
Computing Science (CMPUT) 657
Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science
University of Alberta

mmueller@ualberta.ca

Winter 2022

mmueller@ualberta.ca


CMPUT 657

Cmput 657 Today, Lecture 1

Introduction, course outline, Canvas
Sample game - Clobber
Two player games and their algorithms
Combinatorial games, theory and algorithms



CMPUT 657

What is Cmput 657 about?

Broad Goals of this Course:
Understand and use the algorithms of combinatorial
games
Basics of two player board games
Combinatorial games as sum games
Split a game into a sum of subgames
Write working code for real games, use packages such
as CGSuite and MCGS

Use the techniques in your own projects



CMPUT 657

Goal: work with Sum Games

Some algorithm topics for sum games:
Play a sum of games - choose one move in one
subgame each turn
Solve games when each subgame is small
Take advantage of “special” types of games, i.e.
impartial or all-small games
Play well when subgames are large



CMPUT 657

Organization - Main Points

This course has only lectures. No labs
Main course site https://webdocs.cs.ualberta.
ca/~mmueller/courses/657-Fall2025/

All content - slides, assignments, course information
Course outline
Assessments - readings, assignments, quizzes,
research project

Canvas - see link from main site
Quizzes, submitting assignments, course forum,
announcements, access to non-public material (if any)

https://webdocs.cs.ualberta.ca/~mmueller/courses/657-Fall2025/
https://webdocs.cs.ualberta.ca/~mmueller/courses/657-Fall2025/


CMPUT 657

Contact/Communication

Instructor: Martin Müller (email mmueller)
Talk to me after class to ask questions, or email
Use the Canvas Discussions to ask questions,
discuss course material
Read the Canvas Announcements
MCGS technical questions: Taylor Folkersen (email
folkerse)



CMPUT 657

Main Topics of Cmput 657

Three main topics, plus research projects
1 Two player board games - minimax, alphabeta etc.

“Full board search”, does not use subgame structure
2 Combinatorial games

Take advantage of subgame structure
Local search and analysis in each subgame
Slow the exponential growth of the solving cost

3 Efficient algorithms and case studies for combinatorial
games

More advanced algorithms, temperature and
thermographs, playing well in a large sum game

4 Work on course project (overlapping with part 3)

Also see the overview on the website



CMPUT 657

Programming, Software, and Languages

Software: CGSuite, MCGS (more later)
Existing sample code is in a variety of languages

C++, C, Python, CGScript (CGSuite scripting language)

Basic Python code provided for many algorithms



CMPUT 657

Programming - Expectations

This is a hands-on course
I expect you to do a good amount of programming
yourself, and read/use existing codes
For performance you may need to go to a more efficient
language (e.g. C++ not Python)
I expect you can read all sample code given
I expect you can modify code and test it
For your projects you can choose any language, as
long as I can run it on a standard dept. linux machine



CMPUT 657

Part I

Two Player Games



CMPUT 657

Basic Concepts
and Types of Games



CMPUT 657

Basic Concepts and Types of Games

Sample game - Clobber
Games and decision-making
State spaces
Types of games
Combinatorial games



CMPUT 657

First Sample Game - Clobber

Image from

https://en.wikipedia.org/wiki/

Clobber

Two player game (Black and
White), White goes first
Move: “clobber” one of
opponent’s adjacent pieces
End of game: making the last
move wins
No draws
Now: quick demo game

https://en.wikipedia.org/wiki/Clobber
https://en.wikipedia.org/wiki/Clobber


CMPUT 657

How to Solve a Game?

Mathematical analysis
Computer-based search

Look ahead into the future
Optimize decisions systematically at each step
Adversarial, minimax search:

Optimize for opponent when it is their turn
Efficiency:

Which (sequences of) moves do we need to look at?
What is a good move order in which to look at moves?

Divide and conquer:
Can we solve a game by analysing its parts
(subgames)?



CMPUT 657

Some Examples of State Space Search
Methods

Blind search: Breadth-first search, depth-first search
Single agent heuristic search: A*, Greedy Best-first
search
Game tree search: minimax, alphabeta, proof
number search
Monte Carlo Tree Search
Local search for single agent, e.g. hill-climbing
Local search in combinatorial games: one
subgame at a time



CMPUT 657

Problem-Solving Idea: Divide and Conquer

Image source:

http://sneezingtiger.com/

sokoban/levels.html

Break problem into smaller
sub-problems
Solve them and combine
solutions
Examples: dynamic
programming, branch and bound
Example: Sokoban puzzle:
solve each “room” separately
Example: Go endgame
puzzles, can find value of
move locally

http://sneezingtiger.com/sokoban/levels.html
http://sneezingtiger.com/sokoban/levels.html


CMPUT 657

Types of Games

Many ways to classify games
The algorithms can be very different depending on the
type
Some important criteria:

Number of players
Chance element (luck, dice, ...) vs no chance element
Full vs incomplete information
Cooperative vs adversarial games
Many more, see e.g. https://en.wikipedia.org/
wiki/List_of_types_of_games

https://en.wikipedia.org/wiki/List_of_types_of_games
https://en.wikipedia.org/wiki/List_of_types_of_games


CMPUT 657

Number of Players

One player: puzzle
Can often be solved as optimization problem
Shortest path, or maximize reward
Classical heuristic search methods, A* etc.

Two players: here in this course
Three or more players:

More difficult theory
Coalitions between players
Not clear what is rational play
Technically: can have multiple Nash equilibria with
different payoffs for our player



CMPUT 657

Chance Element

Examples: roll dice, draw a card
Chance determines which actions are possible (or what
effect they have)
More difficult to look ahead
Need to look at different chance results at each step
Also compare: MDP with probabilistic transitions vs
deterministic MDP



CMPUT 657

Classical Two Player Games

We focus on “classical” two player games:
No chance
Players move alternately: I play, you play, I play,...
A move instantly changes the state (no duration, no
slow transitions)
Simplest, most frequent case is zero-sum:
my win is opponent’s loss
Examples: chess, checkers, Go, Clobber, Tic-Tac-Toe,
...
We focus on this type of game in this class



CMPUT 657

Combinatorial Games

Classical two player games with additional structure
Game (often, eventually) consists of several
independent subgames
A move in one subgame leaves all the others
unchanged
Demo: 1× 10 Clobber
Key question in this course: can we use subgame
structure to solve these games (much) more efficiently?
In the first few weeks, we will discuss solving classical
two player games in general. Then, we will specialize
on combinatorial games.



CMPUT 657

Decision-making, States and
State Spaces



CMPUT 657

Making Complex Decisions

How to make good decisions?
Consider many alternatives
Consider short-term and long-term consequences
Evaluate different options and choose the best-looking
one
Understanding and comparing sequences of actions is
the main step in making such decisions



CMPUT 657

Why Study Decision-Making using “Classical”
Games?

Simple, controlled environment
Still hard to solve or play well
Interesting for many people
Games and results are easy to understand
Playing games well requires good decision-making
skills
We can study some core problems of decision-making
without being distracted by too many complications



CMPUT 657

States and Actions

State = “possible configuration of a system”
Two player game: current position - where are the
pieces, whose turn is it, possibly (some of) the history
of previous moves

Action - leads from one state to another
Two player game: a move by the current player

State determines which actions are possible
Here: no uncertainty, no “acts of nature”



CMPUT 657

State Space

State space - directed graph of states connected by
actions
Start state = initial configuration of the game
Terminal state: game over
Result: who wins when game is over
Goal: find a winning strategy

win no matter what the opponent plays



CMPUT 657

Example: State Space of Clobber on 2× 2
Board

Demo: work out the state space, introduce notation



CMPUT 657

Formal Framework



CMPUT 657

Formal Framework for Two Player Games

Set S of game states and A of actions
Two players, often called Black and White
Game: sequence of states and actions (moves)
Start state s0

Action ai instantly leads to next state, si+1

Keep going until we reach a terminal state sn

Sequence (s0,a0, s1,a1, ...sn)



CMPUT 657

Formal Framework for Two Player Games (2)

Result is a partial function defined only on terminal
states

Example: black wins, white wins, draw
Sometimes we only write the actions (a0,a1, ...an)

Example: games where states are determined from
game rules and actions



CMPUT 657

State Space

A state space is:
A graph with all the possible states of a problem
Edges in graph show how states are connected by
actions

State space represented as directed graph G = (S,E):
Nodes in S: game states
Directed edges in E : moves

Edge e = (s1, s2) contains:
State s1 before move
State s2 after move



CMPUT 657

Terminal State

A terminal state has no possible moves (actions)
No outgoing edges in graph
The rules of a game decide:

When the game is over (When do we reach a terminal
state?)
What is the result in a terminal state?



CMPUT 657

Results in Terminal States

Simplest case: only two results, win and loss
Can use a boolean: true = win, false = loss
Classical combinatorial games have only these two
results
Other results: draw, no-result (e.g. chess, Tic Tac Toe)
Other results: numeric value (win by X points)
Can map simple results to numbers: e.g. +1 for win, -1
for loss, 0 for draw
Compare with rewards in reinforcement learning



CMPUT 657

Game: Tic Tac Toe

3× 3 board
Two players, X and O
To win, make 3 in a row horizontally, vertically or
diagonally
Draw is possible (board full, no three in a row)



CMPUT 657

Game: Go

See separate slide set for Go



CMPUT 657

Types of State Spaces



CMPUT 657

Types of State Spaces

Image source:

sciencefair.math.iit.edu

Assume root at the top is current
state

1 Tree
2 DAG (directed acyclic graph)
3 DCG (directed cyclic graph)
4 Tree is easiest for search,

DCG hardest

Game graph, game tree are
other terms for state space of
games

sciencefair.math.iit.edu


CMPUT 657

Complexity of State Space

Some measures of game complexity:
Size of state space
Branching factor (number of actions in state)
Difficulty of game can depend on many other things

Is there a simple strategy?
A mathematical theory?
Many master games to learn from?
Good heuristics?



CMPUT 657

Simple Tree Model of State Space

Constant branching factor b
Each interior node in tree has b children
Uniform depth d
Each path from root is d actions long



CMPUT 657

Simple Model - Count Nodes

How many nodes?
1 root node, 1 = b0 total nodes at depth 0
b children of root, b1 total nodes at depth 1
Each child has b new children, total b2 at depth 2
...
Last level bn nodes at depth n
Total nodes 1 + b + ...bn = (bn+1 − 1)/(b − 1)
For large b, this is close to bn - last level dominates



CMPUT 657

Example - 7× 7 Go

Show slides - game of Go
7× 7 Go, start on empty board
Process 1000 states/second
Simple tree model, b = 49

Table: Estimated additional effort to search one level deeper

Depth New states Added search time
0 1 1ms
1 49 50ms
2 492 2.4s
3 493 2 min
4 494 1.6 hrs
5 495 3.2 days
6 496 160 days
7 497 21.5 years
... ... ...



CMPUT 657

DAG (Directed Acyclic Graph)

Idea: single node for all
equivalent states
Different paths to same node
Can lead to huge reduction in
state space

Subtree (really Sub-DAG)
below is no longer duplicated



CMPUT 657

Tree vs DAG

Tree model
Each action leads to a new node

DAG model
Only one node for equivalent states

Massive reduction in size of state space
Advantages of DAG model:
Avoid redundant computations

No copied subtrees or sub-DAGs

Share results of analysis - compute once, re-use often



CMPUT 657

Limitations of DAG Model

Main problems:
Need memory to store and recognize equivalent states
Some algorithms designed only for trees, not for DAGs

Example: propagating information up towards root
Only one path up in tree - efficient
Many paths in DAG - many ancestors



CMPUT 657

Problems with DAG Model in Go

Go rules depend on history, not just on current board
Ko rule: position repetition is forbidden (next slide)
A move in the same board position may or may not be
legal depending on which previous states we’ve seen
Kishimoto (former PhD student here): efficient solution
to so-called GHI (graph history interaction) problem

Idea: similar states often have same proof of win/loss
Idea: can determine when history is irrelevant and use
that



CMPUT 657

Repetition Rules - Basic Ko

From top to middle picture: White can
capture one black stone by playing A
From middle to bottom picture: Now if
Black captures back one white stone...
The position would repeat, infinite loop
This is called a (basic) ko.
Go rules forbid such repetition



CMPUT 657

Counting States in a DAG

Simplified Go example, ignore
symmetry and captures
Depth 0: 0 black, 0 white stones
Depth 1: 1 black, 0 white stones
Depth 2: 1 black, 1 white stones
Depth 3: 2 black, 1 white stones
Depth d : dd/2e black stones
and bd/2c white stones
How many ways to put that
many stones on a board with 49
points?



CMPUT 657

Counting States in a DAG (continued)

Example:
Board with 49 squares
How many different ways to place 5 black stones?
Answer:

(49
5

)
= 1906884

How many different ways to place 5 black stones and 3
white stones?
Answer:

(49
5

)
×
(44

3

)
= 1906884× 13244 ≈ 25.2 billion



CMPUT 657

Complexity of Popular Games

Most real games do not follow a simple (b,d) model
Big table in
https:
//en.wikipedia.org/wiki/Game_complexity

Different measures of complexity
Complexity depends strongly on size of board, type of
moves
In Go, the theoretical complexity is much higher

Main reason: capture, play again on same point

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/Game_complexity


CMPUT 657

Re-Interpreting the Tree and DAG Models

Our model so far:
State space as a graph
Nodes are states, edges are actions
Tree and DAG are special cases of graphs

New view of the same trees and DAGs
A way to organize all action sequences



CMPUT 657

Organizing Sequences in Trees

Image source: http://web.emn.fr

Set of all possible state-action
sequences
Organize them such that:
Any two sequences share their
longest common prefix
Branch as soon as they differ
Result: we get exactly the tree
representation of the state space

http://web.emn.fr


CMPUT 657

Organizing Sequences in a DAG

Similarly, we can relate
sequences to the DAG model
Start with sequences-as-tree
model
Merge two different sequences
when they both reach equivalent
states
Result: exactly the DAG
representation



CMPUT 657

Summary

Basic concepts of games, especially two player games
States, moves, state spaces, evaluation
Next topics: solving two player games, minimax and
alphabeta, proof number search


	Two Player Games

