dn = k
AND node: dn = 1, pn = k

In some games, it is cheap to compute or approximate
the number of children k

Example in Go: number of empty points is a good
approximation

Initialize dn of OR, pn of AND with (estimate of) k
How does this compare/combine with other heuristic
initialisations?



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

PNS - Extension to More than Two Game
Results

PNS is defined for the two results case (win/loss)
Can extend as in boolean minimax

Series of boolean searches, e.g. binary search or
sequential search
Each search divides results into “good” and “bad”
groups as in minimax

Other approaches: see Section 9 of survey paper



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Checkers Case Study

Checkers solution (Schaeffer 2007)
Uses seed for proof tree:
strongest lines proposed by human experts
Pseudo-proof:

assume everything with evaluation > 150 is win
assume everything < -150 is loss
Create “proof tree”
For “win”, all leaf nodes in proof have eval > 150

After 150 is proven, change bounds to ±200, re-search
Keep increasing bounds to 250, etc.
Once bounds reach ±∞, proof is complete



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Good Cases for PNS

Uneven branching factor
Early wins/losses found in some branches
Number of moves correlated with winning chance
Example: checkmating problems

If defender has fewer moves it may be trouble
King in check: only a few moves
Search of these critical positions can become very deep
very quickly



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Bad Cases for PNS

“Everything looks the same”
Uniform branching factor, no early wins/losses
PNS becomes an expensive way to do blind search



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Really Bad Cases for PNS

Proof numbers can be actively misleading
Example: short proof needs set of 3 nodes,
but there exists a huge subtree with pn ≤ 2.
Lots of “forcing moves”, but they don’t work. Only a
“quiet” move works
Example in Go:

branching ladder, all branches fail, can be hundreds of
nodes with pn = 2, search depth 100 or more
Capture locally in net : pn > 2, but depth < 10



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Negamax Formulation of PNS

Used in df-pn algorithm
Proof numbers for current player in each node
Only one set of formulas
Define:

n.φ = n.pn in OR node, n.dn in AND node
n.δ = n.dn in OR node, n.pn in AND node

Formula: n.φ = min(c1.δ, ..., cn.δ)

Formula: n.δ =
∑

(c1.φ, ..., cn.φ)

Do you see how it is equivalent to normal PNS?



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Depth-First Proof-Number Search (df-pn)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Depth-First Proof-Number Search (df-pn)

Depth-first version of proof-number search (Section 4 in
survey)
Developed in (Nagai 1999; 2002)
Reduces re-expansions of interior nodes
Uses transposition table for memory
Works well even with severely limited memory
df-pn(r) (Kishimoto and Müller 2003, Kishimoto 2005)
improves df-pn in case of repetitions (e.g. checkers, ko
in Go)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Main Contributions of Df-pn

Efficiency
Good use of memory
Multiple iterative deepening at interior nodes
Extensions to address double-counting in DAG’s
Another extension: df-pn+ algorithm

adds cost function for edges
can find optimal solutions in AND/OR graphs with costs



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Main Idea of Df-pn

In PNS, search often stays in one subtree for a long
time
PNS repeatedly expands MPN until tree solved as win
or loss
Main idea:

As long as we can determine the MPN . . .
. . . we do not need to compute proof and disproof
numbers exactly

We can compute thresholds for how long we stay in a
subtree
We can use them to delay updates and gain efficiency



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Example of Delayed Updates

Example: compute pn from children
n.pn = min(100, 90, 20, 60, 50, 75) = 20
Initially, we will stay in the subtree with pn = 20
How long? Until its proof number exceeds pn2 = 50
Why 50? Smallest proof number among other children
We must also check if a child selection would change
higher up in the tree.
How? Can pass down a threshold pt from parent
Formula for new threshold: min(parent .pt ,pn2 + 1)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Main Idea of Df-pn for Sum Computation

n.pn = sum(c1.pn,...cn.pn)
Assume we have threshold n.pt for node n
Say we are working on child ci . How long?
Answer:
until either n.pn ≥ n.pt ,
or the increase in ci exceeds the difference n.pt − n.pn.
Set threshold of child
ci .pt = ci .pn + (n.pt − n.pn)



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Df-pn Negamax Formulation

n.φ proof number for current player
n.δ disproof number for current player
Formula: n.φ = min(c1.δ, ..., cn.δ)

Formula: n.δ =
∑

(c1.φ, ..., cn.φ)

n.φ defined in terms of children’s δ
n.δ defined in terms of children’s φ

Write thresholds in these terms: see code



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Equivalence Between PNS and df-pn

Theorem 2.3 in Nagai’s thesis:
df-pn always expands an MPN
Comment: there may be multiple MPN -
PNS and df-pn may do tiebreaking differently
See Nagai’s thesis for detailed proof



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Multiple Iterative Deepening (MID)

Iterative “deepening” in each node, not just root
“Deepening” here means increase threshold, not depth
Reason:

(dis-)proof numbers can decrease as well as increase
Example: some children of an AND node are proven
−→ sum decreases



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Df-pn Pseudocode

Nagai’s thesis, Appendix A, or PNS survey paper
Figure 5
Calls MID for root with thresholds ±∞
Uses transposition table



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Df-pn+

Two Ideas:
Heuristic initialization of leaf nodes

Measure difficulty of (dis-)proof of leaf
Edge costs

Measure “desirability” of exploring this move
High edge costs: favor shallow trees, breadth-first like
Low edge cost: favor depth-first



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Performance with Low Memory

Can run with (incredibly) little memory
Efficient pruning techniques (Nagai): SmallTreeGC and
SmallTreeReplacement
SmallTreeGC: garbage collect nodes with small
subtrees
SmallTreeReplacement: Hashing with open
addressing, try multiple entries (e.g. 10), replace one
with smallest subtree
Alternative: hashing with chaining - store more than
one entry at one location



CMPUT 657

Proof-Number
Search

Depth-First
Proof-Number
Search (df-pn)

Summary of PNS and Df-pn

Algorithms specialized for finding quick proofs
Work well for unbalanced trees with deep forcing lines
PNS is memory hungry
Df-pn is an efficient alternative
Many enhancements
Serious problem: overcounting nodes in DAG
For proving games, these are often the best choices


	Two Player Games
	Proof-Number Search
	Depth-First Proof-Number Search (df-pn)


