Proof for the Equivalence Between Some Best-First Algorithms and Depth-First Algorithms for AND/OR Trees

Ayumu Nagai and Hiroshi Imai

Department of Information Science

University of Tokyo

E-mail: nagai@is.s.u-tokyo.ac.jp

Overview

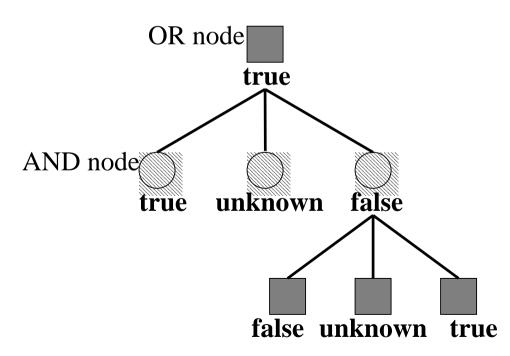
- Explanation of an AND/OR tree
 - -Proof number and disproof number
 - Most-proving node
- Introduction of some algorithms
 - -Pn-search
 - -Df-pn-search
- Proof the outline of the equivalence
 - -In the meaning of expanding always a most-proving node
- Experimental results
- Conclusion

An AND/OR Tree

- Two players · · · first player and second player
- Three values · · · false, unknown, and true
- Ordering (at OR nodes) · · · false < unknown < true
- Ordering (at AND nodes) · · · true < unknown < false

The final value of the root

- true ⇒ proof solution (proved)
- false \Rightarrow disproof solution (disproved)



Proof Number and Disproof Number

- If e is proved
 - 1

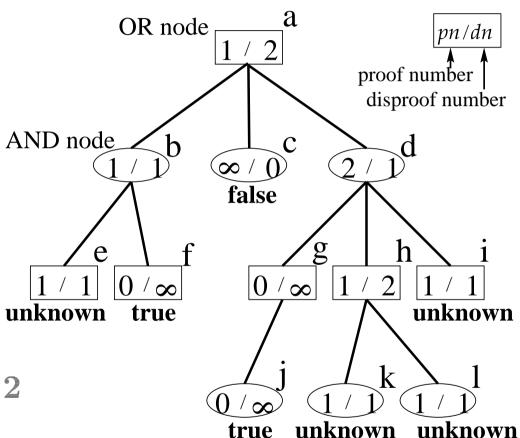
a is proved

- \implies Proof number of a = 1
- If e and i is disproved

1

a is disproved

 \implies Disproof number of a = 2



- e is the most-proving node
 - ⇒ Affecting to both proof number and disproof number

Calculation of Proof Number and Disproof Number

- At an OR node n
 - One of its children is proved ⇒ proved
 - All the children is disproved ⇒ disproved

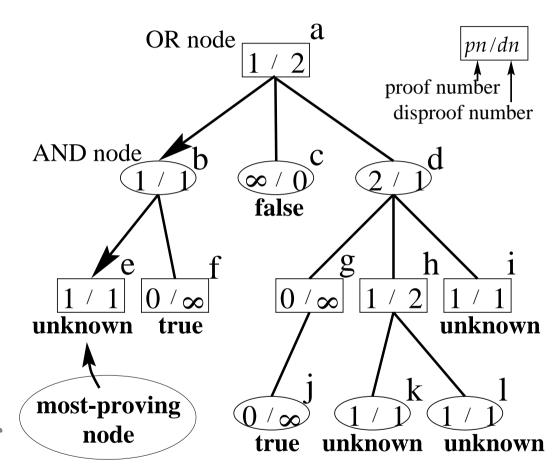
$$n.pn = Min_{\mathrm{child}} \in \mathbf{children\ of\ } n n_{\mathrm{child}}.pn \iff n.dn = \sum_{n_{\mathrm{child}} \in \mathbf{children\ of\ } n} n_{\mathrm{child}}.dn$$

- At an AND node n
 - All the children is proved ⇒ proved
 - One of its children is disproved \Longrightarrow disproved

$$n.pn = \sum_{\substack{n_{ ext{child}} \in \mathbf{children \ of} \ n} n_{ ext{child}}.pn$$
 $n.dn = \min_{\substack{n_{ ext{child}} \in \mathbf{children \ of} \ n} n_{ ext{child}}.dn$

A Most-Proving Node

- Starting from the root
- Selection among the child
 - -At an OR node
 - ··· child of least proof number
 - -At an AND node
 - ··· child of least disproof number



⇒ Finally reaches to the most-proving node

Related Work and its Classification

	criteria of evaluation used	
	only	proof number and
	proof number	disproof number
best-first	AO*[Nilson,1980]	pn-search[Allis,1994]
	(Elkan[1989])	
depth-first	Seo's Algorithm	df-pn-search[this paper]
	[1995]	(PDS[Nagai,1998])

Purpose

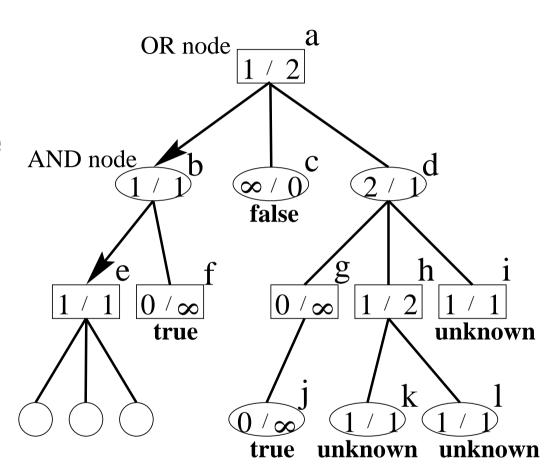
- Proof of the equivalence
 - -between AO* and Seo's Algorithm
 - between pn-search and df-pn-search ⇐= focus

Pn-search

- 1. Select a most-proving node
- 2. Generate all the children
- 3. Propagate toward the root

Repeat until
the solution is found

⇒ Goes back and forth

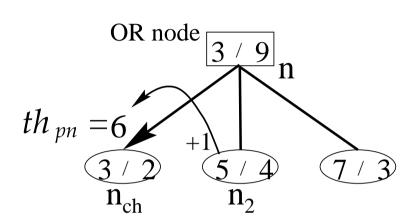


Df-pn-search

ullet At each node n, search below n

while
$$n.pn < n.th_{pn}$$

and $n.dn < n.th_{dn}$



- \bullet At each OR node n,
 - search the child $n_{\rm ch}$ with minimum proof number
 - assign

$$n_{\text{ch}}.th_{pn} = \min(n.th_{pn}, \underline{n_2.pn+1})$$

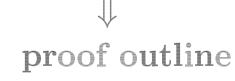
$$n_{\rm ch}.th_{dn} = n.th_{dn} + n_{\rm ch}.dn - \Sigma n_{\rm child}.dn$$

 $n_2 \cdots$ is the child with second minimum proof number

Proof of the equivalence (1) (!(! Course of the Proof (!(!

• Pn-search always expands most-proving node

• Df-pn-search always expands most-proving node



⇒ pn-search and df-pn-search is equivalent

Proof of the equivalence (2)

(!(! Expansion of Most-Proving Node during Df-pn-search (!(!

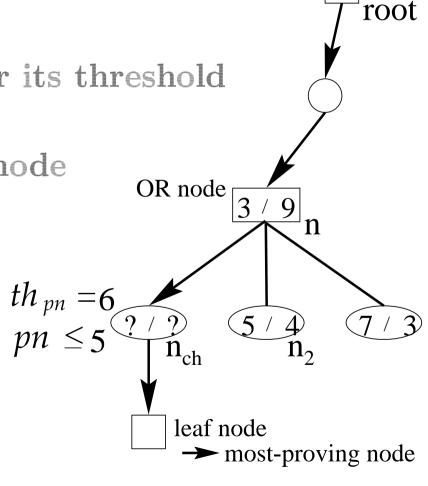
A leaf node is now to be expanded

While (dis)proof number is under its threshold

Most-proving node is below the node

• The same thing can be said with all the active nodes

⇒ Df-pn-search always expands most-proving node



Proof of the equivalence (3) (!(! More Strong Equivalence (!(!

- A narrow definition of most-proving node
 - ⇒ Most-proving node is defined uniquely (but dynamically)
 - ⇒ Same most-proving nodes are expanded in the same order as with both pn-search and df-pn-search

Difference Between Pn-Search and Df-Pn-Search

• Pn-search searches

$$a \rightarrow b \rightarrow e \rightarrow b \rightarrow a \rightarrow b \rightarrow e \rightarrow m$$

Df-pn-search searches

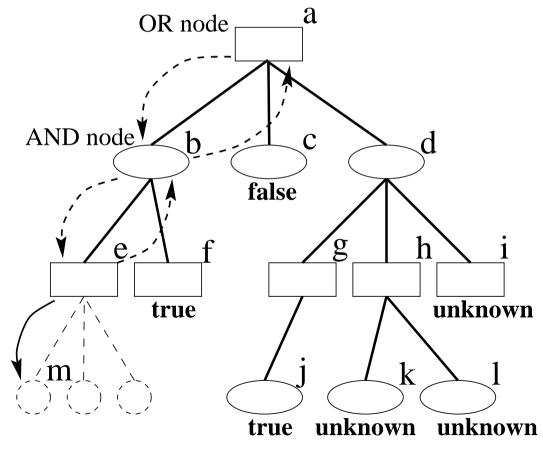
$$a \rightarrow b \rightarrow e \rightarrow m$$

As with df-pn-search,

No unnecessary back and forth

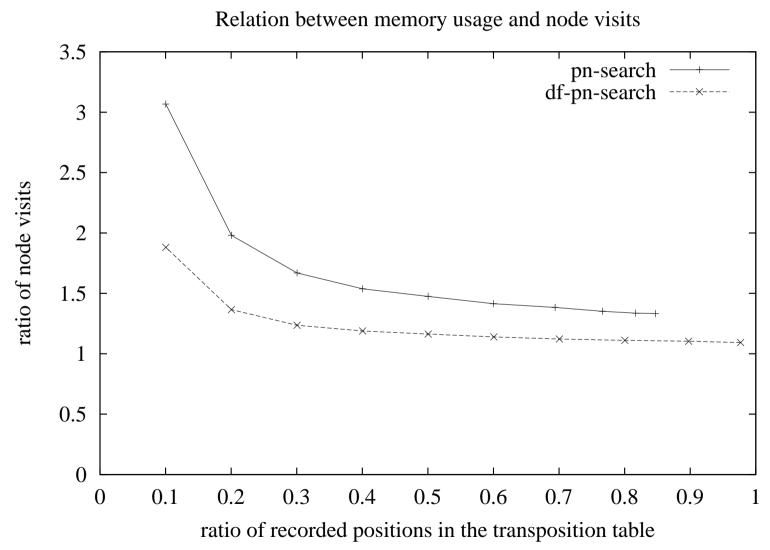
 \uparrow

Two thresholds



Experimental Result

(151 Othello positions with 15 vacant squares appeared at PrincetonII)



⇒ Df-pn-search needs only 60-85% node visits

Conclusion

- Proposal of a new depth-first algorithm (df-pn-search)
- Proof of the equivalence
 between pn-search and df-pn-search
- Experimental result show the superiority of df-pn-search to pn-search

Future Work

- Improvement of Seo's algorithm
- Using the information of heuristic evaluation function