Computing Science (CMPUT) 657

Algorithms for Combinatorial Games

Martin Miller

Department of Computing Science
University of Alberta
mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca

Cmput 657 Today, Lecture 1

@ Introduction, course outline, Canvas

@ Sample game - Clobber

@ Two player games and their algorithms

@ Combinatorial games, theory and algorithms

What is Cmput 657 about?

Broad Goals of this Course:

@ Understand and use the algorithms of combinatorial
games

@ Basics of two player board games
@ Combinatorial games as sum games
@ Split a game into a sum of subgames

@ Write working code for real games, use packages such
as CGSuite and MCGS

@ Use the techniques in your own projects

Goal: work with Sum Games

Some algorithm topics for sum games:

@ Play a sum of games - choose one move in one
subgame each turn

@ Solve games when each subgame is small

@ Take advantage of “special” types of games, i.e.
impartial or all-small games

@ Play well when subgames are large

Organization - Main Points

@ This course has only lectures. No labs
@ Main course site https://webdocs.cs.ualberta.
ca/~mmueller/courses/657-Fall2025/
o All content - slides, assignments, course information
o Course outline
o Assessments - readings, assignments, quizzes,
research project
@ Canvas - see link from main site

o Quizzes, submitting assignments, course forum,
announcements, access to non-public material (if any)

https://webdocs.cs.ualberta.ca/~mmueller/courses/657-Fall2025/
https://webdocs.cs.ualberta.ca/~mmueller/courses/657-Fall2025/

Contact/Communication

@ Instructor: Martin Muller (email mmueller)
@ Talk to me after class to ask questions, or email

@ Use the Canvas Discussions to ask questions,
discuss course material

@ Read the Canvas Announcements

@ MCGS technical questions: Taylor Folkersen (email
folkerse)

Main Topics of Cmput 657

Three main topics, plus research projects

@ Two player board games - minimax, alphabeta etc.
e “Full board search”, does not use subgame structure
@ Combinatorial games

o Take advantage of subgame structure
o Local search and analysis in each subgame
o Slow the exponential growth of the solving cost

© Efficient algorithms and case studies for combinatorial
games

e More advanced algorithms, temperature and
thermographs, playing well in a large sum game

© Work on course project (overlapping with part 3)

@ Also see the overview on the website

Programming, Software, and Languages

@ Software: CGSuite, MCGS (more later)
@ Existing sample code is in a variety of languages

o C++, C, Python, CGScript (CGSuite scripting language)
@ Basic Python code provided for many algorithms

Programming - Expectations

@ This is a hands-on course

@ | expect you to do a good amount of programming
yourself, and read/use existing codes

@ For performance you may need to go to a more efficient
language (e.g. C++ not Python)

@ | expect you can read all sample code given
@ | expect you can modify code and test it

@ For your projects you can choose any language, as
long as | can run it on a standard dept. linux machine

Part |

Two Player Games

Basic Concepts
and Types of Games

Basic Concepts and Types of Games

@ Sample game - Clobber

@ Games and decision-making
@ State spaces

@ Types of games

@ Combinatorial games

First Sample Game - Clobber

Image from
https://en.wikipedia.org/wiki/

Clobber

@ Two player game (Black and
White), White goes first

@ Move: “clobber” one of
opponent’s adjacent pieces

@ End of game: making the last
move wins

@ No draws
@ Now: quick demo game

https://en.wikipedia.org/wiki/Clobber
https://en.wikipedia.org/wiki/Clobber

How to Solve a Game?

@ Mathematical analysis
@ Computer-based search

Look ahead into the future
Optimize decisions systematically at each step
Adversarial, minimax search:
@ Optimize for opponent when it is their turn
Efficiency:
@ Which (sequences of) moves do we need to look at?
@ What is a good move order in which to look at moves?
Divide and conquer:
@ Can we solve a game by analysing its parts
(subgames)?

Some Examples of State Space Search
Methods

@ Blind search: Breadth-first search, depth-first search

@ Single agent heuristic search: A*, Greedy Best-first
search

@ Game tree search: minimax, alphabeta, proof
number search

@ Monte Carlo Tree Search
@ Local search for single agent, e.g. hill-climbing

@ Local search in combinatorial games: one
subgame at a time

Problem-Solving Idea: Divide and Conquer

Image source:

http://sneezingtiger.com/

sokoban/levels.html

Break problem into smaller
sub-problems

Solve them and combine
solutions

Examples: dynamic
programming, branch and bound
Example: Sokoban puzzle:
solve each “room” separately
Example: Go endgame
puzzles, can find value of
move locally

http://sneezingtiger.com/sokoban/levels.html
http://sneezingtiger.com/sokoban/levels.html

Types of Games

@ Many ways to classify games

@ The algorithms can be very different depending on the
type

@ Some important criteria:

Number of players

Chance element (luck, dice, ...) vs no chance element

Full vs incomplete information

Cooperative vs adversarial games

Many more, see e.g. https://en.wikipedia.org/

wiki/List_of_types_of_games

https://en.wikipedia.org/wiki/List_of_types_of_games
https://en.wikipedia.org/wiki/List_of_types_of_games

Number of Players

@ One player: puzzle
o Can often be solved as optimization problem
@ Shortest path, or maximize reward
o Classical heuristic search methods, A* etc.

@ Two players: here in this course
@ Three or more players:
@ More difficult theory
o Coalitions between players
o Not clear what is rational play
e Technically: can have multiple Nash equilibria with
different payoffs for our player

Chance Element

@ Examples: roll dice, draw a card

@ Chance determines which actions are possible (or what
effect they have)

@ More difficult to look ahead
@ Need to look at different chance results at each step

@ Also compare: MDP with probabilistic transitions vs
deterministic MDP

Classical Two Player Games

@ We focus on “classical” two player games:
@ No chance
@ Players move alternately: | play, you play, | play,...

@ A move instantly changes the state (no duration, no
slow transitions)

@ Simplest, most frequent case is zero-sum:
my win is opponent’s loss

@ Examples: chess, checkers, Go, Clobber, Tic-Tac-Toe,

@ We focus on this type of game in this class

Combinatorial Games

@ Classical two player games with additional structure

@ Game (often, eventually) consists of several
independent subgames

@ A move in one subgame leaves all the others
unchanged

@ Demo: 1 x 10 Clobber

@ Key question in this course: can we use subgame
structure to solve these games (much) more efficiently?

@ In the first few weeks, we will discuss solving classical
two player games in general. Then, we will specialize
on combinatorial games.

Decision-making, States and
State Spaces

Making Complex Decisions

@ How to make good decisions?
@ Consider many alternatives
@ Consider short-term and long-term consequences

@ Evaluate different options and choose the best-looking
one

@ Understanding and comparing sequences of actions is
the main step in making such decisions

Why Study Decision-Making using “Classical”
Games?

@ Simple, controlled environment

@ Still hard to solve or play well

@ Interesting for many people

@ Games and results are easy to understand

@ Playing games well requires good decision-making
skills

@ We can study some core problems of decision-making
without being distracted by too many complications

States and Actions

@ State = “possible configuration of a system”

o Two player game: current position - where are the
pieces, whose turn is it, possibly (some of) the history
of previous moves

@ Action - leads from one state to another
o Two player game: a move by the current player

@ State determines which actions are possible
@ Here: no uncertainty, no “acts of nature”

State Space

@ State space - directed graph of states connected by
actions

@ Start state = initial configuration of the game
@ Terminal state: game over

@ Result: who wins when game is over
@ Goal: find a winning strategy
o win no matter what the opponent plays

Example: State Space of Clobber on 2 x 2
Board

@ Demo: work out the state space, introduce notation

Formal Framework

Formal Framework for Two Player Games

@ Set S of game states and A of actions

@ Two players, often called Black and White

@ Game: sequence of states and actions (moves)
@ Start state sg

@ Action g; instantly leads to next state, s; 1

@ Keep going until we reach a terminal state s,

@ Sequence (sg, ao, S1, a1, ---Sn)

Formal Framework for Two Player Games (2)

@ Result is a partial function defined only on terminal
states

o Example: black wins, white wins, draw
@ Sometimes we only write the actions (ag, ai, ...an)

o Example: games where states are determined from
game rules and actions

State Space

@ A state space is:

o A graph with all the possible states of a problem
e Edges in graph show how states are connected by
actions

@ State space represented as directed graph G = (S, E):
@ Nodes in S: game states
@ Directed edges in E: moves

o Edge e = (s1, s2) contains:

o State sy before move
o State s, after move

Terminal State

@ A terminal state has no possible moves (actions)
@ No outgoing edges in graph
@ The rules of a game decide:

o When the game is over (When do we reach a terminal
state?)
o What is the result in a terminal state?

Results in Terminal States

@ Simplest case: only two results, win and loss
@ Can use a boolean: true = win, false = loss

@ Classical combinatorial games have only these two
results

@ Other results: draw, no-result (e.g. chess, Tic Tac Toe)
@ Other results: numeric value (win by X points)

@ Can map simple results to numbers: e.g. +1 for win, -1
for loss, O for draw

@ Compare with rewards in reinforcement learning

Game: Tic Tac Toe

@ 3 x 3 board
@ Two players, X and O

@ To win, make 3 in a row horizontally, vertically or
diagonally
@ Draw is possible (board full, no three in a row)

Game: Go

See separate slide set for Go

Types of State Spaces

Types of State Spaces

@ Assume root at the top is current
state

X X @ Tree
X @ DAG (directed acyclic graph)
/ \ © DCG (directed cyclic graph)

© Tree is easiest for search,
DCG hardest
< OIX e @ Game graph, game tree are
other terms for state space of
games

Image source:

sciencefair.math.iit.edu

sciencefair.math.iit.edu

Complexity of State Space

@ Some measures of game complexity:
@ Size of state space

@ Branching factor (number of actions in state)
@ Difficulty of game can depend on many other things
o Is there a simple strategy?
o A mathematical theory?
e Many master games to learn from?
o Good heuristics?

Simple Tree Model of State Space

@ Constant branching factor b

@ Each interior node in tree has b children
@ Uniform depth d

@ Each path from root is d actions long

Simple Model - Count Nodes

How many nodes?

1 root node, 1 = bO total nodes at depth 0

b children of root, b' total nodes at depth 1

Each child has b new children, total b? at depth 2

Last level b" nodes at depth n
Total nodes 1 + b+ ...b" = (b™1 —1)/(b—1)
For large b, this is close to b" - last level dominates

Example - 7 x 7 Go

@ Show slides - game of Go

@ 7 x 7 Go, start on empty board
@ Process 1000 states/second

@ Simple tree model, b = 49

Table: Estimated additional effort to search one level deeper

Depth New states Added search time

0 1 ims

1 49 50ms

2 49° 2.4s

3 493 2 min

4 494 1.6 hrs

5 49° 3.2 days

6 49° 160 days
7 497 21.5 years

DAG (Directed Acyclic Graph)

D - NI

@ |dea: single node for all
equivalent states

@ Different paths to same node

@ Can lead to huge reduction in
state space
o Subtree (really Sub-DAG)
below is no longer duplicated

Tree vs DAG

@ Tree model
e Each action leads to a new node
@ DAG model
@ Only one node for equivalent states
@ Massive reduction in size of state space
@ Advantages of DAG model:
@ Avoid redundant computations
o No copied subtrees or sub-DAGs

@ Share results of analysis - compute once, re-use often

Limitations of DAG Model

@ Main problems:

o Need memory to store and recognize equivalent states
@ Some algorithms designed only for trees, not for DAGs

@ Example: propagating information up towards root

@ Only one path up in tree - efficient
o Many paths in DAG - many ancestors

Problems with DAG Model in Go

@ Go rules depend on history, not just on current board
@ Ko rule: position repetition is forbidden (next slide)

@ A move in the same board position may or may not be
legal depending on which previous states we’ve seen

@ Kishimoto (former PhD student here): efficient solution
to so-called GHI (graph history interaction) problem

o |dea: similar states often have same proof of win/loss
o Idea: can determine when history is irrelevant and use
that

Repetition Rules - Basic Ko

“

@ From top to middle picture: White can
capture one black stone by playing A

@ From middle to bottom picture: Now if
Black captures back one white stone...

@ The position would repeat, infinite loop
@ This is called a (basic) ko.
@ Go rules forbid such repetition

Counting States in a DAG

Simplified Go example, ignore
symmetry and captures

Depth 0: 0 black, 0 white stones
Depth 1: 1 black, 0 white stones
Depth 2: 1 black, 1 white stones
Depth 3: 2 black, 1 white stones

Depth d: [d/2] black stones
and | d/2| white stones

How many ways to put that
many stones on a board with 49
points?

Counting States in a DAG (continued)

@ Example:

@ Board with 49 squares

@ How many different ways to place 5 black stones?
e Answer: (7)) = 1906884

@ How many different ways to place 5 black stones and 3
white stones?

o Answer: () x (%) = 1906884 x 13244 ~ 25.2 billion

Complexity of Popular Games

Most real games do not follow a simple (b,d) model
Big table in
https:
//en.wikipedia.org/wiki/Game_complexity
Different measures of complexity
Complexity depends strongly on size of board, type of
moves
In Go, the theoretical complexity is much higher

e Main reason: capture, play again on same point

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/Game_complexity

Re-Interpreting the Tree and DAG Models

@ Our model so far:

@ State space as a graph

@ Nodes are states, edges are actions

@ Tree and DAG are special cases of graphs

@ New view of the same trees and DAGs
o A way to organize all action sequences

Organizing Sequences in Trees

+
— | 77— @ Set of all possible state-action

//3|¢\\ j&t\ //ﬁt\\ sequences
/%xﬁ%%% /ﬁﬁ) #% Organize them such that:
//ﬁﬁﬁﬁﬁ @ Any two sequences share their
B longest common prefix
\i%\ @ Branch as soon as they differ
@ Result: we get exactly the tree

representation of the state space

Image source: http://web.emn. fr

http://web.emn.fr

Organizing Sequences in a DAG

he2

S l‘— Bﬁ\

T
i
/

|

@ Similarly, we can relate
sequences to the DAG model

@ Start with sequences-as-tree
model

@ Merge two different sequences
when they both reach equivalent
states

@ Result: exactly the DAG
representation

Summary

@ Basic concepts of games, especially two player games
@ States, moves, state spaces, evaluation

@ Next topics: solving two player games, minimax and
alphabeta, proof number search

	Two Player Games

