
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

CMPUT 657

Minimax search

Why minimax?
AND/OR game tree model, proof tree
Solving games - minimax principle
Boolean minimax solver
Alphabeta solver
Heuristic game player with alphabeta

CMPUT 657

Why Minimax?

Setting: Two player adversarial zero-sum games
Possible results of game are ordered
Example 1: win > draw > loss
Example 2: result is numeric score, larger is better
Adversarial games: the opponent wants the opposite
result
Example: for them it is best if we lose

CMPUT 657

Why Minimax? (2)

Notation for result: o(player)
Classical setting: zero sum game
o(player1) + o(player2) = 0
o(player2) = - o(player1)
Assume we are player1
Example 1:

win (for us): o(player1) = +1, o(player2) = -1
draw: o(player1) = o(player2) = 0
loss (for us) o(player1) = -1, o(player2) = +1

Example 2: result is money won
Example: o(player1) = $12000
Zero sum: o(player2) = $-12000

CMPUT 657

Why Minimax? (3)

How to play such games?
Assume we have different moves to choose from
We should choose the one with maximum result
(for us)
The opponent will also choose a move with maximum
result (for them)
Zero sum:
their maximum result is our minimum result
Examples soon

CMPUT 657

Concept: AND/OR Tree

Formalizes concept of game tree with alternating
players
Example: logic for “can we win?”
OR node: player’s turn - can win if:

move 1 wins OR ...
move 2 wins OR ...
move n wins

AND node: opponent’s turn - player wins only if
opponent’s move 1 AND move 2 AND... all win (for
player)
Applications outside of games: Goals expressed
recursively as conjunction or disjunction of subgoals.

CMPUT 657

AND/OR Tree (2)

Normal form: alternating layers of AND, OR nodes
Any AND/OR tree has an equivalent normal form
(merge children of node with same type, or introduce
dummy nodes with only one child)
Generalization: AND/OR on a DAG (directed acyclic
graph) - later in this class
How about general (cyclic) graphs? Has problems with
loops, cyclic definition of results
Optional, detailed discussion: watch Dasgupta lecture
(see resources)

CMPUT 657

Non-Game AND/OR Example

Assembling a car
OR node: choice between different alternatives, e.g.
different suppliers of components
AND node: all the ingredients of a car
AND example: need engine AND 4 tires AND
windscreen AND ...
OR example: get tires from Michelin OR Bridgestone
OR Pirelli OR ...

CMPUT 657

Proof Tree

A winning strategy for a player
Dual concept: disproof tree - proves that player loses
Subset of game tree
Covers all possible opponent replies

CMPUT 657

Definition of Proof Tree

Subtree P of game tree G is proof tree iff:
P contains root of G
All leaf nodes of P are wins
If interior AND node is in P, then
all its children are in P
If interior OR node is on P, then
at least one child is in P

CMPUT 657

Comments on Proof Tree

Same definitions work on DAG, even on arbitrary graph
Terminology: solution tree (in optional read - Pijls/de
Bruin paper)
Efficiency: want to find minimal or at least a small proof
tree

CMPUT 657

Comments on Proof Tree (2)

In uniform (b,d) tree, with OR node at root, number of
nodes in best case at each level is 1,1,b,b,b2, ...

Search is most efficient if it looks only at the proof tree
In practice, that’s impossible...
Good move ordering is crucial to get close to optimal
Ideal: Small number of moves (close to 1) expanded
before a winning one is found

CMPUT 657

Wins, Losses and Draws

CMPUT 657

Winning Strategy - Depth 1

X can win in one move
Winning strategy just contains that move

CMPUT 657

Winning Strategy - Depth 2

Winning strategy: d=1: all opponent moves,
d=2: one reply for each→ win

CMPUT 657

Winning Strategy - Depth 3

d=1: One move, d=2: one branch for each opponent
reply,
d=3: one move in each branch→ win

CMPUT 657

Winning Strategy - Depth 4

d=1: all opponent moves, d=2: one move,
leads to a known winning position

CMPUT 657

Winning Strategies - Depth 5

d=1: One move in each case,
both lead to a known winning position

CMPUT 657

What if the State Space is a DAG?

Exactly the same concepts work in DAG
Difference in practice:
We can store and share wins and losses computed
earlier
Different paths to reach the same node
Only prove a win (or loss) for a node once,
then remember
Main technique:
hash table
also called transpositon table
Details later

CMPUT 657

Minimax Algorithm - Boolean Version

Each player tries to win. Zero-sum - opponent’s win is
my loss
OR node: If I have at least one winning move, I can win
(by playing that move)
If all my moves are losses, I lose.

// Basic Minimax with boolean results
bool MinimaxBooleanOR(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach successor s of state
if (MinimaxBooleanAND(s))

return true
return false

CMPUT 657

Minimax Algorithm - Boolean Version

Each player tries to win. Zero-sum - opponent’s win is
my loss
AND node: All my moves need to be winning
If any of my moves are losses, I lose.

// Basic Minimax with boolean results
bool MinimaxBooleanAND(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach successor s of state
if (NOT MinimaxBooleanOR(s))

return false
return true

CMPUT 657

Minimax Algorithm - Boolean Version (2)

Less abstract version showing execute, undo move

// Minimax, boolean results, execute/undo moves
bool MinimaxBooleanOR(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach legal move m from state
state.Execute(m)
bool isWin = MinimaxBooleanAND(state)
state.Undo()
if (isWin)

return true
return false

CMPUT 657

Minimax Algorithm - Boolean Version (2b)

Less abstract version showing execute, undo move

// Minimax, boolean results, execute/undo moves
bool MinimaxBooleanAND(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach legal move m from state
state.Execute(m)
bool isWin = MinimaxBooleanOR(state)
state.Undo()
if (NOT isWin)

return false
return true

CMPUT 657

From Minimax to Negamax

Comment: all evaluation in StaticallyEvaluate(),
MinimaxBooleanOR(s) and
MinimaxBooleanAND(s) is from the fixed root
player’s point of view
Sometimes it is more natural to evaluate from the point
of view of the current player
⇒ Negamax formulation of minimax search
current player changes with each move - negate result
of recursive call

CMPUT 657

Negamax Algorithm - Boolean Version

// Negamax, boolean results, execute/undo moves
bool NegamaxBoolean(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()
// evaluate from toPlay’s point of view

foreach legal move m from state
state.Execute(m)
bool isWin = NOT NegamaxBoolean(state)
state.Undo()
if (isWin)

return true
return false

CMPUT 657

Boolean Minimax - Discussion

Basic recursive algorithm
Runtime depends on:

depth of search
width (branching factor)
move ordering - stops when first winning move found

Easy to compute all winning moves instead - add
top-level loop
Questions (for later): best-case, worst-case
performance?

CMPUT 657

Boolean Minimax - Discussion (2)

Boolean case is simpler special case of minimax search
Efficient pruning - stops as soon as win is found
Important tool used in other algorithms

CMPUT 657

Boolean Minimax - Discussion (3)

What is the runtime? Depends on move ordering
Simple model: uniform tree, depth d , branching factor b
What is best case, worst case?

CMPUT 657

Best Case For Boolean Minimax Search

Search is most efficient if it looks only at the proof tree
This means, at OR nodes we only look at a winning
move

We never look at a non-winning move first

In practice, that’s usually impossible - too hard.
Good move ordering is crucial for efficient search
We can use good move ordering heuristics, including
iterative deepening techniques based on successively
deeper searches

CMPUT 657

Boolean Minimax - Efficiency

Best case: about bd/2, first move causes cutoff
Worst case: about bd , no move causes cutoff
We can do exact calculation in class

CMPUT 657

Minimax search

General case - score of terminal position can be any
finite number
Frequent special case: small set of values, e.g.
win-draw-loss
Minimax: We try to maximize our score,
opponent tries to minimize it
Zero-sum: each extra point we win, the opponent loses

CMPUT 657

OR Node = MAX Node

Our turn, we maximize
Example, win-draw-loss game:

Set win-score > draw-score > loss-score
For example, can use scores
win = +1, draw = 0, loss = -1

OR node n
Children c1, ..., ck

score(n) = max(score(c1), score(c2), ... score(ck))

CMPUT 657

Example: Boolean OR and Maximum of 0, 1

Example shows equivalence between
Logical OR
Taking the maximum of numbers in the set { 0, 1 }

Booleans
True = we win
False = we lose
win(n) = win(c1) or win(c2) or ... or win(ck)
win(n) if win(ci) = True for at least one i

Numbers in the set { 0, 1 }
1 = we win
0 = we lose
score(n) = max(score(c1), score(c2), ... score(ck))
score(n) = 1 if score(ci) = 1 for at least one i

CMPUT 657

Minimax Search - OR node

int MinimaxOR(GameState state)
if (state.IsTerminal())

return state.StaticallyEvaluate()
\\ evaluate from root player’s view

int best = -INFINITY
foreach legal move m from state

state.Execute(m)
int value = MinimaxAND(state)
if (value > best)

best = value
state.Undo()

return best

CMPUT 657

Minimax Search - AND node

int MinimaxAND(GameState state)
if (state.IsTerminal())

return state.StaticallyEvaluate()
\\ evaluate from root player’s view

int best = +INFINITY
foreach legal move m from state

state.Execute(m)
int value = MinimaxOR(state)
if (value < best)

best = value
state.Undo()

return best

CMPUT 657

Negamax Formulation of Minimax Search

int Negamax(GameState state)
if (state.IsTerminal())

return state.StaticallyEvaluate()
\\ evaluate from toPlay’s view

int best = -INFINITY
foreach legal move m from state

state.Execute(m)
int value = -Negamax(state)
if (value > best)

best = value
state.Undo()

return best

CMPUT 657

Comments on Plain Minimax/Negamax

VERY inefficient

No pruning, as opposed to boolean case above
In (b,d) tree, searches all bd paths, all

∑
bi nodes

How can we add pruning?
Simple idea: prune if max. value reached
(usually does not help much)

CMPUT 657

Pruning for Minimax/Negamax

Two main ideas:
Reduce to boolean case
Alpha-beta: update upper and lower bounds on value
during search, use for pruning

CMPUT 657

Reduce to Boolean Case

Assume we already have a candidate minimax value m
(to discuss: where might m come from?)
We can do two boolean searches to verify if m is the
minimax result

1 Search if (v ≥ m) is a win
2 Search if (v > m) is a loss
3 if search with v ≥ m succeeds, but v > m fails, then m

must be the minimax value (discuss: why?)

even if a search fails, we learn something (upper or
lower bound on true value)
Important alpha-beta refinements are based on this
idea: SCOUT, NegaScout/PVS
Discuss alphabeta now, return to those ideas then.

CMPUT 657

Alpha-beta Search

Idea: keep upper and lower bounds (α, β) on the true
minimax value
prune a position if its value v falls outside the window

1 v < α we will avoid it, we have a better alternative
2 v > β opponent will avoid it, they have a better

alternative
3 If v = β we can also ignore this line (Think about why)

CMPUT 657

Alpha-beta Search - Code

int AlphaBeta(GameState state, int alpha, int beta)
if (state.IsTerminal())

return state.StaticallyEvaluate()
foreach legal move m from state

state.Execute(m)
int value = -AlphaBeta(state, -beta, -alpha)
if (value > alpha)

alpha = value
state.Undo()
if (value >= beta)
return beta // or value - see failsoft

return alpha

This is a negamax formulation.
Initial call: AlphaBeta(root, -INFINITY,
+INFINITY)

CMPUT 657

How does Alphabeta Work? (1)

let v be value of node, v1, v2, ..., vn values of children
By definition: in OR node, v = max(v1, v2, ..., vn)

By definition: in AND node, v = min(v1, v2, ..., vn)

Fully evaluated moves establish lower bound
E.g. if v1 = 5, v = max(5, v2, ..., vn) ≥ 5
Other moves of value ≤ 5 do not help us, can be
pruned

CMPUT 657

How does Alphabeta Work? (2)

Similar reasoning at AND node - moves establish upper
bound
E.g. v1 = 2, v = min(2, v2, ..., vn) ≤ 2
If a move leads to position that is too bad for one of the
players, then cut.

CMPUT 657

Alphabeta Trace Example

Image source: https://en.wikipedia.org/wiki/Alpha-beta_pruning

Let’s trace on Whiteboard

https://en.wikipedia.org/wiki/Alpha-beta_pruning

CMPUT 657

Full Search vs Heuristic Search

So far: search till end of game
Needed for exact solver
For heuristic play, can stop search earlier (e.g. after d
moves)
Depth limited searches need an evaluation function
They can also give good move ordering - iterative
deepening idea
Here is alphabeta code with depth limit

CMPUT 657

Depth-limited Alpha-beta Search - Code

int AlphaBeta(GameState state, int alpha, int beta, int depth)
if (state.IsTerminal() OR depth == 0)

return state.StaticallyEvaluate()
foreach legal move m from state

state.Execute(m)
int value = -AlphaBeta(state, -beta, -alpha, depth - 1)
if (value > alpha)

alpha = value
state.Undo()
if (value >= beta)

return beta // or value - see failsoft
return alpha

	Two Player Games

