Computing Science (CMPUT) 657

Algorithms for Combinatorial Games

Martin Miller

Department of Computing Science
University of Alberta
mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

Minimax search

@ Why minimax?

@ AND/OR game tree model, proof tree
@ Solving games - minimax principle

@ Boolean minimax solver

@ Alphabeta solver

@ Heuristic game player with alphabeta

Why Minimax?

@ Setting: Two player adversarial zero-sum games

@ Possible results of game are ordered

@ Example 1: win > draw > loss

@ Example 2: result is numeric score, larger is better
°

Adversarial games: the opponent wants the opposite
result

Example: for them it is best if we lose

Why Minimax? (2)

Notation for result: o(player)
Classical setting: zero sum game
o(player1) + o(player2) = 0
o(player2) = - o(player1)
Assume we are player1
Example 1:
o win (for us): o(player1) = +1, o(player2) = -1
o draw: o(player1) = o(player2) = 0
@ loss (for us) o(player1) = -1, o(player2) = +1
Example 2: result is money won

o Example: o(player1) = $12000
@ Zero sum: o(player2) = $-12000

Why Minimax? (3)

@ How to play such games?
@ Assume we have different moves to choose from

@ We should choose the one with maximum result
(for us)

@ The opponent will also choose a move with maximum
result (for them)

@ Zero sum:
their maximum result is our minimum result

@ Examples soon

Concept: AND/OR Tree

@ Formalizes concept of game tree with alternating
players
@ Example: logic for “can we win?”
@ OR node: player’s turn - can win if:
e move 1 wins OR ...
@ move 2 wins OR ...
@ move nwins
@ AND node: opponent’s turn - player wins only if
opponent’s move 1 AND move 2 AND... all win (for
player)
@ Applications outside of games: Goals expressed
recursively as conjunction or disjunction of subgoals.

AND/OR Tree (2)

@ Normal form: alternating layers of AND, OR nodes

@ Any AND/OR tree has an equivalent normal form
(merge children of node with same type, or introduce
dummy nodes with only one child)

@ Generalization: AND/OR on a DAG (directed acyclic
graph) - later in this class

@ How about general (cyclic) graphs? Has problems with
loops, cyclic definition of results

@ Optional, detailed discussion: watch Dasgupta lecture
(see resources)

Non-Game AND/OR Example

@ Assembling a car

@ OR node: choice between different alternatives, e.g.
different suppliers of components

@ AND node: all the ingredients of a car

@ AND example: need engine AND 4 tires AND
windscreen AND ...

@ OR example: get tires from Michelin OR Bridgestone
OR Pirelli OR ...

Proof Tree

@ A winning strategy for a player

@ Dual concept: disproof tree - proves that player loses
@ Subset of game tree

@ Covers all possible opponent replies

Definition of Proof Tree

@ Subtree P of game tree G is proof tree iff:
@ P contains root of G
@ All leaf nodes of P are wins

@ If interior AND node is in P, then
all its children are in P

@ If interior OR node is on P, then
at least one childis in P

Comments on Proof Tree

@ Same definitions work on DAG, even on arbitrary graph

@ Terminology: solution tree (in optional read - Pijls/de
Bruin paper)

@ Efficiency: want to find minimal or at least a small proof
tree

Comments on Proof Tree (2)

@ In uniform (b, d) tree, with OR node at root, number of
nodes in best case at each level is 1,1, b, b, b?, ...

@ Search is most efficient if it looks only at the proof tree
@ In practice, that’s impossible...
@ Good move ordering is crucial to get close to optimal

@ |deal: Small number of moves (close to 1) expanded
before a winning one is found

Wins, Losses and Draws

Terminal states

Win (for X) Loss Draw
olofx) Co|o|o) o0]o]x
X X|X X|X|0
(X[X o[Xx|X
Using search to find Win or Loss
X wins O loses X wins
in one move in two moves in three moves
(o}e} (0] (0]
X X
X|X|0 X|X|O X/ X|O

Winning Strategy - Depth 1

Winning X wins
strategy in one move

b
< X|X|O
o

0|o7X)
(x[xlo

@ X can win in one move
@ Winning strategy just contains that move

Winning Strategy - Depth 2

Winning 0 O to play
strategy X X wins
xIxlo in two moves
— ¥ S T
0|0 Ol O O 0)
X X 0 X X|O
X/X|0 X|X|0 X|X|0O X|X|O
o|e{X) o|x|o o o/X
X X 0|X X|0
(x[xlo x|xlo xlx/o x|xlo

@ Winning strategy: d=1: all opponent moves,
d=2: one reply for each — win

Winning Strategy - Depth 3

(o]
Winning X wins
strategy X|X|0 in three moves
ol¥
X
XX
— ¥ \ T
0|0 ol [0 O o
X X o[Xx X|0
X|Xx|o Xx|x|o Xx[x|o Xx|x|o
0[o{X) o|x|jo © o/X
X X oXx X|0
(xIxlo xlxJlo xlxJo x]|x]o

@ d=1: One move, d=2: one branch for each opponent

reply,

d=3: one move in each branch — win

Winning Strategy - Depth 4

Start of
Winning Oto Play
strategy o _ Xwins
in four moves
XX
— VT NN
(0] (e][e] o 0O O (0] (0]
o) (0] o
x[o XX &xPOXX0 XIX[XOX]X]
o *
X
X|X|0
Win - see

previous slide

@ d=1: all opponent moves, d=2: one move,
leads to a known winning position

Winning Strategies - Depth 5

Start of
Winning
strategies

X wins
in five moves
(o]

(o)
X

Win - see

previous slide

@ d=1: One move in each case,

both lead to a known winning position

[m]

=

What if the State Space is a DAG?

@ Exactly the same concepts work in DAG
@ Difference in practice:

@ We can store and share wins and losses computed
earlier

@ Different paths to reach the same node

@ Only prove a win (or loss) for a node once,
then remember

@ Main technique:
hash table
also called transpositon table

@ Details later

Minimax Algorithm - Boolean Version

@ Each player tries to win. Zero-sum - opponent’s win is
my loss

@ OR node: If | have at least one winning move, | can win
(by playing that move)

@ If all my moves are losses, | lose.

// Basic Minimax with boolean results
bool MinimaxBooleanOR (GameState state)
if (state.IsTerminal())
return state.StaticallyEvaluate ()
foreach successor s of state
if (MinimaxBooleanAND (s))
return true
return false

Minimax Algorithm - Boolean Version

@ Each player tries to win. Zero-sum - opponent’s win is
my loss

@ AND node: All my moves need to be winning
@ If any of my moves are losses, | lose.

// Basic Minimax with boolean results
bool MinimaxBooleanAND (GameState state)
if (state.IsTerminal ())
return state.StaticallyEvaluate ()
foreach successor s of state
if (NOT MinimaxBooleanOR(s))
return false
return true

Minimax Algorithm - Boolean Version (2)

@ Less abstract version showing execute, undo move

// Minimax, boolean results, execute/undo move:
bool MinimaxBooleanOR (GameState state)
if (state.IsTerminal())
return state.StaticallyEvaluate ()
foreach legal move m from state
state.Execute (m)
bool isWin = MinimaxBooleanAND (state)
state.Undo ()
if (isWin)
return true
return false

Minimax Algorithm - Boolean Version (2b)

@ Less abstract version showing execute, undo move

// Minimax, boolean results, execute/undo move:
bool MinimaxBooleanAND (GameState state)
if (state.IsTerminal())
return state.StaticallyEvaluate ()
foreach legal move m from state
state.Execute (m)
bool isWin = MinimaxBooleanOR (state)
state.Undo ()
if (NOT isWin)
return false
return true

From Minimax to Negamax

@ Comment: all evaluation in StaticallyEvaluate (),
MinimaxBooleanOR (s) and
MinimaxBooleanAND (s) is from the fixed root
player’s point of view

@ Sometimes it is more natural to evaluate from the point
of view of the current player

@ = Negamax formulation of minimax search

@ current player changes with each move - negate result
of recursive call

Negamax Algorithm - Boolean Version

// Negamax, boolean results, execute/undo move:
bool NegamaxBoolean (GameState state)
if (state.IsTerminal())
return state.StaticallyEvaluate ()
// evaluate from toPlay’s point of wvier
foreach legal move m from state
state.Execute (m)
bool isWin = NOT NegamaxBoolean (state)
state.Undo ()
if (isWin)
return true
return false

Boolean Minimax - Discussion

@ Basic recursive algorithm
@ Runtime depends on:
o depth of search
e width (branching factor)
o move ordering - stops when first winning move found
@ Easy to compute all winning moves instead - add
top-level loop

@ Questions (for later): best-case, worst-case
performance?

Boolean Minimax - Discussion (2)

@ Boolean case is simpler special case of minimax search
@ Efficient pruning - stops as soon as win is found
@ Important tool used in other algorithms

Boolean Minimax - Discussion (3)

@ What is the runtime? Depends on move ordering
@ Simple model: uniform tree, depth d, branching factor b
@ What is best case, worst case?

Best Case For Boolean Minimax Search

@ Search is most efficient if it looks only at the proof tree

@ This means, at OR nodes we only look at a winning
move

o We never look at a non-winning move first
@ In practice, that’s usually impossible - too hard.
@ Good move ordering is crucial for efficient search

@ We can use good move ordering heuristics, including
iterative deepening techniques based on successively
deeper searches

Boolean Minimax - Efficiency

@ Best case: about b?/2, first move causes cutoff
@ Worst case: about b¥, no move causes cutoff
@ We can do exact calculation in class

Minimax search

@ General case - score of terminal position can be any
finite number

@ Frequent special case: small set of values, e.g.
win-draw-loss

@ Minimax: We try to maximize our score,
opponent tries to minimize it

@ Zero-sum: each extra point we win, the opponent loses

OR Node = MAX Node

@ Our turn, we maximize
@ Example, win-draw-loss game:

@ Set win-score > draw-score > loss-score
o For example, can use scores
win = +1, draw = 0, loss = -1

@ OR node n
o Children ¢y, ..., ¢k

@ score(n) = max(score(cy), score(cy), ... score(ck))

Example: Boolean OR and Maximum of 0, 1

@ Example shows equivalence between

o Logical OR

e Taking the maximum of numbers in the set{ 0, 1 }
@ Booleans

o True = we win

o False = we lose

@ win(n) = win(cy) or win(cp) or ... or win(ck)

e win(n) if win(c;) = True for at least one i
@ Numbers inthe set{0, 1}
1 =we win
0 = we lose
score(n) = max(score(c), score(cz), ... score(ck))
score(n) = 1 if score(c;) = 1 for at least one i

Minimax Search - OR node

int MinimaxOR (GameState state)
if (state.IsTerminal ())
return state.StaticallyEvaluate ()
\\ evaluate from root player’s view
int best = —-INFINITY
foreach legal move m from state
state.Execute (m)
int value = MinimaxAND (state)
if (value > best)
best = wvalue
state.Undo ()
return best

Minimax Search - AND node

int MinimaxAND (GameState state)
if (state.IsTerminal ())
return state.StaticallyEvaluate ()
\\ evaluate from root player’s view
int best = +INFINITY
foreach legal move m from state
state.Execute (m)
int value = MinimaxOR (state)
if (value < best)
best = wvalue
state.Undo ()
return best

Negamax Formulation of Minimax Search

int Negamax (GameState state)
if (state.IsTerminal ())
return state.StaticallyEvaluate ()
\\ evaluate from toPlay’s view
int best = —-INFINITY
foreach legal move m from state
state.Execute (m)
int value = -Negamax (state)
if (value > best)
best = wvalue
state.Undo ()
return best

Comments on Plain Minimax/Negamax

@ VERY inefficient

@ No pruning, as opposed to boolean case above
e In (b, d) tree, searches all b paths, all 3 b’ nodes

@ How can we add pruning?

@ Simple idea: prune if max. value reached
(usually does not help much)

Pruning for Minimax/Negamax

@ Two main ideas:
@ Reduce to boolean case

@ Alpha-beta: update upper and lower bounds on value
during search, use for pruning

Reduce to Boolean Case

@ Assume we already have a candidate minimax value m
(to discuss: where might m come from?)
@ We can do two boolean searches to verify if mis the
minimax result
@ Searchif (v > m)is awin
@ Searchif (v > m)is aloss
@ if search with v > m succeeds, but v > m fails, then m
must be the minimax value (discuss: why?)
@ even if a search fails, we learn something (upper or
lower bound on true value)

@ Important alpha-beta refinements are based on this
idea: SCOUT, NegaScout/PVS

@ Discuss alphabeta now, return to those ideas then.

Alpha-beta Search

@ Idea: keep upper and lower bounds («, 8) on the true
minimax value
@ prune a position if its value v falls outside the window
@ v < a we will avoid it, we have a better alternative
@ v > 3 opponent will avoid it, they have a better
alternative
© If v = 5 we can also ignore this line (Think about why)

Alpha-beta Search - Code

int AlphaBeta (GameState state, int alpha, int beta)
if (state.IsTerminal())
return state.StaticallyEvaluate()
foreach legal move m from state
state.Execute (m)
int value = -AlphaBeta(state, -beta, -alpha)
if (value > alpha)
alpha = value

state.Undo ()
if (value >= beta)
return beta // or value - see failsoft

return alpha

@ This is a negamax formulation.

@ Initial call: AlphaBeta (root, —-INFINITY,
+INFINITY)

How does Alphabeta Work? (1)

let v be value of node, vq, vs, ..., v, values of children
By definition: in OR node, v = max(vy, va, ..., Vp)

By definition: in AND node, v = min(vy, Vo, ..., V)
Fully evaluated moves establish lower bound
E.g.ifvy =5, v=max(5, vo,...,Vn) > 5

Other moves of value < 5 do not help us, can be
pruned

How does Alphabeta Work? (2)

@ Similar reasoning at AND node - moves establish upper
bound

@ Eg. vy =2, v=min(2,vp,...,vy) <2
@ If a move leads to position that is too bad for one of the
players, then cut.

Alphabeta Trace Example

Image source: https://en.wikipedia.org/wiki/Alpha-beta_pruning

Let’s trace on Whiteboard

MAX

MIN

MAX

MIN

MAX

https://en.wikipedia.org/wiki/Alpha-beta_pruning

Full Search vs Heuristic Search

@ So far: search till end of game
@ Needed for exact solver

@ For heuristic play, can stop search earlier (e.g. after d
moves)

@ Depth limited searches need an evaluation function

@ They can also give good move ordering - iterative
deepening idea
@ Here is alphabeta code with depth limit

Depth-limited Alpha-beta Search - Code

int AlphaBeta (GameState state, int alpha,
if (state.IsTerminal() OR depth == 0)
return state.StaticallyEvaluate ()
foreach legal move m from state
state.Execute (m)
int value = -AlphaBeta(state, -beta,
if (value > alpha)
alpha = value
state.Undo ()
if (value >= beta)

int beta, int depth)

—-alpha, depth - 1)

return beta // or value - see failsoft
return alpha

u]

o)
I

ul
it

	Two Player Games

